JPS6057276A - Magnetic field measuring device - Google Patents

Magnetic field measuring device

Info

Publication number
JPS6057276A
JPS6057276A JP16697183A JP16697183A JPS6057276A JP S6057276 A JPS6057276 A JP S6057276A JP 16697183 A JP16697183 A JP 16697183A JP 16697183 A JP16697183 A JP 16697183A JP S6057276 A JPS6057276 A JP S6057276A
Authority
JP
Japan
Prior art keywords
magneto
magnetic field
light
optical
linear polarized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16697183A
Other languages
Japanese (ja)
Inventor
Osamu Kamata
修 鎌田
Kazuo Toda
戸田 和郎
Sumiko Takiuchi
滝内 澄子
Yoshinobu Tsujimoto
辻本 好伸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16697183A priority Critical patent/JPS6057276A/en
Publication of JPS6057276A publication Critical patent/JPS6057276A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/032Measuring direction or magnitude of magnetic fields or magnetic flux using magneto-optic devices, e.g. Faraday or Cotton-Mouton effect
    • G01R33/0322Measuring direction or magnitude of magnetic fields or magnetic flux using magneto-optic devices, e.g. Faraday or Cotton-Mouton effect using the Faraday or Voigt effect

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To measure a magnetic field with high sensitivity by dividing an incident light into two linear polarized lights by a polarizer, placing two magneto- optical elements and analyzers having a prescribed direction to the linear polarized light, and detecting output light. CONSTITUTION:An incident light of a light generating means 6 is divided into tow linear polarized lights by a polarizer 2, a linear polarized light direction of the first linear polarized light and the first analyzer 3a is made orthogonal, and the first magneto-optical element 1a is placed between them. The linear polarized light direction of the second linear polarized light and the second analyzer 3b is inclined by 45 deg., and the second magneto-optical element 1b is placed between them, and a magneto-optical converting part is constituted, and it is placed in a magnetic field, and an output light is detected by detecting means 7a, 7b. As for an output light P1, the shot noise in a low magnetic field area drops and the high sensitivity is obtained as shown in the figure. Also, the polarity of the magnetic field is discriminated by an output light P2. Therefore, the sensitivity is raised by >=10 times when comparing with a conventional device.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は磁気゛光学素子によるファラデー回転を観測し
て磁界全検出し、その磁界強度を測定する装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an apparatus for observing Faraday rotation by a magneto-optical element, detecting the entire magnetic field, and measuring the strength of the magnetic field.

従来例の構成とその問題点 最近、磁界強度を測定する方法として、磁気光学効果の
一つであるファラデー効果全利用する方法が提案されて
いる。光を媒体とするため、絶縁性が良好である、電磁
誘導ノイズ金堂けない等々の特長金持ち、発送電設備内
の高圧大電流測定。
Conventional Structure and Problems Recently, a method that fully utilizes the Faraday effect, which is one of the magneto-optical effects, has been proposed as a method for measuring magnetic field strength. Because it uses light as a medium, it has good insulation properties, does not interfere with electromagnetic induction noise, etc.It is useful for measuring high voltages and large currents in power transmission equipment.

溶接機の電流測定への応用がある。There is an application to current measurement of welding machines.

第1図にファラデー効果音用いた磁界の測定方法の原理
図を示す。第1図において磁界H中に磁気光学素子1が
配置されている。この磁気光学素子1に偏光子2で直線
偏光(矢印で示されている)とされた光を通過させる。
FIG. 1 shows a diagram of the principle of a magnetic field measurement method using Faraday sound effects. In FIG. 1, a magneto-optical element 1 is placed in a magnetic field H. Light that has been linearly polarized by a polarizer 2 (indicated by an arrow) is passed through this magneto-optical element 1 .

ファラデー効果により、偏光面は磁界強度Hに比例して
回転を受ける。その回転角はθで示されている。回転を
受けた偏光は偏光子2と透過偏光方向を45°異ならし
めた検光子3を通過し、回転角θの大きさが光量変化に
変換される。その時の光出力は次式で示される。
Due to the Faraday effect, the plane of polarization undergoes rotation in proportion to the magnetic field strength H. Its rotation angle is indicated by θ. The rotated polarized light passes through an analyzer 3 whose transmission polarization direction is different from that of the polarizer 2 by 45 degrees, and the magnitude of the rotation angle θ is converted into a change in the amount of light. The optical output at that time is expressed by the following equation.

