JPH04312315A - Current differential relay unit - Google Patents

Current differential relay unit

Info

Publication number
JPH04312315A
JPH04312315A JP3101818A JP10181891A JPH04312315A JP H04312315 A JPH04312315 A JP H04312315A JP 3101818 A JP3101818 A JP 3101818A JP 10181891 A JP10181891 A JP 10181891A JP H04312315 A JPH04312315 A JP H04312315A
Authority
JP
Japan
Prior art keywords
current
overcurrent
differential
circuit
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3101818A
Other languages
Japanese (ja)
Other versions
JP2693284B2 (en
Inventor
Shigeto Oda
重遠 尾田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3101818A priority Critical patent/JP2693284B2/en
Publication of JPH04312315A publication Critical patent/JPH04312315A/en
Application granted granted Critical
Publication of JP2693284B2 publication Critical patent/JP2693284B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To prevent erroneous function of current differential relay by clearly discriminating between secondary discontinuity fault of current transformer and internal fault of transmission line. CONSTITUTION:A logic circuit makes a decision of secondary discontinuity fault of a current transformer for detecting current at this end based on outputs from overcurrent detecting circuits 12, 13 at this end and counterpart end, and then prohibits output from a differential decision circuit 10.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、送電線の内部故障を
検出して、この送電線の系統を保護するのに用いる電流
差動リレー装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a current differential relay device used to detect internal failures in power transmission lines and protect the power transmission line system.

【0002】0002

【従来の技術】図6は例えば電気学会発行の電気学会大
学講座,保護継電工学(昭和56年7月20日発行),
8.2.3項,搬送電流差動継電方式,150〜154
頁に示された従来の電流差動リレー装置を示す(以下、
リレーと略称する)ブロック図であり、図において、1
は電力用の送電線、2は電力用の送電線1に流れる電流
をリレー入力として適当な量に変換する電流変成器(C
T)、3はリレー本体である。また、このリレー本体3
において、4は電流変成器2の二次電流を入力して、こ
れを適当な電圧に変換する入力トランス(I/V)、5
は入力トランス4の出力より系統の商用周波数を抽出す
るバンドパスフィルタ(BPF)、6はアナログ電圧を
デジタルデータに変換するアナログ/デジタル変換器(
A/D)、7は相手端リレーに上記デジタルデータを伝
送するための送信用通信結合回路、8は相手端リレーよ
り送信されたデジタルデータを受信するための受信用通
信結合回路、9は相手端データと自端データの同期をと
るために自端データを遅らせる遅延回路、10は時間的
に同期のとれた自端データおよび相手端データを入力し
て電流差動演算をする差動判定回路であり、その演算結
果が送電線内部故障であれば、差動判定回路10からリ
レー出力を出力する。
[Prior Art] Figure 6 shows, for example, the Institute of Electrical Engineers of Japan University Course, Protective Relay Engineering (published July 20, 1980), published by the Institute of Electrical Engineers of Japan.
Section 8.2.3, Carrier current differential relay system, 150-154
The conventional current differential relay device shown on page (hereinafter referred to as
This is a block diagram (abbreviated as relay), and in the figure, 1
2 is a power transmission line, and 2 is a current transformer (C) that converts the current flowing through power transmission line 1 into an appropriate amount as a relay input
T), 3 is the relay body. Also, this relay body 3
, 4 is an input transformer (I/V) that inputs the secondary current of the current transformer 2 and converts it into an appropriate voltage; 5
6 is a bandpass filter (BPF) that extracts the commercial frequency of the system from the output of the input transformer 4, and 6 is an analog/digital converter (
A/D), 7 is a transmission communication coupling circuit for transmitting the digital data to the other end relay, 8 is a reception communication coupling circuit for receiving the digital data transmitted from the other end relay, and 9 is the other end relay. A delay circuit that delays own-end data in order to synchronize end data with own-end data, and 10 a differential determination circuit that inputs temporally synchronized own-end data and opposite-end data and performs current differential calculation. If the calculation result indicates an internal failure in the power transmission line, the differential determination circuit 10 outputs a relay output.

