JPS6057213B2 - Manufacturing method of grain boundary insulated semiconductor ceramic capacitor - Google Patents

Manufacturing method of grain boundary insulated semiconductor ceramic capacitor

Info

Publication number
JPS6057213B2
JPS6057213B2 JP5787077A JP5787077A JPS6057213B2 JP S6057213 B2 JPS6057213 B2 JP S6057213B2 JP 5787077 A JP5787077 A JP 5787077A JP 5787077 A JP5787077 A JP 5787077A JP S6057213 B2 JPS6057213 B2 JP S6057213B2
Authority
JP
Japan
Prior art keywords
semiconductor ceramic
ceramic capacitor
grain boundary
manufacturing
boundary insulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5787077A
Other languages
Japanese (ja)
Other versions
JPS53142650A (en
Inventor
治文 万代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP5787077A priority Critical patent/JPS6057213B2/en
Publication of JPS53142650A publication Critical patent/JPS53142650A/en
Publication of JPS6057213B2 publication Critical patent/JPS6057213B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)

Description

【発明の詳細な説明】 この発明は高誘電率で破壊電圧が高く、かつ破壊電圧
値のバラツキが小さい粒界絶縁型の半導体磁器コンデン
サの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a grain boundary insulated semiconductor ceramic capacitor that has a high dielectric constant, a high breakdown voltage, and small variations in breakdown voltage values.

従来、チタン酸バリウム系、チタン酸ストロンチウム系
磁器は希土類元素、NbNWNSbなどの原子価制御元
素のうち少なくとも一種を添加するか、または真空ある
いは還元性雰囲気中で加熱するか、あるいは原子価制御
元素のうち少なくとも一種を添加するとともに中性また
は還元性雰囲気中で加熱することにより半導体化される
。 このような半導体磁器に、磁器の結晶粒界を絶縁体
化させる金属またはその化合物を付与して熱処理するこ
とにより、結晶粒界に絶縁層を形成させていままでの磁
器コンデンサにくらべ見掛誘電率を大きくしたコンデン
サが得られることは知られており、いす)ゆる粒界絶縁
型半導体磁器コンデンサと称されている。
Conventionally, barium titanate-based and strontium titanate-based porcelains have been prepared by adding at least one kind of valence control element such as rare earth elements and NbNWNSb, or heating them in a vacuum or a reducing atmosphere, or adding valence control elements to them. It is made into a semiconductor by adding at least one of them and heating in a neutral or reducing atmosphere. By applying a metal or its compound that turns the grain boundaries of the ceramic into an insulator to such semiconductor porcelain and heat-treating it, an insulating layer is formed at the grain boundaries and the apparent dielectric strength is lower than that of conventional porcelain capacitors. It is known that a capacitor with a large capacitance can be obtained, and is called a loose grain-boundary insulated semiconductor porcelain capacitor.

しかしながら従来のものは、破壊電圧が低く、またそ
のバラツキも大きいという欠点があつた。
However, the conventional ones had the disadvantage that the breakdown voltage was low and its variation was large.

この発明は上記した欠点を解消したもので、高誘電率
で破壊電圧が高く、かつ破壊電圧のバラツキが小さい粒
界絶縁型半導体磁器コンデンサを得ることを目的とした
ものである。 すなわち、この発明の要旨とするところ
は、チタン酸バリウム系またはチタン酸ストロンチウム
系半導体磁器に、Bi。O。、CuOなど半導体磁器の
結晶粒界を絶縁体化させる金属またはその化合物を付与
し、まず中性または還元性雰囲気中で熱処理したのち、
ふたたび半導体磁器に上記金属またはその化合物を付与
して大気中で熱処理することを特徴どするものである。
ここでチタン酸バリウム系またはチタン酸ストロンチ
ウム系半導体磁器とは、すてに上記した従来より周知の
もののほかに次のようなものも含まれる。
This invention eliminates the above-mentioned drawbacks, and aims to provide a grain boundary insulated semiconductor ceramic capacitor with a high dielectric constant, high breakdown voltage, and small variation in breakdown voltage. That is, the gist of the present invention is to add Bi to barium titanate-based or strontium titanate-based semiconductor porcelain. O. , a metal or its compound that turns the crystal grain boundaries of semiconductor ceramics into an insulator, such as CuO, is applied, first heat-treated in a neutral or reducing atmosphere, and then
This method is characterized in that the above-mentioned metal or its compound is applied to the semiconductor porcelain again and heat-treated in the atmosphere.
Here, the barium titanate-based or strontium titanate-based semiconductor porcelain includes the following types in addition to the conventionally well-known ones described above.