PoH(””K (1+5in2θ)(1)ここで、θ
=VH1、POu□は光出力、には比例定数、θはファ
ラデー回転角〔度〕、■はヴエルデ定数と呼ばれるもの
で、単位け[o/cm・00〕であり、磁気光学素子の
感度を示すものである。この構成は従来から良く知られ
たものであるが、受光器の雑音が多いと言う欠点がある
磁界測定装置の感度を決定する要因の1つに受光器の雑
音が有るが、その雑音の発生源として、光が照射されて
いない場合にも存在する熱的な雑音である暗電流と、光
が照射された時に生じるショット雑音に大別される。第
2図に従来の構成による(1)式の光出力の様子を示し
である。この構成による場合は、H=Oの場合にも、光
が受光器に照射されている状態にあり、ショット雑音が
発生し、この雑音が測定感度の限界を決める主原因とな
っており、ある光入力レベル以上ではショット雑音が雑
音源として支配的となる。
PoH(””K (1+5in2θ) (1) where θ
=VH1, Pou□ is the optical output, is a proportionality constant, θ is the Faraday rotation angle [degrees], and ■ is the Weerde constant, which is in the unit [o/cm・00] and measures the sensitivity of the magneto-optical element. It shows. This configuration has been well known for a long time, but one of the factors that determines the sensitivity of a magnetic field measurement device, which has the disadvantage of having a large amount of noise in the photoreceiver, is the noise in the photoreceiver. The sources are broadly divided into dark current, which is thermal noise that exists even when no light is irradiated, and shot noise, which occurs when light is irradiated. FIG. 2 shows the optical output of equation (1) according to the conventional configuration. With this configuration, even in the case of H=O, the light is still being irradiated onto the receiver, producing shot noise, and this noise is the main cause of determining the limit of measurement sensitivity. Above the optical input level, shot noise becomes dominant as a noise source.

発明の目的 本発明は上記の欠点を鑑みてなされたものであり、高感
度で信頼性に優れた磁界測定装置を提供するものである
OBJECTS OF THE INVENTION The present invention has been made in view of the above-mentioned drawbacks, and it is an object of the present invention to provide a magnetic field measuring device with high sensitivity and excellent reliability.

発明の構成 本発明は、入射光を第1と第2の直交する直線偏光に分
離する偏光子と、第1と第2の検光子を有し、前記偏光
子の第1の直線偏光と前記第1の検光子の直線偏光方向
を直交させ、その間に第1の磁気光学素子全配竜し、か
つ前記偏光子の第2の直線偏光と前記第2の検光子の直
線偏光方向を互いに異ならしめてその間に第2の磁気光
学素子を配置した磁気光学変換部と、前記磁気光学変換
部の両端に設けられた3つの光伝送路と、前記第1の光
伝送路に光を入射する光発生手段と、前記入射光が前記
磁気光学変換部を透過し、前記第2と第3の光伝送路に
導かれた光の出力をそれぞれ検知する検知手段を備え、
前記磁気光学変換部を磁界中に配置することにより、磁
界強度を前記検出部で検出するものである。
Structure of the Invention The present invention includes a polarizer that separates incident light into first and second orthogonal linearly polarized light, and first and second analyzers, and the first linearly polarized light of the polarizer and the The linear polarization directions of the first analyzer are orthogonal to each other, the first magneto-optical element is entirely disposed between them, and the second linear polarization direction of the polarizer and the linear polarization direction of the second analyzer are different from each other. a magneto-optic converter in which a second magneto-optical element is arranged between the magneto-optic converters; three optical transmission paths provided at both ends of the magneto-optic converter; and a light generator for inputting light into the first optical transmission path. and detection means for respectively detecting the output of the light that the incident light passes through the magneto-optic converter and is guided to the second and third optical transmission paths,
By arranging the magneto-optical conversion section in a magnetic field, the magnetic field strength is detected by the detection section.

実施例の説明 本発明においては、磁界強度の測定には、ショット雑音
が少ない光学配置を用い、別に磁界の方向の判別に従来
の構成による光学配置を用いる事によって、高感度で信
頼性に優れた装置全提供している。以下に本発明を実施
例で説明する。第3図に本発明の一実施例を示す。
DESCRIPTION OF EMBODIMENTS In the present invention, an optical arrangement with low shot noise is used to measure the magnetic field strength, and an optical arrangement with a conventional structure is used to determine the direction of the magnetic field, thereby achieving high sensitivity and excellent reliability. All equipment provided. The present invention will be explained below using examples. FIG. 3 shows an embodiment of the present invention.