【0003】11は通信装置であり、リレー本体3内の
送信用通信結合回路7と受信用通信結合回路8と結合し
て、相手端リレーの通信装置に対してマイクロ波回線を
介してデータのやりとりを行う。なお、この図では、送
電線1に流れる電流の1相分を入力して、伝送およびリ
レー演算する回路を示しているが、実際は3相分の電流
に対して実施している。
Reference numeral 11 denotes a communication device, which is coupled to the transmitting communication coupling circuit 7 and the receiving communication coupling circuit 8 in the relay main body 3, and transmits data to the communication device of the other end relay via a microwave line. Have an exchange. Note that although this figure shows a circuit that inputs one phase of current flowing through the power transmission line 1 and performs transmission and relay calculations, it is actually performed for three phases of current.

【0004】次に電流差動リレーの動作原理を図7につ
いて説明する。いま、(a)が電流方向の基準、(b)
が健全時の電流方向、(c)が外部事故時の電流方向、
(d)が内部事故時の電流方向をそれぞれ示していると
すると、送受両端A,Bの電流和は、送電線が健全であ
れば零となる。すなわち、IA +IB =0である。 逆に、IA +IB ≠0であれば、送電線の内部事故
と判断してよく、これが電流差動原理の基本である。従
って、自端データと相手端データを差動判定回路10で
電流差動演算し、その演算結果が送電線1の内部故障で
あれば、差動判定回路10からリレー動作出力を出力す
る。
Next, the operating principle of the current differential relay will be explained with reference to FIG. Now, (a) is the reference for the current direction, (b)
is the current direction when it is healthy, (c) is the current direction when there is an external fault,
Assuming that (d) indicates the current direction at the time of an internal fault, the sum of currents at both the transmitting and receiving ends A and B will be zero if the power transmission line is healthy. That is, IA +IB =0. Conversely, if IA +IB ≠0, it may be determined that there is an internal fault in the power transmission line, and this is the basis of the current differential principle. Therefore, the differential determination circuit 10 performs a current differential calculation on the own end data and the opposite end data, and if the calculation result is an internal failure in the power transmission line 1, the differential determination circuit 10 outputs a relay operation output.

【0005】[0005]

【発明が解決しようとする課題】従来の電流差動リレー
装置は以上のように構成されているので、送電線1の内
部故障でない電流変成器2の二次側断線といった不良時
には、断線側のリレー本体3への電流入力が喪失してし
まうため、送電線1に負荷電流が流れていると、送電線
1の両端の電流和が上記負荷電流分として発生し、この
ため、送電線1の内部事故と誤判定したり、誤動作した
りするなどの課題があった。
[Problems to be Solved by the Invention] Since the conventional current differential relay device is constructed as described above, in the event of a failure such as a disconnection on the secondary side of the current transformer 2, which is not an internal failure of the power transmission line 1, the disconnection side Since the current input to the relay body 3 is lost, if a load current is flowing through the power transmission line 1, the sum of the currents at both ends of the power transmission line 1 will be generated as the load current. There were issues such as misdiagnosis of internal accidents and malfunctions.

【0006】この発明は上記のような課題を解消するた
めになされたもので、電流変成器の二次側断線不良にも
拘らず送電線の内部事故と誤判定するのを防ぐことがで
きる電流差動リレー装置を得ることを目的とする。
[0006] This invention was made in order to solve the above-mentioned problems, and it is possible to prevent a current transformer secondary side disconnection from being mistakenly determined to be an internal fault in a power transmission line. The purpose is to obtain a differential relay device.

【0007】[0007]

【課題を解決するための手段】この発明に係る電流差動
リレー装置は、自端電流にもとづいて自端零相過電流ま
たは自端各相過電流を検出する自端過電流検出回路と、
上記相手端電流にもとづき相手端零相過電流または相手
端各相過電流を検出する相手端過電流検出回路とを設け
、上記自端過電流検出回路および相手端過電流検出回路
の各出力にもとづき、論理回路に、自端電流検出用の電
流変成器の二次断線故障を判定させ、差動判定回路の出
力を禁止するようにしたものである。
[Means for Solving the Problems] A current differential relay device according to the present invention includes a self-end overcurrent detection circuit that detects a self-end zero-phase overcurrent or a self-end individual phase overcurrent based on the self-end current;
A partner end overcurrent detection circuit is provided which detects a partner end zero-phase overcurrent or a partner end each phase overcurrent based on the partner end current, and each output of the own end overcurrent detection circuit and the partner end overcurrent detection circuit is Basically, the logic circuit determines whether there is a secondary disconnection failure in the current transformer for self-terminal current detection, and the output of the differential determination circuit is prohibited.