つまり、チタン酸バリウム系半導体磁器には、BaTi
O3のBaの一部をsrNcaNp])で置換したもの
、またはTiの一部をZr、Snで置換したもの、ある
いは?、Tjについてこれらの一部置換を同時に行つた
ものがある。またチタン酸ストロンチウム系半導体磁器
には、SrTiO3のSrの一部をCa..Ba..P
bで置換したもの、またはT1の一部をZr,.Snで
置換したもの、あるいはSr,.Tiについてこれらの
一部置換を同時に行つたものがある。上記した各半導体
磁器中に添加物としT5モル%までのTlO2を含有さ
せると、低温て焼結できるとともに粒成長が促進され、
見掛誘電率が改善されるなど好ましい結果を示す。
In other words, barium titanate-based semiconductor porcelain contains BaTi
One in which part of Ba in O3 is replaced with srNcaNp]), or one in which part of Ti is replaced with Zr or Sn, or? , Tj in which these partial substitutions are made simultaneously. In addition, in strontium titanate-based semiconductor ceramics, a part of Sr in SrTiO3 is added to Ca. .. Ba. .. P
b, or a part of T1 is replaced with Zr, . Those substituted with Sn or Sr, . There are some materials in which these partial substitutions are made for Ti at the same time. When TlO2 is added as an additive in each of the semiconductor ceramics described above, up to 5 mol% of TlO2 can be sintered at low temperatures and grain growth can be promoted.
It shows favorable results such as improved apparent dielectric constant.

半導体磁器の結晶粒界を絶縁体化させるものとしては、
BilCuのほかPb..Mn,.Fe,.Bなどの金
属またはこれらの酸化物などの化合物があるが、要はこ
の発明の処理を終えたのち結晶粒界を絶縁体化させるこ
とができればよい。
Things that make the grain boundaries of semiconductor porcelain into insulators include:
In addition to BilCu, Pb. .. Mn,. Fe,. Although there are metals such as B or compounds such as oxides of these metals, it is sufficient if the crystal grain boundaries can be made into an insulator after the treatment of the present invention is completed.

また半導体磁器に付与する金属またはその化合物の量は
相当広い範囲にわたつて特性が一定になるが、その適当
量の範囲を外れると誘電体損失が悪くなるなど特性に悪
影響を与える。また付与量は各金属またはぞの化合物に
よつて異なる。さらに付与する方法としては、塗布、浸
漬、吹き付け、蒸着など任意の手段を採りうる。金属ま
たはその化合物を付与したのち中性または還元性雰囲気
中で熱処理するが、その温度範囲一は1100〜140
0′Cが適当てある。
Further, although the amount of metal or its compound applied to semiconductor ceramics makes the characteristics constant over a fairly wide range, if the amount is outside the appropriate range, the characteristics will be adversely affected, such as dielectric loss worsening. Further, the amount applied varies depending on each metal or each compound. Furthermore, any method such as coating, dipping, spraying, vapor deposition, etc. can be used as a method of application. After applying the metal or its compound, heat treatment is performed in a neutral or reducing atmosphere, and the temperature range is 1100 to 140℃.
0'C is suitable.