図面において1− a 、 1− bは、磁気光学素子
であり本実施例にはZn5eを用いており、両端面が平
行鏡面研磨されている。2は光を二つの直線偏光に分離
するだめの偏光子であり、ここではウォラストンプリズ
ムを用いている。3− aは偏光子2によって偏光分離
された第1の直線偏波方向に対して透過偏光方向が直交
するように設置された検光子である。3−bは偏光子2
によって偏光分離された第2の直線偏波方向に対して透
過偏光方向が46°傾くように設置された検光子である
In the drawings, reference numerals 1-a and 1-b denote magneto-optical elements, which are made of Zn5e in this embodiment, and both end surfaces are parallel mirror polished. 2 is a polarizer that separates light into two linearly polarized lights, and here a Wollaston prism is used. 3-a is an analyzer installed so that the transmitted polarization direction is perpendicular to the first linear polarization direction separated by the polarizer 2; 3-b is polarizer 2
The analyzer is installed so that the transmitted polarization direction is tilted by 46 degrees with respect to the second linear polarization direction that is polarized by .

検光子3− a 、 3− bとして、温度特性が良好
で機械的強度にすぐれたT 102結晶よりなる偏光分
離板を用いた。磁気光学素子1−a、1−b、偏光子2
.検光子3−a、3’−bからなる磁気光学変換部は磁
界H中に配置される。4−a、4−b。
As analyzers 3-a and 3-b, polarization separation plates made of T102 crystal, which has good temperature characteristics and excellent mechanical strength, were used. Magneto-optical elements 1-a, 1-b, polarizer 2
.. A magneto-optical converter consisting of analyzers 3-a and 3'-b is placed in the magnetic field H. 4-a, 4-b.

4’−Cはそルぞれロッドレンズであり、レンズ4−a
は磁気光学変換部に入射する光を平行光線にするもので
あり、レンズ4−b、4−cは磁気光学変換部を透過し
た光を集光するものである。
4'-C are rod lenses, and lens 4-a
The lenses 4-b and 4-c are for converting the light incident on the magneto-optic converter into parallel rays, and the lenses 4-b and 4-c are for condensing the light that has passed through the magneto-optic converter.

6−a 、 5−b 、 5−cは光伝送路全形成する
オプチカルファイバである。6は6−a[入射する光発
生手段である。7−a、7−bは、磁気光学変換部を透
過した光出力の検知手段である。
6-a, 5-b, and 5-c are optical fibers that form the entire optical transmission path. 6 is 6-a [incident light generating means. 7-a and 7-b are means for detecting the light output transmitted through the magneto-optical converter.

7−a、7−bに入る光出力P1.P2は、磁界強度に
よって第4図の様になる。光出力P1は、偏光子と検光
子を直交しているために、PloC(1−cos2θ)
となっておりH=OでP1=0となり、磁界強度が増加
するにつれて、光出力P1も増加する。したがって特に
感度が要求される低磁界領域でのショット雑音が低下し
、高感度化がはかられた。しかしながら磁界の極性の反
転に対して、光出力は反転せず、磁界の方向が判別でき
ない。光出力P2は偏光子と検光子音46°に配置して
いるために、P2oc (1+ Sln 2θ)となる
7-a, light output P1 entering 7-b. P2 changes as shown in FIG. 4 depending on the magnetic field strength. Since the polarizer and analyzer are orthogonal to each other, the optical output P1 is PloC(1-cos2θ)
Therefore, when H=O, P1=0, and as the magnetic field strength increases, the optical output P1 also increases. Therefore, shot noise was reduced especially in the low magnetic field region where sensitivity is required, and higher sensitivity was achieved. However, when the polarity of the magnetic field is reversed, the optical output is not reversed, and the direction of the magnetic field cannot be determined. The optical output P2 is P2oc (1+Sln 2θ) because the polarizer and the analyzing consonant are arranged at 46°.

この場合、磁界の極性の反転に対して、光出力は磁界H
=0の光量に対して増加あるいは減少する。
In this case, for a reversal of the polarity of the magnetic field, the optical output is reduced by the magnetic field H
increases or decreases with respect to the light amount = 0.