【0008】[0008]

【作用】この発明における自端過電流検出回路および相
手端過電流検出回路は、各端における電流変成器の二次
断線故障時に断線端では出力信号が出力されるが、非断
線端では出力されない。一方、送電線の故障時は両端と
も出力信号を出力するか否かであり、上記二次断線故障
と明確に区別できるようにする。
[Operation] In the self-end overcurrent detection circuit and the opposite end overcurrent detection circuit in this invention, when a secondary breakage failure occurs in the current transformer at each end, an output signal is output at the broken end, but not at the non-broken end. . On the other hand, when a power transmission line fails, it is determined whether or not output signals are output from both ends, so that it can be clearly distinguished from the above-mentioned secondary disconnection failure.

【0009】[0009]

【実施例】以下、この発明の一実施例を図について説明
する。図1において、12は自端の3相電流のベクトル
和をとる自端過電流検出回路としての零相電流の零相過
電流要素、13は伝送された相手端の3相電流のベクト
ル和をとる相手端過電流検出回路としての零相電流の零
相過電流要素、14は各過電流要素12,13の出力の
排他的論理和信号を出力する排他的論理和回路、15は
排他的論理和回路14の出力信号により、差動判定回路
10からのリレー動作出力を阻止するインヒビット付論
理積回路である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, 12 is a zero-sequence overcurrent element of a zero-sequence current as a self-end overcurrent detection circuit that calculates the vector sum of the three-phase currents at the other end, and 13 represents the vector sum of the transmitted three-phase currents at the other end. 14 is an exclusive OR circuit that outputs an exclusive OR signal of the output of each overcurrent element 12 and 13; 15 is an exclusive logic This is an AND circuit with an inhibit function that blocks relay operation output from the differential determination circuit 10 using the output signal of the summation circuit 14.

【0010】次に動作について説明する。差動判定回路
10が自端データと相手端データとの電流差動演算を行
い、送電線1に内部故障があるとき、リレー動作出力を
出力する動作は、従来の電流差動リレー装置と全く同一
である。すなわち、送受両端の電流和が零でない場合に
リレー動作出力が出力され、具体的には、ある一定以上
の電流値(リレー動作感度電流値)であることにより、
上記内部故障と判定される。
Next, the operation will be explained. The differential determination circuit 10 performs current differential calculation between own end data and opposite end data, and when there is an internal failure in the power transmission line 1, the operation of outputting a relay operation output is completely different from that of conventional current differential relay devices. are the same. In other words, the relay operation output is output when the sum of currents at both the transmitting and receiving ends is not zero, and specifically, when the current value is above a certain level (relay operation sensitivity current value),
It is determined that the above internal failure has occurred.

【0011】一方、自端および相手端の零相電流は、故
障の有無に応じて次のようになる。すなわち、送電線1
および電流変成器2に故障がない時(定常時)には、零
相電流は発生しない。また、送電線1の故障が、地絡故
障であると送受両端とも零相電流を発生し、短絡である
と送受両端とも零相電流を発生しない。さらに、電流変
成器2の二次断線時に、断線側について負荷電流が送電
線に流れている場合には、零相電流がその負荷電流相当
分発生する。
On the other hand, the zero-sequence currents at the own end and the opposite end are as follows depending on the presence or absence of a failure. That is, power transmission line 1
And when there is no failure in the current transformer 2 (in steady state), no zero-sequence current is generated. Furthermore, if the power transmission line 1 has a ground fault, zero-sequence current will be generated at both the transmitting and receiving ends, and if there is a short circuit, no zero-sequence current will be generated at both the transmitting and receiving ends. Further, when the current transformer 2 has a secondary disconnection, if a load current is flowing through the power transmission line on the disconnection side, a zero-sequence current corresponding to the load current is generated.