1100℃未満では結晶粒界を絶縁体化するための拡散
が十分に行われす、1400゜Cを越えると粒成長を起
こし好ましくない。
If the temperature is lower than 1100°C, sufficient diffusion will occur to make the grain boundaries an insulator, but if the temperature exceeds 1400°C, grain growth will occur, which is undesirable.

次の段階で半導体磁器に金属またはその化合物を付与し
たのち空気中で熱処理するが、その温.度範囲は950
〜1300゜Cてある。950゜C未満てあると酸化が
十分に行われず、見掛誘電率の大きなものが得られない
とともに絶縁抵抗の向上も見られない。
In the next step, the semiconductor porcelain is coated with metal or its compound and then heat-treated in air. The degree range is 950
~1300°C. If the temperature is less than 950°C, oxidation will not be carried out sufficiently, and a material with a large apparent dielectric constant will not be obtained, and no improvement in insulation resistance will be observed.

また、1300゜Cを越えると金属またはその化合物が
蒸発してしまい、結晶粒界へ拡散しなくな!る。空気中
て熱処理する温度は前の段階で中性または還元性雰囲気
中て熱処理した温度より低いほうが好ましい。
Furthermore, if the temperature exceeds 1300°C, the metal or its compound will evaporate and will no longer diffuse to the grain boundaries! Ru. The temperature at which the heat treatment is performed in air is preferably lower than the temperature at which the heat treatment was performed in a neutral or reducing atmosphere in the previous step.

これは同じ温度あるいはそれ以上の温度で処理した場合
にくらべ、見掛誘電率およびく絶縁抵抗の値のすぐれた
ものが得られるからである。また一度目に付与した金属
とその化合物の種類と二度目に付与した金属とその化合
物の種類は異ならせてもよい。
This is because superior values of apparent permittivity and insulation resistance can be obtained compared to treatments at the same temperature or higher. Further, the types of the metal and its compound applied the first time may be different from the types of the metal and its compound applied the second time.

以下この発明を実施例に従つて詳述する。This invention will be described in detail below with reference to Examples.

実施例 第1表に示すような組成比率の磁器組成物が得られるよ
うに、BaTlO3、SrTiO3、CaTiO3、P
bsnO3、BazrO3などの主体原料、Y2O3、
Ce2O3、WO3などの原子制御元素、TiO2およ
びSlO2、ZnO,.GeO2などの鉱化剤を適宜配
合し、湿式ボールミルで粉砕、混合したのち脱水、乾燥
した。
Examples BaTlO3, SrTiO3, CaTiO3, P
Main raw materials such as bsnO3, BazrO3, Y2O3,
Atomic control elements such as Ce2O3, WO3, TiO2 and SlO2, ZnO, . A mineralizing agent such as GeO2 was appropriately blended, pulverized and mixed in a wet ball mill, and then dehydrated and dried.

次にバインダとして酢酸ビニル樹脂を約10重量%添加
して、約50メッシュに造粒、整粒し、油圧ブレスを用
いて直径10TKfn1肉厚0.5TI0fLの円板に
成型した。成型円板を大気中1200℃で2時間仮焼成
してバインダを飛ばし、次いで水素2.5〜1熔量%、
窒素97.5〜8熔量%からなる還元性雰囲気中におい
て、1400−1490℃で2時間焼成を行い、直径8
順、肉厚0.4Tmmのチタン酸バリウム系半導体磁器
試料およびチタン酸ストロンチウム系半導体磁器試料を
得た。
Next, about 10% by weight of vinyl acetate resin was added as a binder, and the particles were granulated and sized to about 50 mesh, and formed into a disk with a diameter of 10TKfn and a wall thickness of 0.5TI0fL using a hydraulic press. The formed disk was calcined in the atmosphere at 1200°C for 2 hours to remove the binder, and then heated with 2.5 to 1% hydrogen,
Firing was performed at 1400-1490°C for 2 hours in a reducing atmosphere consisting of 97.5% to 8% nitrogen solubility, resulting in a diameter of 8.
In this order, a barium titanate-based semiconductor ceramic sample and a strontium titanate-based semiconductor ceramic sample each having a wall thickness of 0.4 Tmm were obtained.

