JPS605728A - Differential protecting relaying device - Google Patents

Differential protecting relaying device

Info

Publication number
JPS605728A
JPS605728A JP58111827A JP11182783A JPS605728A JP S605728 A JPS605728 A JP S605728A JP 58111827 A JP58111827 A JP 58111827A JP 11182783 A JP11182783 A JP 11182783A JP S605728 A JPS605728 A JP S605728A
Authority
JP
Japan
Prior art keywords
zero
current
sequence
voltage
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58111827A
Other languages
Japanese (ja)
Inventor
高野 律朗
大川 哲夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58111827A priority Critical patent/JPS605728A/en
Publication of JPS605728A publication Critical patent/JPS605728A/en
Pending legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、送電線の保護区間内(二発生する内部事故を
検出する差動保護継電装置(二関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a differential protection relay device (2) for detecting an internal fault occurring within a protection section of a power transmission line (2).

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

送゛喧線の保護継電装置にパイロット継“紙力式があり
、またその中の一方式として表示線継電方式がある。こ
の表示線継電方式は第1図に示すよう(二A端(二流入
する電流と自端から流出する電流IOA 、 Ion 
’is:それぞn変流器CTa e CTb I”より
取り込み、表示線PWを介して、それぞれの端子(−設
けられた表示線継電器RY、 、 RYbに導入し、そ
れぞれが内蔵する差動回路(=よシ零相差′嘔流を演算
し、この差電流が抑制量と予定の関係(二あるか否かに
よυ、内部事故か外部事故かを判定するものである。す
なわち、正常時及び外部事故時(二は、A端に流入する
電流と自端から流出する゛電流は同じであ夛差電流を生
じないため継電器RY、 RYbとも(−不動作である
。一方、内部事故時(二は、A端(二流入する電流とB
端から流出する電流が異なシ差電流を生じるため継電器
RY、 、 RYbともに動作する。
There is a pilot relay type as a protective relay device for transmission lines, and one of them is an indicator line relay system.This indicator line relay system is shown in Figure 1 (2A). terminal (two currents flowing in and currents flowing out from the terminal IOA, Ion
'is: Input from each current transformer CTa e CTb I'', and introduce it through the display line PW to the display line relays RY, , RYb provided at each terminal (-), and connect the built-in differential circuit to each terminal (-). (= Yoshi zero phase difference ′ Flow is calculated, and this difference current determines whether there is a relationship between the amount of suppression and the schedule (υ), and whether it is an internal or external accident. In other words, under normal conditions (Secondly, the current flowing into the A terminal and the current flowing out from its own terminal are the same and no differential current occurs, so both relays RY and RYb are inoperative (-).On the other hand, in the event of an internal fault (2 is the A terminal (2 is the inflowing current and B
Since the current flowing out from the ends generates different differential currents, both relays RY, RYb and RYb operate.

しかし、一般(二送屯線がケーブル系統である場合、一
般(二ケーブルの静電容量Cが大きいため、保護区間内
の充゛准電流が大きくなり、これが差電流として現われ
て誤動作の原因となる。そこで何らかの対策をとる必要
があシ、従来、高抵抗接地ケーブル系統送鍼線の地絡保
護のため(二、第2図(−示すような継電器が用いられ
ていた。
However, if the general (2) cable is a cable system, the capacitance C of the (2) cable is large, so the charging current within the protection zone becomes large, which appears as a differential current and may cause malfunction. Therefore, it is necessary to take some kind of countermeasure. Conventionally, a relay as shown in Figure 2 (-) has been used to protect the high resistance grounding cable system from a ground fault.

第2図において、1は電流入力変換回路で1、変流器C
T、 、 c’t’bによシ検出された零相電流の差電
流工0を入力して、これ(=比例する電流工0′を出力
する。2は電圧入力変換回路であシ変成器RT。
In Figure 2, 1 is a current input conversion circuit, 1 is a current transformer C
Input the difference current factor 0 of the zero-sequence current detected by T, , c't'b, and output this (=proportional current factor 0'). 2 is a voltage input conversion circuit. Vessel RT.

(−より検出されたA端の零相電圧V。、を入力して、
これ(;比例する電圧V。、′を出力する。3は位相比
較回路であυ、電流I♂及び電圧V。、′の位相を比較
し、その位相差がある範囲内であるときに出力回路4を
介して継電器出力を生じる。この継電器の動作特性は第
3図(=実fsialで示すよう(二なる。
(Input the zero-sequence voltage V at the A end detected from -,
This (; outputs a proportional voltage V.,'. 3 is a phase comparison circuit that compares the phases of υ, current I♂ and voltage V.,', and outputs when the phase difference is within a certain range. A relay output is produced via circuit 4. The operating characteristics of this relay are as shown in FIG.