【0012】また、零相電流検出用として新たに設けた
零相過電流要素12,13の検出設定値Kは、差動リレ
ー動作感度電流値より、高感度に設定しておく。従って
、上記のような差動判定回路10と零相過電流要素12
,13の感度協調を上記のように設定すると、電流変成
器2の二次断線時に、差動判定回路10が動作するより
も高感度で、二次断線側の零相過電流要素12,13が
動作し、誤ってリレー動作出力が出力されるのを禁止す
ることができる。このような差動判定回路と零相過電流
要素12,13のA,B両端における動作状況を示すの
が、図2である。つまり、電流変成器2の二次断線時に
負荷電流が大きい(リレー動作感度電流値より大)とき
、差動判定回路10は誤動作しようとするが、このとき
二次断線側の例えば零相過電流要素12は既に動作して
おり、しかも非断線側の例えば零相過電流要素13は零
相電流が発生していないため、不動作であるので、図1
における排他的論理和回路14が信号を出力し、この信
号が差動判定回路10のリレー動作出力を、インヒビッ
ト付論理積回路15において阻止する。
Furthermore, the detection setting value K of the zero-sequence overcurrent elements 12 and 13 newly provided for zero-sequence current detection is set to be higher in sensitivity than the differential relay operation sensitivity current value. Therefore, the differential determination circuit 10 and the zero-sequence overcurrent element 12 as described above
. can be activated and the relay operation output can be prevented from being output by mistake. FIG. 2 shows the operating status of such a differential determination circuit and zero-sequence overcurrent elements 12 and 13 at both ends A and B. In other words, when the load current is large (greater than the relay operation sensitivity current value) during the secondary disconnection of the current transformer 2, the differential determination circuit 10 attempts to malfunction, but at this time, for example, a zero-sequence overcurrent on the secondary disconnection side The element 12 is already operating, and the zero-sequence overcurrent element 13 on the non-disconnection side, for example, is not operating because no zero-sequence current is generated.
The exclusive OR circuit 14 outputs a signal, and this signal blocks the relay operation output of the differential determination circuit 10 in the AND circuit 15 with inhibit.

【0013】なお、上記実施例では零相過電流要素12
,13を用いたものを示したが、両端電源のある送電線
では、逆相過電流でもよい。これは電流変成器2の二次
断線時には逆相分が発生すること、また、故障時には送
受両端ともに逆相分が生じるか生じないかのどちらかで
あり、同一の作用となって、送電線の内部事故の誤判定
を防止できる。
[0013] In the above embodiment, the zero-sequence overcurrent element 12
, 13 is shown, but in a power transmission line with power supplies at both ends, a reverse phase overcurrent may be used. This is because a negative phase component occurs when the secondary disconnection occurs in the current transformer 2, and when a failure occurs, a negative phase component either occurs or does not occur at both the transmitting and receiving ends, and the same effect occurs on the transmission line. It is possible to prevent misjudgment of internal accidents.

【0014】また、上記実施例では零送過電流要素12
,13を用いたものを示したが、各相の過電流要素を用
いて構成してもよい。図3はこの構成を示す。この図で
一点破線の部分である過電流要素判定ブロックPが、図
1の一点破線の部分に相当する。ここで、16〜18は
自端過電流検出回路としての自端の各相の過電流要素、
19〜21は相手端過電流検出回路としての相手端の各
相の過電流要素であり、それぞれ設定値K以上の電流を
検出して、出力を生じる。22a〜22fはアンド回路
である。この実施例では、自端および相手端に電流が同
時に流れた場合のみ、差動判定回路10からのリレー動
作出力を許容し、仮に一端の電流変成器2が二次断線し
た場合に、その端子よりのリレー入力電流がなくなるの
で、上記二次断線によるリレー動作出力の出力を防ぐこ
とができる。なお、送電線1の故障時に、その両端に電
源がある場合には、両端よりその故障点に電流が流れる
ので、両端共に、故障相の過電流要素がリレー動作出力
を生じ、リレー動作が確実となる。
Furthermore, in the above embodiment, the zero feed overcurrent element 12
, 13 is shown, but it may also be constructed using overcurrent elements for each phase. FIG. 3 shows this configuration. The overcurrent element determination block P, which is a portion indicated by a dotted line in this figure, corresponds to the portion indicated by a dotted line in FIG. Here, 16 to 18 are overcurrent elements of each phase at the own end as an overcurrent detection circuit at the own end;
Reference numerals 19 to 21 designate overcurrent elements for each phase of the opposite end as overcurrent detection circuits, each of which detects a current equal to or higher than a set value K and produces an output. 22a to 22f are AND circuits. In this embodiment, the relay operation output from the differential determination circuit 10 is allowed only when current flows simultaneously to the own end and the opposite end, and if the current transformer 2 at one end has a secondary disconnection, the terminal Since the relay input current is eliminated, the output of the relay operation output due to the secondary disconnection can be prevented. In addition, when power transmission line 1 fails, if there is a power source at both ends, current will flow from both ends to the fault point, so the overcurrent element of the faulty phase will generate a relay operation output at both ends, ensuring reliable relay operation. becomes.