得られた試料にBl2O32鍾量%、Pb3O423重
量%、CUO4重量%およびワニス50重量%からなる
金属酸化物ペーストを塗布した。
A metal oxide paste consisting of 2% by weight of B12O3, 23% by weight of Pb3O4, 4% by weight of CUO and 50% by weight of varnish was applied to the obtained sample.

塗布量は約10m9rであつた。ペーストを塗布した磁
器試料を窒素中1200℃で5時間熱処理し、金属酸化
物を半導体磁器の結晶粒界に拡散させた。
The amount of coating was approximately 10 m9r. The ceramic sample coated with the paste was heat treated in nitrogen at 1200° C. for 5 hours to diffuse the metal oxide into the grain boundaries of the semiconductor ceramic.

次にふたたび上記した金属酸化物ペーストを塗布量10
W19rで塗布し、空気中1150℃でl時間熱処理し
て結晶粒界を絶縁体化させた。
Next, apply the above metal oxide paste again in an amount of 10
It was coated with W19r and heat treated in air at 1150° C. for 1 hour to transform the grain boundaries into an insulator.

さらに銀ペーストを直径6.5TnInのパターンでス
クリーン印刷し、800′Cで2時間焼付けてコンデン
サを作成した。
Further, the silver paste was screen printed in a pattern of 6.5 TnIn in diameter and baked at 800'C for 2 hours to produce a capacitor.

このようにして得られた半導体磁器コンデンサの静電容
量、誘電体損失(Tanδ)および破壊電圧(BD■)
を測定し、その結果を第2表に示した。
Capacitance, dielectric loss (Tanδ) and breakdown voltage (BD■) of the semiconductor ceramic capacitor thus obtained
The results are shown in Table 2.

静電容量および誘電体損失は+25℃、1KH2一0.
3Vの条件で測定した。
Capacitance and dielectric loss are +25℃, 1KH2-0.
Measurement was performed under the condition of 3V.

また破壊電圧は試料数100個についてその平均値(′
X)および標準偏差値(δ)を求めたものである。参考
例1 第1表に示した組成比率のチタン酸バリウム系半導体磁
器試料、チタン酸ストロンチウム系半導体磁器試料に、
上記した実施例で用いた金属酸化物ペーストを塗布量5
m9rで塗布し、空気中1150℃て1時間熱処理して
結晶粒界を絶縁体化させた。
In addition, the breakdown voltage is the average value ('
X) and standard deviation value (δ). Reference Example 1 A barium titanate-based semiconductor porcelain sample and a strontium titanate-based semiconductor porcelain sample having the composition ratios shown in Table 1 were
The metal oxide paste used in the above example was applied in an amount of 5
It was coated with m9r and heat treated in air at 1150° C. for 1 hour to transform the grain boundaries into an insulator.

さらに銀ペーストを直径6.5順のパターンでスクリー
ン印刷し、8000Cで2時間焼付けてコンテンサを作
成し、この発明と比較するための参考例とした。得られ
た半導体磁器コンデンサの特性を上記した実施例と同様
にして測定し、その結果を第3表に示した。
Further, a silver paste was screen printed in a pattern with a diameter of 6.5, and baked at 8000C for 2 hours to create a condenser, which was used as a reference example for comparison with the present invention. The characteristics of the obtained semiconductor ceramic capacitor were measured in the same manner as in the above examples, and the results are shown in Table 3.

参考例2 第1表に示した組成比率のチタン酸バリウム系半導体磁
器試料、チタン酸ストロンチウム系半導体磁器試料に、
上記した実施例で用いた金属酸化物ペーストを塗布量5
mgrで塗布し、窒素雰囲気中1200゜Cて5時間熱
処理し、金属酸化物を半導体磁器の結晶粒界に拡散させ
た。
Reference Example 2 A barium titanate-based semiconductor porcelain sample and a strontium titanate-based semiconductor porcelain sample having the composition ratios shown in Table 1 were
The metal oxide paste used in the above example was applied in an amount of 5
mgr and heat treated at 1200° C. for 5 hours in a nitrogen atmosphere to diffuse the metal oxide into the grain boundaries of the semiconductor porcelain.

さらに空気中で1150′Cで1時間熱処理した。この
のち銀ペーストを直径6WLのパターンでスクリーン印
刷し、800゜Cで2時間焼付けてコンデンサを作成し
、参考例1と同様にこの発明と比較するための参考例と
した。得られた半導体磁器コンデンサの特性を上記しノ
た実施例と同様にして測定し、その結果を第4表に示し
た。
Further, it was heat treated in air at 1150'C for 1 hour. Thereafter, the silver paste was screen printed in a pattern with a diameter of 6WL and baked at 800°C for 2 hours to produce a capacitor, which was used as a reference example for comparison with the present invention in the same manner as Reference Example 1. The characteristics of the obtained semiconductor ceramic capacitor were measured in the same manner as in the above-mentioned example, and the results are shown in Table 4.

第2表と第3表および第4表を比較して明らかなように
この発明によれば、半導体磁器表面に金属酸化物ペース
トを付与して中性または還元性雰囲気で熱処理したのち
、ふたたび半導体磁器表面に金属酸化物ペーストを付与
して空気中で熱処理することにより、破壊電圧を100
■程度向上させることができ、標準偏差値はほとんど変
わらないが実質的にバラツキを小さくする効果を有して
おり、実用的価値は大きいものである。
As is clear from a comparison of Tables 2, 3, and 4, according to the present invention, a metal oxide paste is applied to the surface of the semiconductor ceramic, heat-treated in a neutral or reducing atmosphere, and then the semiconductor By applying metal oxide paste to the porcelain surface and heat-treating it in air, the breakdown voltage can be reduced to 100%.
(2) Although the standard deviation value remains almost the same, it has the effect of substantially reducing variation, and is of great practical value.

Claims (1)

【特許請求の範囲】 1 チタン酸バリウム系またはチタン酸ストロンチウム
系半導体磁器に、Bi_2O_3、CuOなど半導体磁
器の結晶粒界を絶縁体化させる金属またはその化合物を
付与し、まず中性または還元性雰囲気中で熱処理したの
ち、ふたたび半導体磁器に上記金属またはその化合物を
付与して大気中で熱処理することを特徴とする粒界絶縁
型半導体磁器コンデンサの製造方法。 2 特許請求の範囲1において、大気中の熱処理温度を
中性または還元性雰囲気で熱処理する温度より低くする
ことを特徴とする粒界絶縁型半導体磁器コンデンサの製
造方法。 3 特許請求の範囲1において、中性または還元性雰囲
気中で熱処理する温度が1100〜1400℃であるこ
とを特徴とする粒界絶縁型半導体磁器コンデンサの製造
方法。 4 特許請求の範囲1において、大気中で熱処理する温
度が950〜1300℃であることを特徴とする粒界絶
縁型半導体磁器コンデンサの製造方法。
[Claims] 1. A barium titanate-based or strontium titanate-based semiconductor porcelain is provided with a metal or a compound thereof that makes the crystal grain boundaries of the semiconductor porcelain an insulator, such as Bi_2O_3 and CuO, and is first placed in a neutral or reducing atmosphere. 1. A method for producing a grain boundary insulated semiconductor ceramic capacitor, which comprises heat-treating the capacitor in the atmosphere, then applying the metal or its compound to the semiconductor ceramic again, and heat-treating the semiconductor ceramic in the atmosphere. 2. A method for manufacturing a grain boundary insulated semiconductor ceramic capacitor according to claim 1, characterized in that the heat treatment temperature in the air is lower than the temperature at which the heat treatment is performed in a neutral or reducing atmosphere. 3. The method for manufacturing a grain boundary insulated semiconductor ceramic capacitor according to claim 1, characterized in that the heat treatment is performed at a temperature of 1100 to 1400°C in a neutral or reducing atmosphere. 4. The method for manufacturing a grain boundary insulated semiconductor ceramic capacitor according to claim 1, characterized in that the heat treatment is performed at a temperature of 950 to 1300°C in the atmosphere.
JP5787077A 1977-05-18 1977-05-18 Manufacturing method of grain boundary insulated semiconductor ceramic capacitor Expired JPS6057213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5787077A JPS6057213B2 (en) 1977-05-18 1977-05-18 Manufacturing method of grain boundary insulated semiconductor ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5787077A JPS6057213B2 (en) 1977-05-18 1977-05-18 Manufacturing method of grain boundary insulated semiconductor ceramic capacitor