ところが一般C二、ケーブル系統(二おいては充電電流
の補償のため)二補償リアクトルが設置されておシ、こ
のような系統では1線地絡事故回復時(二零相回路のイ
ンダクタンスL及び静電容量CCC二元られたエネルギ
ーが抵抗Rを通して放心される。
However, in general C2, two compensation reactors are installed in the cable system (in order to compensate for the charging current), and in such a system, when recovering from a one-wire ground fault (inductance L and The dualized energy of the capacitance CCC is released through the resistor R.

そこで、第4図に示す過渡的な零相電圧、電流となる。Therefore, the transient zero-sequence voltage and current shown in FIG. 4 result.

この事故回復時の過渡零相電圧、電流は系統定数(=よ
って決まるが、周波数が商用周波数でないのが一般的で
あシ、その周波数fは次式で与えられる。
The transient zero-sequence voltage and current at the time of accident recovery are determined by the system constant (=), but the frequency is generally not the commercial frequency, and the frequency f is given by the following equation.

一般(=、この周波数fは商用周波数より低周波数とな
る。低周波数(二おける第2図(=示す継電器の動作特
性は第3図中点線(b)のよう(=変化する。従って、
第2図ζ二示す継電器は、故障回復時の過渡電圧、電流
によp誤動作する恐れがあった。
In general (=, this frequency f is lower than the commercial frequency.The operating characteristics of the relay shown in Figure 2 (=) change as shown by the dotted line (b) in Figure 3) at low frequencies (2).Therefore,
The relay shown in FIG. 2 ζ 2 may malfunction due to transient voltage and current during failure recovery.

〔発明の目的〕[Purpose of the invention]

本発明は上記欠点を除去するためになされたもので、ケ
ーブル系統のような充電電流の大きい系統(二おいても
、事故回復時に誤動作することのない差動保護継電装置
を提供することを目的とする。
The present invention was made in order to eliminate the above-mentioned drawbacks, and aims to provide a differential protection relay device that does not malfunction when recovering from an accident, even in systems with large charging currents such as cable systems. purpose.

〔発明の概要〕[Summary of the invention]

本発明では上記目的を達成するため(二、事故回復時(
二位相比較する零相電圧及び零相電流の差電流のいずれ
か一方を所定位相角移相して、事故回復時の動作特性の
変化を補償するようにしている。
In order to achieve the above objectives (2. At the time of accident recovery (
One of the difference currents between the zero-sequence voltage and the zero-sequence current that are compared in two phases is shifted by a predetermined phase angle to compensate for changes in operating characteristics at the time of recovery from an accident.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を第5図を参照して説明する。 An embodiment of the present invention will be described with reference to FIG.

尚、宍示線継龜器RY、 、 RYbは同一構成なので
、代表してRY、 +二ついて説明する。
It should be noted that since the Shishi line connecting devices RY, , and RYb have the same configuration, they will be explained using two RY and + as representatives.

第5図(二2いて、1は電流入力変換回路であシ、第1
図中の変流器CT、 、 CTbにより取9込まれた零
相電流の差電流Ioを入力して、それに比例する電流■
o′を出力する。2は電圧入力変換回路であり、第1図
中の変成器PT、によシ検出されたA端の零相電圧V。
Figure 5 (22, 1 is a current input conversion circuit, 1st
Input the difference current Io of the zero-sequence current taken by the current transformers CT, , CTb in the figure, and calculate the proportional current ■
Output o'. 2 is a voltage input conversion circuit, and the zero-sequence voltage V at the A terminal is detected by the transformer PT in FIG.

1を入力して、それ(二比例する電圧Voa’を出力す
る。5は変化分検出要素であシ、零相電圧V。が減少傾
向に変化するときに動作する。
1 is input, and a voltage Voa' which is proportional to it (2) is outputted. 5 is a change detection element, which operates when the zero-sequence voltage V changes in a decreasing tendency.

7は切換回路であり、電流入力変換回路1の出力■0′
を、常時及び事故発生時は接点7a側(二、事故回復時
すなわち変化分検出要素5の動作時口は接点7b側(:
切9換える。6は移相回路でちゃ、入力側を接点7b 
i=接続されておシ、電圧V。′を所定位相角移相して
、電圧■。″として出力する。3は位相比較回路でちゃ
、変化分検出要素5の不動作時は電流工0′と電圧V。
7 is a switching circuit, and the output of the current input conversion circuit 1 is 0'
At all times and when an accident occurs, the contact 7a side (2. When recovering from an accident, that is, when the change detection element 5 is activated, the opening is on the contact 7b side (:
Switch 9. 6 is a phase shift circuit, the input side is contact 7b
i=connected, voltage V. ′ by a predetermined phase angle, the voltage ■. 3 is a phase comparison circuit, and when the change detection element 5 is not operating, the current is 0' and the voltage is V.

a′とを、変化分検出要素5の動作時は電流工o′と°
電圧V0□′とを位相比較し、その位相差がある範囲内
であるとき(=出力回路4を介して継電器出力を生じる
a', and when the change detection element 5 is in operation, the current flow o' and °
The phase of the voltage V0□' is compared, and when the phase difference is within a certain range (=a relay output is generated via the output circuit 4).

次(二本実施例の作用(二ついて説明する。Next (effects of the two embodiments) will be explained in two parts.

保護区間内1:内部地絡事故が発生した場合、零相電流
が流れ、A端(−おける零相゛電流とB端(=おける零
相゛電流の差である差電流工0が継電器RY、 +二人
力される。内部事故時(二は、零相電圧V。1が0から
ある値(二急増するので、変化分検出要素5は不動作で
あシ、位相比較回路3(:は、電流入力変換回路1の出
力Io’及び、電圧入力変換回路2の出力vc、′カ入
力される。電流工O′と′I@EEvO,′との位相差
が第4図中の実線で示す動作域にあるときにリレー出力
を生じる。
Within the protection zone 1: When an internal ground fault occurs, a zero-sequence current flows, and the difference current 0, which is the difference between the zero-sequence current at the A terminal (-) and the zero-sequence current at the B terminal (=), is the relay RY. , +2 people.At the time of an internal accident (2 is the zero-sequence voltage V.1 increases rapidly from 0 to a certain value (2), the change detection element 5 is inactive, and the phase comparator circuit 3 (: is , the output Io' of the current input conversion circuit 1, and the output vc, ' of the voltage input conversion circuit 2 are input.The phase difference between the current output O' and 'I@EEvO,' is indicated by the solid line in FIG. A relay output is generated when the signal is in the operating range indicated.

欠く二、系統事故(内Sあるいは外部)が発生した後、
事故が除去されたときを考える。事故回復時には、零相
電圧V。が減少傾向(二あるので、変化分検出要素5が
動作する。そこで、位相比較回路3(二は、電流入力変
換回路1の出力IO′を移相回路6(=よυ所定位相角
移相された電流IO′と、電圧入力変換回路2の出力V
。、′が入力される。所定位相角移相された電流Io’
と電圧V。′との位相差が第4図中の点線で示す動作域
にあるとき(ニリレー出力を生じる。すなわち、゛磁流
Io’と電圧V。:との位相差が実線で示す動作域にあ
るときにリレー出力を生じること(−なる。なお、移相
回路6で移相すべき所定位相角は、前述したように事故
回復時の零相電圧、電流の周波数は商用周波数よりも低
周波数となることC二よシ継電器RY、の動作域が変化
する分を補償するよう(二設定すれば良い。
Second, after a system accident (internal or external) occurs,
Consider when the accident is removed. At the time of recovery from the accident, the zero-sequence voltage is V. Since there is a decreasing tendency (2), the change detection element 5 operates. Therefore, the phase comparison circuit 3 (2) shifts the output IO' of the current input conversion circuit 1 to the phase shift circuit 6 (= υ by a predetermined phase angle). The output current IO' and the output V of the voltage input conversion circuit 2
. , ′ are input. Current Io' shifted by a predetermined phase angle
and voltage V. When the phase difference between ``magnetic current Io'' and voltage V is in the operating range shown by the dotted line in Figure 4 (a relay output is produced. In other words, when the phase difference between the magnetic current Io' and the voltage V is in the operating range shown by the solid line) A relay output is generated (-).As mentioned above, the predetermined phase angle to be shifted by the phase shift circuit 6 is the zero-sequence voltage and current frequency at the time of accident recovery, which is lower than the commercial frequency. To compensate for the change in the operating range of relay C2 and relay RY, it is sufficient to set 2.

さら(=、零相電圧Vatの過渡振動が減衰して定常状
態(=なると、零相電圧V工は零となり変化しなくなり
、変化分検出要素5は復帰する。そこで位相比較回路3
(二は電流入力変換回路1の出カニ♂と、電圧入力変換
回路2の出力V。′が入力されて、その位相差が第4図
中の実線で示す動作域(二おるとき(=リレー出力を生
じる。
Furthermore, when the transient oscillation of the zero-sequence voltage Vat is attenuated to a steady state (=, the zero-sequence voltage V becomes zero and does not change, and the change detecting element 5 returns to its original state. Therefore, the phase comparator circuit 3
(2 is the output ♂ of the current input conversion circuit 1 and the output V of the voltage input conversion circuit 2.' produces an output.

また、継゛磁器RYbは、電流入力変換回路1(=は零
相電流の差電流Ioを、電圧入力変換回路2(二はb端
の零相電圧■。bを入力するよう(=シて第5図に示す
継磁器RY、と同様(−構成すれば良い。
In addition, the relay RYb is connected to the current input conversion circuit 1 (= is the difference current Io of the zero-sequence current) and the voltage input conversion circuit 2 (2 is the zero-sequence voltage at the b end. The structure may be the same as that of the relay RY shown in FIG.

本実施例(二よれば、常時及び事故発生時は゛礒流Io
′と電圧V、、lとを位相比較し、事故回復時は′磁流
Io’と所定位相角移相した電圧■。、′とを位相比較
するよう(二しているので、′継颯器RY、の事故回復
時の誤動作を防止することができる。従って差動保護継
電装置としての信頼性が向上する。
According to this embodiment (2), at all times and when an accident occurs,
' and the voltages V, , l are compared in phase, and at the time of accident recovery, the voltage ■ is shifted by a predetermined phase angle from the 'magnetic current Io'. , ' are carried out for phase comparison (2), so that it is possible to prevent malfunction of the relay RY at the time of recovery from an accident. Therefore, reliability as a differential protection relay device is improved.

次(二本発明の他の実施例を第6図を参照して説明する
Next, another embodiment of the present invention will be described with reference to FIG.

第6図(二おいて、゛電流入力変換回路1の出力側(二
切換回路7、移相回路6を接続して、変化分検出要素5
の不動作時は電流工0′と電圧V。、′とを位相比較回
路3(二人力して位相比較し、また変化分検出要素5の
動作時は電圧Vア′と移相回路6により所定位相角移相
された電流工0//とを位相比較回路3に入力して位相
比較するよう(ニしている。
FIG.
When not operating, the current is 0' and the voltage is V. , ' are phase-compared by the phase comparison circuit 3 (two people), and when the change detection element 5 is in operation, the voltage VA' and the current output is input to the phase comparator circuit 3 for phase comparison.

このよう(二継峨器RY、 、 RYb t−構成して
も第5図(二示す実施例と同様に、事故回復時の誤動作
を防止できる。なお、この場合、NZ 5図の実施例と
は所定位相角を遅れ、進み(二ついて逆にすれば良い。
Even with this configuration (two relays RY, , RYb t-), malfunctions during accident recovery can be prevented as in the embodiment shown in Figure 5 (2). lags and advances a predetermined phase angle (two can be used and reversed).

また、以上説明した実施例(二おいては、事故回復時で
あるか否かを、零相−圧v、3の変化を検出することに
よシ判定しているが、零相電流の差電流Ioの変化ケ変
化分検出要素5で検出すること口より判定するようにし
ても良い。
In addition, in the embodiment (2) described above, whether or not it is the time of recovery from an accident is determined by detecting the change in the zero-sequence voltage v, 3, but the difference in the zero-sequence current The change in the current Io may be detected by the change detecting element 5 or may be determined.

以上表示線保赦継屯装置について説明したがFM差動継
屯装置等の搬送式保護継電方式(二も適用できるもので
ある。
Although the display line protection relay device has been described above, it is also applicable to a conveyor type protective relay system (2) such as an FM differential relay device.