【0015】また、送電線1の一端が非電源(負荷)の
場合には、その負荷端に電流がない場合があるので、リ
レー動作が阻止される可能性があり、その点を考慮する
必要がある。図4はこの場合に適用される回路例である
。負荷端では送電線1の故障時に電圧が低下することに
着目して、図3の過電流要素判定ブロックPに加えて、
不足電圧要素23を付加し、上記実施例の過電流要素出
力とオア回路25a〜25cで論理和をとって、差動判
定回路10の出力をゲートしている。ここで、23は送
電線1より電圧変成器2を介して得た送電線電圧信号が
ある設定値以下の場合に出力信号を生じるもので、通常
の状態では出力を生ぜず、送電線1の故障時に出力を生
じるように設定される。また、この出力信号は相手端に
も伝達するように構成し、自端と相手端の各不足電圧要
素23の出力の論理和をオア回路24にてとっているの
で、負荷端でも動作し、非電源の場合でも必ず動作する
特徴がある。
[0015] Furthermore, if one end of the power transmission line 1 is a non-power source (load), there may be no current at that load end, so relay operation may be blocked, and this needs to be taken into consideration. There is. FIG. 4 is an example of a circuit applied in this case. Focusing on the fact that the voltage drops at the load end when the transmission line 1 fails, in addition to the overcurrent element determination block P in FIG.
An undervoltage element 23 is added, and the output of the overcurrent element of the above embodiment is logically summed by OR circuits 25a to 25c to gate the output of the differential determination circuit 10. Here, 23 generates an output signal when the transmission line voltage signal obtained from the transmission line 1 via the voltage transformer 2 is below a certain set value, and does not generate an output under normal conditions. It is configured to produce an output in the event of a failure. Furthermore, this output signal is configured to be transmitted to the other end, and the OR circuit 24 calculates the logical sum of the outputs of the respective undervoltage elements 23 at the own end and the other end, so that it also operates at the load end. It has the feature that it always works even when there is no power supply.

【0016】この場合においては、不足電圧要素23だ
けで、上記実施例の過電流要素がない場合でも、電流変
成器2の二次断線による誤動作を阻止できるが、この二
次断線でも電圧は低下しないので、送電線1の距離が長
くかつ両端の電源側のインピーダンスが大きい場合、送
電線1の内部で故障が発生しても電圧があまり低下しな
いこともある。従って、このケースでは過電流要素によ
る動作が期待できる。
In this case, even if the undervoltage element 23 does not have the overcurrent element of the above embodiment, it is possible to prevent malfunctions due to the secondary disconnection of the current transformer 2, but even this secondary disconnection will cause the voltage to drop. Therefore, if the distance of the power transmission line 1 is long and the impedance on the power supply side at both ends is large, even if a failure occurs inside the power transmission line 1, the voltage may not drop much. Therefore, in this case, operation due to overcurrent elements can be expected.