Publications (2)

Publication Number Publication Date
JPS53142650A JPS53142650A (en) 1978-12-12
JPS6057213B2 true JPS6057213B2 (en) 1985-12-13

Family

ID=13068008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5787077A Expired JPS6057213B2 (en) 1977-05-18 1977-05-18 Manufacturing method of grain boundary insulated semiconductor ceramic capacitor

Country Status (1)

Country Link
JP (1) JPS6057213B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02133908A (en) * 1988-11-15 1990-05-23 Tdk Corp Surface-layer type semiconductor ceramic capacitor and its manufacture
JPH0828306B2 (en) * 1991-03-26 1996-03-21 太陽誘電株式会社 Method for manufacturing grain boundary insulated semiconductor porcelain
JP2506286B2 (en) * 1991-10-31 1996-06-12 太陽誘電株式会社 Method for manufacturing grain boundary insulated semiconductor porcelain
JP4909129B2 (en) * 2007-03-06 2012-04-04 アスモ株式会社 GEAR GEAR, GEAR GEAR MANUFACTURING METHOD, AND GEARED MOTOR

Also Published As

Publication number Publication date
JPS53142650A (en) 1978-12-12

Similar Documents

Publication Publication Date Title
JPS6057213B2 (en) Manufacturing method of grain boundary insulated semiconductor ceramic capacitor
JPS6249977B2 (en)
JPS5820133B2 (en) Porcelain for semiconductor porcelain capacitors and manufacturing method thereof
JPS6126208B2 (en)
JPS6043651B2 (en) Composition for semiconductor ceramic capacitors
JP3125481B2 (en) Grain boundary insulating layer type semiconductor ceramic composition
JPS6249976B2 (en)
JPS6046811B2 (en) Composition for semiconductor ceramic capacitors
JPS6048895B2 (en) Grain boundary insulated semiconductor porcelain capacitor
JPS6249975B2 (en)
JP2762831B2 (en) Method for producing semiconductor porcelain composition
JPS6217368B2 (en)
JPH0734415B2 (en) Grain boundary insulation type semiconductor porcelain composition
JPS6048897B2 (en) Composition for semiconductor ceramic capacitors
JPS6044816B2 (en) Composition for semiconductor ceramic capacitors
JP2734888B2 (en) Method for producing semiconductor porcelain composition
JPS6130410B2 (en)
JPS6133250B2 (en)
JPH05345663A (en) Semiconductor ceramic and its production
JPS6258128B2 (en)
JPS6129531B2 (en)
JPH0672046B2 (en) Semiconductor porcelain dielectric composition, semiconductor porcelain dielectric, and method for producing the dielectric
JPS6133247B2 (en)
JPS6230481B2 (en)
JPS62229602A (en) Reduction reoxidation type semiconductor capacitor porcelaincompound