〔発明の効果〕〔Effect of the invention〕

本発明(二よれば以上説明したよう(二、ケーブル系統
のような充磁礒流の大きい系統(二おいても、事故回復
時(二誤励作することのない差動保護継電装置を提供す
ることができる。
According to the present invention (2), as explained above (2) systems with large charging currents such as cable systems (2), a differential protection relay device that does not cause false excitation during accident recovery (2). can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は差動保護継電装置の一例を示す構成図、第2図
は従来の差動保護継電装置に用いられる継磁器を示す構
成図、第3図は第2図(二示す装置aの動作域を示す動
作特性図、第4図は事故回復時の零相電圧、電流を示す
波形図、第5図は本発明の一実施例を示す構成図、第6
図は本発明の他の実施例を示す構成図である。 CT−、CTb・・・変流器、 PT、 、 PTb・
・・変成器、3・・・位相比較回路、 5・・・変化分
検出要素、6・・・移相回路、 7・・・切換回路。 (7317)代理人 弁理士 則 近 憲 佑(ほか1
名)第 1 図 第 2 図 第 3 図 第 4 図
Fig. 1 is a block diagram showing an example of a differential protection relay device, Fig. 2 is a block diagram showing a relay used in a conventional differential protection relay device, and Fig. 3 is a block diagram showing an example of a differential protection relay device. FIG. 4 is a waveform diagram showing the zero-sequence voltage and current at the time of accident recovery; FIG. 5 is a configuration diagram showing an embodiment of the present invention; FIG.
The figure is a configuration diagram showing another embodiment of the present invention. CT-, CTb...Current transformer, PT, , PTb・
...Transformer, 3.. Phase comparison circuit, 5.. Change detection element, 6.. Phase shift circuit, 7.. Switching circuit. (7317) Agent Patent Attorney Noriyuki Chika (and 1 others)
Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 自端及び相手端でそれぞれ取り込んだ零相電流を伝送手
段を介して伝送し合い自端および相手端の零相電流から
零相差電流を得る手段と、自端の零相電圧を取り込む電
圧変成器と、前記零相差電流及び零相4圧の少なくとも
一方の変化を検出しその変化が減少傾向にあるとき(=
動作する変化分検出要素と、前記零相電圧及び零相差電
流のいずれか一方を入力して前記変化分検出要素の不動
作時に第1の接点側に出力し、動作時(′″−−第2点
側(−出力する切・換回路と、前記第2の接点側の出力
を入力して所定位相角移相する移相回路と、前記変化分
検出要素の不動作時(二前記第1の接点側の位相差があ
る範囲内であるとき(二出力を生じる位相比較回路とを
具備することを特徴とする差動保護継電装置。
Means for obtaining a zero-sequence difference current from the zero-sequence currents at the own end and the opposite end by transmitting the zero-sequence currents taken in at the own end and the opposite end through a transmission means, and a voltage transformer for taking in the zero-sequence voltage at the own end. When a change in at least one of the zero-sequence difference current and zero-sequence four voltages is detected and the change is on a decreasing trend (=
The operating change detection element inputs either the zero-sequence voltage or the zero-sequence difference current, outputs it to the first contact side when the change detection element is inactive, and outputs it to the first contact side when the change detection element is inactive ( 2-point side (a switching circuit that outputs -; a phase shift circuit that inputs the output of the second contact side and shifts the phase by a predetermined phase angle; A differential protection relay device comprising a phase comparator circuit that produces two outputs when the phase difference on the contact side is within a certain range.
JP58111827A 1983-06-23 1983-06-23 Differential protecting relaying device Pending JPS605728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58111827A JPS605728A (en) 1983-06-23 1983-06-23 Differential protecting relaying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58111827A JPS605728A (en) 1983-06-23 1983-06-23 Differential protecting relaying device

Publications (1)

Publication Number Publication Date
JPS605728A true JPS605728A (en) 1985-01-12

Family

ID=14571153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58111827A Pending JPS605728A (en) 1983-06-23 1983-06-23 Differential protecting relaying device

Country Status (1)

Country Link
JP (1) JPS605728A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102412569A (en) * 2011-11-28 2012-04-11 北京四方继保自动化股份有限公司 Method for starting longitudinal differential protection by using fault component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102412569A (en) * 2011-11-28 2012-04-11 北京四方继保自动化股份有限公司 Method for starting longitudinal differential protection by using fault component

Similar Documents

Publication Publication Date Title
JPS605728A (en) Differential protecting relaying device
JPS5843402Y2 (en) Hogokeiden Sochi
JPH04312315A (en) Current differential relay unit
JPH04340319A (en) Digital relay in grounding direction
JPS6084918A (en) Display wire relaying device
JPS6361855B2 (en)
JPS63186522A (en) Grounding protective relay
JPS62193511A (en) Svc overcurrent protective device
JPS6349072Y2 (en)
JPS596724A (en) Transformer protecting relaying device
JPS5947919A (en) Groundless ground-fault direction protecting relay system
JPH0578251B2 (en)
JPH0210654B2 (en)
JPS5967824A (en) Transformer protecting relay
JPS5829316A (en) Breaker control system
JPS5986418A (en) Stationary protecting relay
JPS6084916A (en) Protective relaying device
JPH0243411B2 (en)
JPS6046725A (en) Differential protecting relaying device of transformer
JPS5967820A (en) Accident continuously isolating relay unit
JPS5866522A (en) Bus protecting and relaying device
JPS60156219A (en) Method of protecting and detecting ground fault of generator
JPS60257715A (en) Method of compensating transmission line charging current
JPS6026413A (en) Ground-fault protecting relaying method and relay
JPH0334289B2 (en)