【0017】さらに、上記実施例では零相過電流要素1
2,13を用いた場合を示したが、これは片端が非電源
でも、零相は通常接地されているので、地絡故障でも両
端に零相電流が流れるということを利用したものである
が、故障点からみて、電源側の零相インピーダンスが負
荷側のインピーダンスに比べて極端に小さい系統では、
負荷端に流れる零相電流が小さくなって、負荷端の零相
過電流要素が動作せず、この場合、地絡故障でも排他的
論理和14の出力が成立し、リレー動作を誤って阻止し
てしまうことがある。従って、この場合には、上記不動
作対策として、図5に示すように、図1に示す回路に、
不足電圧要素23を付加する。ここで、26は排他的論
理和回路14の出力を反転してオア回路25に入力する
インバータである。
Furthermore, in the above embodiment, the zero-sequence overcurrent element 1
2 and 13 are used, but this takes advantage of the fact that even if one end is not powered, the zero-sequence is normally grounded, so even in the event of a ground fault, zero-sequence current will flow at both ends. , in a system where the zero-sequence impedance on the power supply side is extremely small compared to the impedance on the load side from the point of failure,
The zero-sequence current flowing to the load end becomes small, and the zero-sequence overcurrent element at the load end does not operate. In this case, even if a ground fault occurs, the output of exclusive OR 14 is established, and the relay operation is erroneously blocked. Sometimes it happens. Therefore, in this case, as a countermeasure against the above-mentioned malfunction, as shown in FIG. 5, the circuit shown in FIG.
Add an undervoltage element 23. Here, 26 is an inverter that inverts the output of the exclusive OR circuit 14 and inputs it to the OR circuit 25.

【0018】[0018]

【発明の効果】以上のように、この発明によれば自端過
電流検出回路および相手端過電流検出回路の各出力にも
とづき、論理回路に、自端電流検出用の電流変成器の二
次断線故障を判定させ、差動判定回路の出力を禁止する
ように構成したので、この電流変成器2の二次断線と送
電線の内部故障との識別を明確にでき、従ってその内部
故障の誤判定およびこれによる系統保護のためのリレー
動作出力の阻止を確実に行えるものが得られる効果があ
る。
As described above, according to the present invention, based on the respective outputs of the own-end overcurrent detection circuit and the opposite-end overcurrent detection circuit, the secondary Since the configuration is configured to determine a disconnection fault and prohibit the output of the differential determination circuit, it is possible to clearly distinguish between the secondary disconnection of the current transformer 2 and an internal failure of the power transmission line, and therefore to prevent the internal failure from occurring. This has the effect that it is possible to reliably perform determination and thereby block relay operation output for system protection.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の一実施例による電流差動リレー装置
を示すブロック図である。
FIG. 1 is a block diagram showing a current differential relay device according to an embodiment of the present invention.

【図2】図1の電流差動リレー装置の動作を示す動作説
明表図である。
FIG. 2 is an operation explanatory table showing the operation of the current differential relay device of FIG. 1;

【図3】この発明の他の実施例による電流差動リレー装
置の要部を示すブロック図である。
FIG. 3 is a block diagram showing main parts of a current differential relay device according to another embodiment of the invention.

【図4】この発明のさらに他の実施例による電流差動リ
レー装置の要部を示すブロック図である。
FIG. 4 is a block diagram showing main parts of a current differential relay device according to still another embodiment of the invention.

【図5】この発明のさらにまた他の実施例による電流差
動リレー装置の要部を示すブロック図である。
FIG. 5 is a block diagram showing the main parts of a current differential relay device according to still another embodiment of the present invention.

【図6】従来の電流差動リレー装置を示すブロック図で
ある。
FIG. 6 is a block diagram showing a conventional current differential relay device.

【図7】図6の電流差動リレー装置の動作原理を示す説
明図である。
7 is an explanatory diagram showing the operating principle of the current differential relay device of FIG. 6. FIG.

【符号の説明】[Explanation of symbols]

1  送電線 2  電流変成器 10  差動判定回路 1 Power transmission line 2 Current transformer 10 Differential judgment circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  送電線の両端において検出した自端電
流と相手端電流を互いに通信回線を介して送受信し、こ
の受信した相手端電流と自端電流とのベクトル和の差動
電流を差動判定回路で検出して送電線内部故障判定を行
う電流差動リレー装置において、上記自端電流にもとづ
いて自端零相過電流または自端各相過電流を検出する自
端過電流検出回路と、上記相手端電流にもとづき相手端
零相過電流または相手端各相過電流を検出する相手端過
電流検出回路と、上記自端過電流検出回路および相手端
過電流検出回路の各出力にもとづき、上記自端電流検出
用の電流変成器の二次断線故障を判定して、上記差動判
定回路の出力を禁止する論理回路とを設けたことを特徴
とする電流差動リレー装置。
Claim 1: A self-end current and a partner current detected at both ends of a power transmission line are transmitted and received via a communication line, and a differential current of the vector sum of the received partner-end current and self-end current is transmitted and received as a differential current. In a current differential relay device that detects an internal fault in a power transmission line by detecting it with a judgment circuit, a self-end overcurrent detection circuit that detects a self-end zero-phase overcurrent or a self-end individual phase overcurrent based on the self-end current; , based on the other end overcurrent detection circuit that detects the other end zero-phase overcurrent or the other end each phase overcurrent based on the other end current, and the respective outputs of the own end overcurrent detection circuit and the other end overcurrent detection circuit. A current differential relay device comprising: a logic circuit that determines a secondary disconnection failure of the current transformer for self-end current detection and inhibits output of the differential determination circuit.
JP3101818A 1991-04-08 1991-04-08 Current differential relay device Expired - Fee Related JP2693284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3101818A JP2693284B2 (en) 1991-04-08 1991-04-08 Current differential relay device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3101818A JP2693284B2 (en) 1991-04-08 1991-04-08 Current differential relay device