したがって、光出力P2によって磁界の極性を判別する
事ができ、また、光出力P1とP2は、同期しているの
で、光出力P1の極性全容易に判別できるものである。
Therefore, the polarity of the magnetic field can be determined based on the optical output P2, and since the optical outputs P1 and P2 are synchronized, the polarity of the optical output P1 can be easily determined.

本実施例において、光発生手段6として、波長0.8μ
mを持つ発光ダイオード。
In this embodiment, the light generating means 6 has a wavelength of 0.8μ.
A light emitting diode with m.

光検知手段7−b、7−aの受光器にシリコンPIN7
オトダイオードを使用した。この場合、従来の方法に対
して、−以下の雑音におさえる事0 ができ、10倍以上の感度向上がはかられた。
Silicon PIN 7 is attached to the light receiver of the light detection means 7-b and 7-a.
Otodiode was used. In this case, compared to the conventional method, it was possible to suppress the noise to less than -0, and the sensitivity was improved by more than 10 times.

なお本実施例において、Zn5ef磁気光学素子1− 
a 、 1− bに用いたが、強磁性ガーネット結晶1
反磁性ガラス・、常磁性ガラス等、磁気光学効果を有す
る物質であれば良い。また、偏光2にウォラストンプリ
ズムを用いたが、ロッションプリズム、単板の複屈折物
質を用いた偏光分離板、誘電体多層膜を用いた偏光ビー
ムスプリッタを用いても良い。又検光子3−a、3−b
に偏光分離板を用いたが、ウォラストンプリズム、ロッ
ションプリズム、偏光ビームスグリツタ、グラントムン
ンプリズムでも良い。
In this example, Zn5ef magneto-optical element 1-
a, 1-b, but ferromagnetic garnet crystal 1
Any material having a magneto-optical effect, such as diamagnetic glass or paramagnetic glass, may be used. Furthermore, although a Wollaston prism is used for the polarized light 2, a Rochon prism, a polarization separation plate using a single plate of birefringent material, or a polarization beam splitter using a dielectric multilayer film may also be used. Also analyzer 3-a, 3-b
Although a polarization splitter plate was used in this example, a Wollaston prism, a Rochon prism, a polarization beam splitter, or a Glanmon prism may also be used.

又、受光器として、シリコンPINフォトダイオードを
用いたが、Geフォトダイオード。
Furthermore, although a silicon PIN photodiode was used as a light receiver, a Ge photodiode was used instead.

I”n G a A s P又はI n G a A 
s等の四元、三元III −V族によるフォトダイオー
ドを用いても良い。
I”n Ga A s P or In Ga A
A quaternary or ternary III-V photodiode such as S may also be used.

発明の効果 以上述べたことから明らかなように、本発明の磁界測定
装置によれば、高感度な測定かり能となり、信頼性に憂
れておシその工業的価値は犬なるものである。
Effects of the Invention As is clear from the above description, the magnetic field measuring device of the present invention provides highly sensitive measurement capability, and its industrial value is limited despite its reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はファラデー効果を用いた従来の磁界測定装置の
原理を説明するだめの図、第2図は従来の磁界測定装置
による光出力を説明する図、第3図は本発明の一実施例
における磁界測定装置を説明するだめの図、第4図は本
発明の一実施例における光出力を説明する図である。 1a、1−b・・・・・・磁気光学素子、2・・・・・
・偏光子、3− a 、 3− b−−−−検光子、4
−a、4−b、4−〇・・・・・・セルフォックレンズ
、5−a、5−b。 5− C・・・・・・オプチカルファイバ、6・・・・
・・光発生手段、7−a、7−b・・・・・・光検知手
段。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 −K 十F f’out= K(イ+δbt12θ)第3図
Fig. 1 is a diagram explaining the principle of a conventional magnetic field measuring device using the Faraday effect, Fig. 2 is a diagram explaining the optical output of the conventional magnetic field measuring device, and Fig. 3 is an example of an embodiment of the present invention. FIG. 4 is a diagram illustrating the optical output in one embodiment of the present invention. 1a, 1-b...Magneto-optical element, 2...
・Polarizer, 3-a, 3-b---analyzer, 4
-a, 4-b, 4-〇...Selfoc lens, 5-a, 5-b. 5-C...Optical fiber, 6...
...Light generation means, 7-a, 7-b... Light detection means. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 - K 10F f'out = K (a + δbt12θ) Figure 3

Claims (1)

【特許請求の範囲】[Claims] 入射光を第1と第2の直交する直線偏光に分離する偏光
子と、第1と第2の検光子全有し、[)11記偏光子の
第1の直線偏光と前記第1の検光子の直線偏光方向を直
交させその間に第1の磁気光学素子を配置し、かつ前記
偏光子の第2の直線偏光と前記第2の検光子の直線偏光
方向全互いに異ならしめてその間に第2の磁気光学素子
全配置した磁気光学変換部と、前記磁気光学変換部の両
端に設けられた3つの光伝送路と、前記第1の光伝送路
に光を入射する光発生手段と、前記入射光が前記磁気光
学変換部を透過し、前記第2と第3の光伝送路に導かれ
た光の出力音それぞれ検知する検知手段を備え、前記磁
気光学変換部を磁界中に配置することにより磁界強度を
前記検出部で検出することを特徴とする磁界測定装置。
It has a polarizer that separates the incident light into first and second orthogonal linearly polarized lights, and first and second analyzers; The linear polarization directions of the photons are orthogonal to each other, and a first magneto-optical element is disposed therebetween, and the second linear polarization direction of the polarizer and the linear polarization direction of the second analyzer are all different from each other. a magneto-optic converter in which all magneto-optical elements are arranged; three optical transmission paths provided at both ends of the magneto-optic converter; a light generating means for inputting light into the first optical transmission path; transmitting the magneto-optic converter and guided to the second and third optical transmission paths, the magneto-optic converter is arranged in a magnetic field, and the magnetic field is A magnetic field measuring device characterized in that intensity is detected by the detection section.
JP16697183A 1983-09-09 1983-09-09 Magnetic field measuring device Pending JPS6057276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16697183A JPS6057276A (en) 1983-09-09 1983-09-09 Magnetic field measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16697183A JPS6057276A (en) 1983-09-09 1983-09-09 Magnetic field measuring device

Publications (1)

Publication Number Publication Date
JPS6057276A true JPS6057276A (en) 1985-04-03

Family

ID=15841007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16697183A Pending JPS6057276A (en) 1983-09-09 1983-09-09 Magnetic field measuring device

Country Status (1)

Country Link
JP (1) JPS6057276A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021019839A1 (en) * 2019-07-31 2021-02-04 シチズンファインデバイス株式会社 Interference-type optical magnetic field sensor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021019839A1 (en) * 2019-07-31 2021-02-04 シチズンファインデバイス株式会社 Interference-type optical magnetic field sensor device
JP2021025794A (en) * 2019-07-31 2021-02-22 シチズンファインデバイス株式会社 Interference type optical magnetic field sensor device
US11892479B2 (en) 2019-07-31 2024-02-06 Citizen Finedevice Co., Ltd. Interference type optical magnetic field sensor device

Similar Documents

Publication Publication Date Title
US6232763B1 (en) Magneto-optical element and optical magnetic field sensor
US7176671B2 (en) Current measuring device
Kyuma et al. Fiber-optic current and voltage sensors using a Bi 12 GeO 20 single crystal
JPH0475470B2 (en)
US6512357B2 (en) Polarimetric sensor for the optical detection of a magnetic field and polarimetric sensor for the optical detection of an electric current
CN110007125A (en) Double light path optical current sensor
EP0774669B1 (en) Optical fiber magnetic-field sensor
JPS6057276A (en) Magnetic field measuring device
JPS5917170A (en) Optical system electric field intensity measuring instrument
JPS60375A (en) Measuring device of magnetic field
JPS5938663A (en) Current measuring apparatus using optical fiber
JP3135744B2 (en) Optical magnetic field sensor
JP3494525B2 (en) Optical fiber current measuring device
JP3041637B2 (en) Optical applied DC current transformer
JPH0237545B2 (en) HIKARINYORUDENKAI * JIKAISOKUTEIKI
JPS5937461A (en) Optical current transformer
JPS59218971A (en) Measuring device of magnetic field
JPH0695049A (en) Magneto-optical field sensor
WO2023158335A1 (en) Fibre-optic sensor for sensing megaampere range electric currents
JPS5935156A (en) Optical current transformer
SU1161884A1 (en) Device for contactless measurement of current and voltage
SU1585769A1 (en) Method of measuring hysteresis curves of ferromagnetic materials
JPH09274056A (en) Current measuring device for optical fiber
JPS6078368A (en) Device for measuring magnetic field
JPH02281169A (en) Optical magnetic sensor