Publications (2)

Publication Number Publication Date
JPH04312315A true JPH04312315A (en) 1992-11-04
JP2693284B2 JP2693284B2 (en) 1997-12-24

Family

ID=14310706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3101818A Expired - Fee Related JP2693284B2 (en) 1991-04-08 1991-04-08 Current differential relay device

Country Status (1)

Country Link
JP (1) JP2693284B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006238691A (en) * 2005-02-22 2006-09-07 Areva T & D Uk Ltd Method and device for management of current transformer action
JP5881919B1 (en) * 2015-06-12 2016-03-09 三菱電機株式会社 Protection relay device
WO2021186769A1 (en) * 2020-03-19 2021-09-23 株式会社日立製作所 Power system monitoring device, power system monitoring method, and power system monitoring program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63114525A (en) * 1986-10-30 1988-05-19 株式会社東芝 Current differential relay
JPS63220714A (en) * 1987-03-09 1988-09-14 株式会社東芝 Grounding protective relay

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63114525A (en) * 1986-10-30 1988-05-19 株式会社東芝 Current differential relay
JPS63220714A (en) * 1987-03-09 1988-09-14 株式会社東芝 Grounding protective relay

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006238691A (en) * 2005-02-22 2006-09-07 Areva T & D Uk Ltd Method and device for management of current transformer action
JP5881919B1 (en) * 2015-06-12 2016-03-09 三菱電機株式会社 Protection relay device
WO2016199293A1 (en) * 2015-06-12 2016-12-15 三菱電機株式会社 Protection relay device
KR20170140389A (en) * 2015-06-12 2017-12-20 미쓰비시덴키 가부시키가이샤 Protection Relay Device
WO2021186769A1 (en) * 2020-03-19 2021-09-23 株式会社日立製作所 Power system monitoring device, power system monitoring method, and power system monitoring program

Also Published As

Publication number Publication date
JP2693284B2 (en) 1997-12-24

Similar Documents

Publication Publication Date Title
JPS59194623A (en) Protective relay of direction comparison blocking type
JP2003070151A (en) Protective relay
US5272617A (en) Apparatus for detecting short-circuit for use in bi-polar d.c. transmission system
JPH04312315A (en) Current differential relay unit
JP2010115080A (en) Ground fault protection relay system
JPH06253449A (en) Power supply system
JP2005168108A (en) Protective relay system
CN220438443U (en) Fault current judging circuit for electronic release, electronic release and circuit breaker
JP2778865B2 (en) DC transmission line protection device
JPH07212958A (en) Current differential relay
JPS6349072Y2 (en)
SU788253A1 (en) Device for testing serviceability of protection circuits of three-phase type
JP2986267B2 (en) Digital relay device
JP3843663B2 (en) Protection relay device
JP2592138B2 (en) Abnormality countermeasure circuit for loop system protection relay
JPS6084916A (en) Protective relaying device
JPH0313812B2 (en)
JPH0837726A (en) Ground fault detecting relay
JP2009194988A (en) Zero-phase current differential relay
JPS605728A (en) Differential protecting relaying device
JPH06105451A (en) Line protection relay device
JPS63114525A (en) Current differential relay
JPS60180420A (en) Phase comparision carriage protecting relaying device
JPS61180521A (en) Carrier protective relay
JPH0124016B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees