JPS6056431A - Method for removing residual stress of solid wire of twisted wire of hard drawn copper wire - Google Patents

Method for removing residual stress of solid wire of twisted wire of hard drawn copper wire

Info

Publication number
JPS6056431A
JPS6056431A JP16458783A JP16458783A JPS6056431A JP S6056431 A JPS6056431 A JP S6056431A JP 16458783 A JP16458783 A JP 16458783A JP 16458783 A JP16458783 A JP 16458783A JP S6056431 A JPS6056431 A JP S6056431A
Authority
JP
Japan
Prior art keywords
wire
copper wire
residual stress
hard copper
hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16458783A
Other languages
Japanese (ja)
Inventor
Shingo Uchida
内田 進午
Tomoyoshi Mochizuki
望月 友良
Masayoshi Aoyama
正義 青山
Mitsuaki Onuki
大貫 光明
Yasuhiko Miyake
三宅 保彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Hitachi Cable Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP16458783A priority Critical patent/JPS6056431A/en
Publication of JPS6056431A publication Critical patent/JPS6056431A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F1/00Bending wire other than coiling; Straightening wire
    • B21F1/02Straightening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F1/00Bending wire other than coiling; Straightening wire
    • B21F1/02Straightening
    • B21F1/023Straightening in a device rotating about the wire axis

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Wire Processing (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PURPOSE:To remove residual stress effectively over whole periphery of the surface of a hard drawn copper wire conductor by giving rotatory bending distortion by passing solid wire or twisted wire of the hard drawn copper wire through a rotary body having deviated center of axis. CONSTITUTION:The hard drawn copper wire (solid wire, twisted wire or these insulating covered wire) from which residual stress is to be removed is passed continuously in the direction of the arrow through a fixing member and through holes 3, 6, 3', 6' and 3'' of the rotary bodies, and meanwhile, the rotary bodies 5 and 5' are rotated in the same direction. Accordingly, the hard drawn copper wire 1 is pulled at a fixed speed while rotating on its own axis. At this time, the rotatory bending distortion is given to the wire by rotary bodies 5, 5' having deviated center of axis. Accordingly, the plastic distortion is generated in all radial direction of the wire, and the residual stress is removed almost perfectly.

Description

【発明の詳細な説明】 本発明は硬銅線の単線又は撚線の残留応力除去方法に関
する。特に本発明は41J!l1IIN線の単線又は撚
線に直接又は絶縁被覆を施した状態で塑性歪を与えるこ
とによりその残留応力を除去する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for removing residual stress from solid or stranded hard copper wire. In particular, the present invention is 41J! The present invention relates to a method for removing residual stress by applying plastic strain to a single or stranded 11IIN wire directly or with an insulating coating applied thereto.

従来、架空絶縁Id線の分野では導体として特に硬銅線
が用いられる。硬銅線は、その製造過程及び架線工程等
において表面の残留応力が高くなり、これが架空絶縁電
線の応力腐食割れの原因となっている。従って、応力腐
食割れを防止するには、硯呵線の単線、撚線、又はそれ
らの被筒導体表面に発生した残留応力を除去することが
考えられる。
Conventionally, in the field of overhead insulated Id lines, particularly hard copper wires are used as conductors. Hard copper wire has high residual stress on its surface during its manufacturing process, overhead line process, etc., and this is a cause of stress corrosion cracking of overhead insulated wires. Therefore, in order to prevent stress corrosion cracking, it is possible to remove the residual stress generated on the surface of the single wire, stranded wire, or their sheathed conductor.

従来、このような残留応力除去のため圧縮電線が用いら
れているが、付属品を新たに開発する必要が生じるなど
経済性に問題があった。更に、ロール矯正法により残留
応力を除去することが提案されているが、このような方
法では硬銅線の単線、撚線及びそれらの被覆線を構成し
ている綿体の全周にわたって残留応力を完全に除去する
ことができないという欠点があった。
Conventionally, compressed electric wires have been used to remove such residual stress, but there have been economical problems such as the need to develop new accessories. Furthermore, it has been proposed to remove residual stress by a roll straightening method, but such a method eliminates residual stress over the entire circumference of the cotton bodies that make up solid copper wire, stranded wire, and their coated wires. The disadvantage is that it cannot be completely removed.

本発明者等は上記の状況下に種々検討した結果、線軸中
心を偏倚させた回転体を通過させて硬銅線に回転曲げ歪
を与えることにより硬銅線の導体表面の全周にわたって
残留応力を効果的に除去し得ることを見出し、本発明を
達成した。
As a result of various studies under the above-mentioned circumstances, the inventors of the present invention have found that residual stress is generated over the entire circumference of the conductor surface of the hard copper wire by passing through a rotating body whose center of the wire axis is biased and applying rotational bending strain to the hard copper wire. The present invention has been achieved based on the discovery that this can be effectively removed.

従って、本発明の目的は、前記した如き従来技術の欠点
を伴なうことなく、硬銅線の単線又は撚線の残留応力を
除去する方法を提供することにある。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a method for removing residual stresses in solid or stranded hard copper wire without the drawbacks of the prior art described above.

本発明の他の目的は硬銅線の残留応力を除き、架空絶縁
電線の応力腐食割れの発生を防止することにある。
Another object of the present invention is to eliminate residual stress in hard copper wires and prevent stress corrosion cracking in overhead insulated wires.

上記の本発明の目的は以下に示す本発明の方法によって
達成される。
The above objects of the present invention are achieved by the method of the present invention shown below.

すなわち、本発明は、硬銅線の単線又は撚線を、直接又
は被覆された状態で、少くとも1個の線軸中心を偏倚さ
せた回転体を通過させつつ該回転体を回転させることに
より硬銅線の全半径方向に連続的に塑性歪を与えること
を特徴とする硬銅線単線又は撚線の残留応力除去方法で
ある。
That is, the present invention makes hard copper wire hard by passing a single or stranded hard copper wire directly or in a coated state through at least one rotary body whose wire axis center is biased and rotating the rotary body. This is a method for removing residual stress from a single hard copper wire or a stranded wire, which is characterized by applying plastic strain continuously in the entire radial direction of the copper wire.

以下、添4=J図面を参照しつつ本発明を説明する。Hereinafter, the present invention will be explained with reference to the attached drawings 4 and 4.

第1図は本発明方法を実施するだめの装置の一例を示す
側面図、第2図は同回転体の一例を示す縦断面図である
FIG. 1 is a side view showing an example of an apparatus for carrying out the method of the present invention, and FIG. 2 is a longitudinal sectional view showing an example of the rotary body.

第1図において、符号1は硬銅線を示し、単線又は撚線
であっても、又非被お状態であっても絶縁被覆状態であ
ってもよい。2.2’、及び2″はその通孔3,3’、
及び3#がほぼ一直線にあるように配置された固定部材
であって、金属、木材、プラスチックス等適当な材料で
作られている。各通孔3.3’、3“の大きさは処理す
べき硬銅線(単線、撚線、又はこれらの被覆線、以下単
に硬銅線と称する)が通過し、且つ後記するように回転
体が回転する時に硬銅線が通孔内で極端ながたつきを生
じない程度であることが好ましく、線材の外径に応じて
夫々の装置を用意することが必要である。
In FIG. 1, reference numeral 1 indicates a hard copper wire, which may be a single wire or a stranded wire, and may be in an uncoated state or in an insulated state. 2.2' and 2'' are the through holes 3, 3',
and #3 are arranged in a substantially straight line, and are made of a suitable material such as metal, wood, or plastic. The size of each through hole 3.3', 3'' is such that the hard copper wire to be processed (single wire, stranded wire, or coated wire of these, hereinafter simply referred to as hard copper wire) passes through, and as described later, it rotates. It is preferable that the hard copper wire does not shake excessively within the through hole when the body rotates, and it is necessary to prepare each device according to the outer diameter of the wire.

なお、硬銅線1が各通孔を回転しつつ通過するのを円滑
にし且つ線材のねじれや表面傷が生ずるのを防止するた
めに各通孔3,3’、3″にベアリング4 、4’、 
4′をそれぞれ組み込むことが望ましい。
In addition, bearings 4, 4 are provided in each of the through holes 3, 3', 3'' in order to allow the hard copper wire 1 to rotate and pass through each through hole smoothly and to prevent twisting of the wire and surface scratches. ',
4' respectively.

5及び5は固定部U2,2’の間及び固定部材2′。5 and 5 are between the fixing parts U2 and 2' and the fixing member 2'.

2″の間に夫々設けられた線軸中心を偏倚させた回転体
又は回転冶具であって、前記の通孔3,3’。
The through holes 3, 3' are rotary bodies or rotating jigs whose wire axis centers are offset, and are provided between the through holes 3 and 3'.

6#を結ぶ線を回転体の回転中心とし、これより偏倚し
た位置に前記した如き通孔6等と同様な通孔6及び6′
が夫々設けられている。回転体5,5′は固定部材と同
様金属、木材、プラスチックス等適当な材料で作られて
おり、又通孔3等に関連して前記したような理由で各通
孔6,6′にベアリング7.7′を組み込むことが望ま
しい。なお、8及び8′は各回転体の回転軸である。
The line connecting #6 is the center of rotation of the rotating body, and through holes 6 and 6' similar to the through hole 6 as described above are formed at positions offset from this.
are provided for each. The rotating bodies 5, 5' are made of a suitable material such as metal, wood, plastics, etc., like the fixed members, and for the reasons mentioned above in connection with the through holes 3, etc., the through holes 6, 6' are Preferably, a bearing 7.7' is incorporated. Note that 8 and 8' are rotational axes of each rotating body.

第2図に第1図における回転体5の断面図を示した。こ
の例では円形回転体の回転中心より偏倚した位置に通孔
6を設けであるが、本発明の回転体はこのような形状に
限定されることなく、種々の変形が可能であり、線軸中
心が偏倚された回転体で硬銅線に回転曲げ歪を与え得る
ものであれば本発明の同転体として用いることができる
FIG. 2 shows a sectional view of the rotating body 5 in FIG. 1. In this example, the through hole 6 is provided at a position offset from the center of rotation of the circular rotating body, but the rotating body of the present invention is not limited to such a shape, and can be modified in various ways. Any rotating body that is biased and capable of imparting rotational bending strain to a hard copper wire can be used as the rotary body of the present invention.

上記の装置を用いて本発明方法を実施するには、残留応
力を除去すべき硬銅線(単線、撚線、又はこれらの絶縁
被覆線)を前記の固定部材及び回転体の通孔3.6.5
’、 6’及び3′′を通して連続的に矢印方向に通過
させつつ回転体5及び5′を同一方間(例えば矢印の方
向)に回転させる。従って硬銅線1は自から回転しつつ
一定速度で引取られるか、この時、線軸中心を偏倚させ
た回転体によって回転曲げ歪が与えられて、線の全半径
方向に塑性歪を生じ、残留応力はほぼ完全に除去される
To carry out the method of the present invention using the above-mentioned apparatus, the hard copper wire (solid wire, stranded wire, or insulated wire thereof) whose residual stress is to be removed is passed through the through holes 3. of the fixed member and the rotating body. 6.5
The rotating bodies 5 and 5' are rotated in the same direction (for example, in the direction of the arrow) while passing continuously through them in the direction of the arrow. Therefore, the hard copper wire 1 is either rotated on its own and taken off at a constant speed, or at this time, rotational bending strain is applied by a rotating body with the center of the wire axis deviated, causing plastic strain in the entire radial direction of the wire, resulting in residual Stress is almost completely removed.

上記の例においては、回転体を2個用いる場合を示した
が、1個でもよいし、又6個以上用いてもよいことは勿
論である。又、回転体を2個以上用いる場合には、各回
転体の回転方向を互いに逆にしてもよいことも勿論であ
る。
In the above example, the case where two rotating bodies are used is shown, but it goes without saying that one or six or more rotating bodies may be used. Furthermore, when two or more rotating bodies are used, it goes without saying that the rotating directions of the rotating bodies may be reversed.

硬銅線に与えられる塑性歪の程度は、線の材質。The degree of plastic strain given to hard copper wire depends on the material of the wire.

回転体の数、線軸中心の偏)lkの程度1回転体と固定
部材との距離1回転体の回転速度、@線の引取シ速度等
によって定まるが、最終的に硬銅線に与えられる塑性歪
が線表面の曲げ歪として後記の実施例からも明らかなよ
うに0.15〜6チになるように上記諸要因を選定する
ことが好ましい。すなわち、曲げ歪が0.15%以下で
は塑性変形量が少なく、残留応力除去効果が少なく、従
って良好な耐食性は得られない。また、曲げ歪が6%以
上では硬銅線に傷が付くと共に、導体の変形が不均一と
なり、ピットの生成が加速されて耐食性に問題が生ずる
The number of rotating bodies, the deviation of the center of the wire axis) The degree of lk 1 The distance between the rotating body and the fixed member 1 The rotational speed of the rotating body, the drawing speed of the wire, etc., but ultimately the plasticity imparted to the hard copper wire It is preferable to select the above factors so that the strain is 0.15 to 6 inches as the bending strain on the wire surface, as is clear from the examples below. That is, when the bending strain is 0.15% or less, the amount of plastic deformation is small, the residual stress removal effect is small, and therefore good corrosion resistance cannot be obtained. Furthermore, if the bending strain is 6% or more, the hard copper wire will be damaged, the conductor will not be deformed uniformly, the formation of pits will be accelerated, and problems will arise in corrosion resistance.

本発明は上記したように比較的簡単な手段によって硬銅
線の残留応力を除去する方法であって、以下に述べる如
き効果を併せ有するものである。
As described above, the present invention is a method for removing residual stress in a hard copper wire by relatively simple means, and also has the following effects.

(1)硬銅線の単線及び撚線の全半径方向にわたって残
留応力が除去される。
(1) Residual stress is removed in the entire radial direction of solid copper wire and stranded wire.

(2)v備が比較的簡単であるので製造技術の管理が容
易である。
(2) The manufacturing technology is easy to manage because the v-preparation is relatively simple.

(3) この方法で用いられる装置は従来の丸撚線と同
じ形状の線材をも扱うことができるので、電線架設のた
めの付属品を使用することができ経済的に有利であると
共に、現有V備を改良する程度で本発明の実施が可能で
あり、大きな設備投資を必要としない。
(3) The equipment used in this method can handle wire rods with the same shape as conventional round stranded wires, so it is economically advantageous to use accessories for wire installation, and The present invention can be implemented by simply improving the V-equipment, and does not require large capital investment.

次に、本発明の以下の実施例について説明する。Next, the following embodiments of the present invention will be described.

実施例1 第1図及び第2図に示した如き2.00硬銅縮単線用回
転曲げ装置を用い、2.0IC直径2.Qmm)の硬銅
線単線を硬銅線引取り速度6Q am / min 。
Example 1 A rotary bending device for 2.00 hard copper shrunk solid wire as shown in FIGS. 1 and 2 was used to bend 2.0 IC diameter 2.0 IC. Qmm) solid copper wire at a drawing speed of 6Q am/min.

回転体の回転速度20 Or、p、mにて通過させ、線
表面の曲げ歪(硬I@線軸方向の歪)が0.1%になる
ように塑性歪を与えて残留応力の除去された硬銅線を得
た。得られた硬銅線を試料1とした。
The residual stress was removed by passing through the rotating body at a rotational speed of 20 Or, p, m, and applying plastic strain so that the bending strain on the wire surface (hard I @ strain in the wire axial direction) was 0.1%. A hard copper wire was obtained. The obtained hard copper wire was designated as Sample 1.

実施例2 実施例1と同様に2.01!l硬銅線単線を処理した。Example 2 2.01 as in Example 1! A solid copper wire was treated.

ただし、この場合、線表面曲げ歪が0.16%になるよ
うに塑性歪を与えて残留応力の除去された硬銅線を得た
(試料2)。
However, in this case, plastic strain was applied so that the wire surface bending strain was 0.16% to obtain a hard copper wire with residual stress removed (Sample 2).

実施例3 実施例1と同様に2.0φ硬銅線単線を処理した。Example 3 A 2.0φ solid copper wire was treated in the same manner as in Example 1.

ただし、この場合、線表面曲げ歪が0.4%になるよう
に塑性歪を与えて残留応力の除去された硬銅線を得た(
試料3)。
However, in this case, plastic strain was applied so that the wire surface bending strain was 0.4% to obtain a hard copper wire with residual stress removed (
Sample 3).

実施例4 実施例1と同様に2.Ol硬嗣線単線を処理した。Example 4 2. Same as Example 1. Processed Ol solid wire single wire.

ただし、この場合、線表面曲げ歪が5.8%になるよう
に塑性歪を与え、残留応力の除去された硬銅線を得た(
試料4)。
However, in this case, plastic strain was applied so that the wire surface bending strain was 5.8%, and a hard copper wire with residual stress removed was obtained (
Sample 4).

実施例5 実施例1と同様に2.0j5硬銅線単線を処理した。Example 5 A 2.0j5 solid copper wire was treated in the same manner as in Example 1.

ただし、この場合、線表面曲げ歪が6.2%になるよう
に塑性歪を与え、残留応力の除去された硬銅線を得た(
試料5)。
However, in this case, plastic strain was applied so that the wire surface bending strain was 6.2%, and a hard copper wire with residual stress removed was obtained (
Sample 5).

比較例1 上記実施例に示した如き本発明方法を適用しない2.0
1銅線を比較試料とした(比較試料1)。
Comparative Example 1 2.0 without applying the method of the present invention as shown in the above example
1 copper wire was used as a comparative sample (comparative sample 1).

実施例6 第1図及び第2図に示した如き撚線(19/2.0)用
回転曲げ装置を用い、硬銅線撚線(19/2.0)(直
径2.0 m mの単線19本の撚線)を線引取速度6
Qcm/min、回転体の回転速度20 Or、p、m
にて通過させ、線表面の曲げ歪(硬鈎線軸方向の歪)が
0.16%になるように塑性歪を与えて残留応力の除去
された硬銅線撚線を得た(試料6)。
Example 6 A hard copper wire strand (19/2.0) (with a diameter of 2.0 mm) was 19 stranded single wires) at a wire drawing speed of 6
Qcm/min, rotation speed of rotating body 20 Or, p, m
A hard copper wire strand with residual stress removed was obtained by applying plastic strain so that the bending strain on the wire surface (strain in the axial direction of the hard hook wire) was 0.16% (Sample 6). .

実施例7 実施例6と同様に硬銅線撚線(19/2.0)を処理し
た。ただし、この場合、線表面曲げ歪が0.16%にな
るように塑性歪を与えて残留応力の除去された撚線を得
た(試料7)。
Example 7 A hard copper wire strand (19/2.0) was treated in the same manner as in Example 6. However, in this case, plastic strain was applied so that the wire surface bending strain was 0.16% to obtain a stranded wire with residual stress removed (Sample 7).

実施例8 実施例6と同様に8!!銅腺撚# (19/2.0)を
処理した。ただし、この場合、線表面曲げ歪が0.4%
になるように塑性歪を与えて残留応力の除去された撚線
を得た(試料8)。
Example 8 Same as Example 6, 8! ! Copper gland twist # (19/2.0) was processed. However, in this case, the line surface bending strain is 0.4%.
A stranded wire from which residual stress was removed was obtained by applying plastic strain so that the result was (Sample 8).

実施例9 実施例6と同様に硬銅線撚、[1(19/2.0)を処
理した。ただし、この場合、線表面曲げ歪が5.7%に
なるように塑性歪を与え、残留応力の除去された撚線を
得た(試料9)。
Example 9 A hard copper wire twist [1 (19/2.0) was treated in the same manner as in Example 6. However, in this case, plastic strain was applied so that the wire surface bending strain was 5.7%, and a stranded wire with residual stress removed was obtained (Sample 9).

実施例10 実施例6と同様に硬銅線撚線(19/2.0)を処理し
た。ただし、この場合、線表面曲げ歪が6.6%になる
ように塑性歪を与え、残留応力の除去された撚線を得た
(試料10)。
Example 10 Hard copper wire strands (19/2.0) were treated in the same manner as in Example 6. However, in this case, plastic strain was applied so that the wire surface bending strain was 6.6%, and a stranded wire with residual stress removed was obtained (Sample 10).

比較例2 理 上記の如き本ν法を適用しない硬銅線撚線(19/2.
0)を比較試料とした(比較試料2)。
Comparative Example 2 Hard copper wire strands (19/2.
0) was used as a comparative sample (comparative sample 2).

実施例(1)〜(10)及び比較(;11 (1’)〜
(2)で得・られた各試料につしぐて、その導体表面の
傷の生成状況と1、各試料をマトソン氏液に70°Cで
200時間保持した場合の腐食試験の結果を次の表1に
示した。
Examples (1) to (10) and comparison (;11 (1') to
The following are the results of the corrosion test when each sample was held in Matson's solution for 200 hours at 70°C and the condition of scratches on the conductor surface by applying each sample obtained in (2). It is shown in Table 1.

表1の結果から次のように結論される。From the results in Table 1, the following conclusions can be drawn.

試料1 (0,1%の線表面曲げ歪を与えた対策硬銅線
) 導体表面の傷は浅く、製品として十分満足できるが、腐
食により生成したピット数が多く、シがも最大ピット深
さが深いため耐食性が劣り、応力腐食対策撚線としてや
や不十分である。 −試料2(0,L6%の線表面曲げ
歪を与えた対策硬銅線) 感体表面傷は製品として問題なく、更に、腐食によるピ
ット数、ピット最大深さともに比較試料1に比べて著し
く改良されており、応力腐食対策撚線加として十分な性
能を有している。
Sample 1 (measured hard copper wire with 0.1% wire surface bending strain) The scratches on the conductor surface are shallow and the product is fully satisfactory, but there are many pits generated due to corrosion and the maximum pit depth is low. Because the strands are deep, their corrosion resistance is poor, making them somewhat unsatisfactory as stress corrosion countermeasures. -Sample 2 (Hard copper wire with wire surface bending strain of 0.L 6%) There are no scratches on the sensor surface as a product, and furthermore, both the number of pits due to corrosion and the maximum depth of pits are significantly higher than that of comparative sample 1. It has been improved and has sufficient performance as a twisted wire adder to prevent stress corrosion.

試料3 (0,4%の線表面曲げ歪を与えた対策硬銅線
) 導体缶は試F42と同様製品として問題なく、腐食によ
るピットの発生が認められず耐食性が著しく改良されて
いる。この対策硬銅線は応力腐食対策撚線として優れた
性能を有している。
Sample 3 (measured hard copper wire with 0.4% wire surface bending strain) The conductor can, like sample F42, had no problems as a product, and no pits were observed due to corrosion, and the corrosion resistance was significantly improved. This countermeasure hard copper wire has excellent performance as a stress corrosion countermeasure stranded wire.

試料4(5,8%の&!表面曲げ歪を与えた対策硬銅線
) 導体缶は試料2,6と同様で問題なく、耐食性も試料6
と同様で、応力腐食対策撚線として優れた性能を有して
いる。
Sample 4 (hard copper wire with surface bending strain of 5.8%) The conductor can is the same as samples 2 and 6 and there is no problem, and the corrosion resistance is also the same as sample 6.
It has excellent performance as a stranded wire to prevent stress corrosion.

試料5(6,2%の線表面曲げ歪を与えた対策硬銅線) 導体缶は深く製品としてはやや不十分である。Sample 5 (measured hard copper wire with 6.2% wire surface bending strain) The conductor can is deep and not suitable for use as a product.

耐食性は比較試料1に比べて改良されているが、試料2
〜6に比較して劣っている。これは導体缶が深いために
導体i5からビットが発生したためである。この対策電
線は、応力腐食対策撚線3線としてやや不十分である。
Corrosion resistance is improved compared to comparative sample 1, but sample 2
- Inferior compared to 6. This is because the bit was generated from the conductor i5 because the conductor can was deep. This electric wire is somewhat insufficient as a 3-wire stranded wire to prevent stress corrosion.

以上の結果から導体缶が少なく、耐食性の優れた残Wt
応力除去硬鉤線を得るためには、本発明によって0.1
5%〜6%の線表面曲げ歪を与えるように処理すればよ
いことが判る。
From the above results, the remaining Wt has less conductor cans and excellent corrosion resistance.
In order to obtain a stress-relieving hard hook wire, according to the present invention, 0.1
It can be seen that the treatment should be performed to give a linear surface bending strain of 5% to 6%.

試料6(0,13%の線表面曲げ歪を与えた対策硬銅線
撚線) 導体表面傷は浅く、製品として問題ないが、腐食による
ピット数が多く、かつピット最大深さが深いので耐食性
が劣り、応力腐食対策撚線としてはやや不十分である。
Sample 6 (hard copper wire stranded wire with 0.13% wire surface bending strain) The scratches on the conductor surface are shallow and there is no problem as a product, but there are many pits due to corrosion and the maximum depth of the pits is deep, so the corrosion resistance is poor. This makes it somewhat unsatisfactory as a stranded wire to prevent stress corrosion.

試料7(0,16%の線表面曲げ歪を与えた対策硬銅線
撚線) 導体缶は浅く製品として同順なく、シかも比較試料に比
べて腐食によるピット数が著しく少なく、耐食性が改良
されている。従って、この対策試料は応力腐食対策撚線
として十分な性質を有している。
Sample 7 (hard copper wire stranded wire with a wire surface bending strain of 0.16%) The conductor can is shallow and the product is not in the same order, but the number of pits caused by corrosion is significantly smaller than the comparison sample, and the corrosion resistance is improved. has been done. Therefore, this countermeasure sample has sufficient properties as a stress corrosion countermeasure stranded wire.

試料8(0,4%線表面曲げ歪を与えた対策硬鉛線撚I
M) 導体缶は浅く製品として問題はなく、耐食性も優れ、応
力腐食対策撚線として優れた性能2有している。
Sample 8 (hard lead wire twisted I with 0.4% line surface bending strain)
M) The conductor can is shallow and has no problems as a product, has excellent corrosion resistance, and has excellent performance as a stress corrosion countermeasure stranded wire.

試料9(5,7%の緑表面曲げ歪を与えた対策硬銅線撚
線) 導体缶、耐食性共に優れ、応力ID:1食対策撚線とし
て十分な性能を有している。
Sample 9 (hard copper wire stranded wire with green surface bending strain of 5.7%) Excellent in both conductor and corrosion resistance, and has sufficient performance as a stress ID: 1 corrosion resistant stranded wire.

試料10 (6,3%の線表面曲げ歪を与えた対策硬銅
m撚線) 導体傷が深く製品としては不十分である。また腐食によ
るビット数が多く且つ最ピット深さも深く、耐食性は比
較試料2に比べて改良されているが問題がある。従って
この対策試料は応力腐食対策7′g線として十分な性能
を有していない。
Sample 10 (measured hard copper m-stranded wire with 6.3% wire surface bending strain) The conductor had deep scratches and was unsatisfactory as a product. In addition, the number of bits due to corrosion was large and the maximum pit depth was deep, so although the corrosion resistance was improved compared to Comparative Sample 2, there were problems. Therefore, this countermeasure sample does not have sufficient performance as a stress corrosion countermeasure 7'g wire.

以上の結果から、導体傷が少なく、耐食性が優れた残留
応力除去硬銅線撚線を得るためには、本発明によって0
.15%〜6%の線表面曲げ歪を与えるように処理すれ
ばよいことが判る。
From the above results, in order to obtain a residual stress-relieving hard copper wire stranded wire with few conductor flaws and excellent corrosion resistance, it is necessary to use the present invention.
.. It can be seen that the treatment should be performed to give a linear surface bending strain of 15% to 6%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施するために用いられる回転面げに
よる残留応力防去′y2置の一例を示す横断面図、第2
図は第1図における回転体の縦断面図である。 1・・硬嗣i%! 212’l グ′・・固定部材3、
3’、 3”・・固定部材 4,4’、4″・・ベアリ
ングの通孔 6,6′・・回転体の通孔
Fig. 1 is a cross-sectional view showing an example of the residual stress prevention position by rotary surface bending used to carry out the present invention;
The figure is a longitudinal sectional view of the rotating body in FIG. 1. 1. Hard Tsugu i%! 212'l G'...Fixing member 3,
3', 3"...Fixing member 4,4',4"...Bearing hole 6,6'...Rotating body hole

Claims (1)

【特許請求の範囲】 1、(四銅線の単線又は撚線を直接又は′e覆された状
態で、少くとも1個の線軸中心を偏倚させた回転体を通
過させつつ該回転体を回転させることにより硬銅線の全
半径方向に連続的に塑性歪を与えることを特徴とする硬
銅線単線又は撚線の残留応力を除去する方法。 2、与えられる塑性歪が線表面の曲げ歪で0.15%〜
6%である特許請求の範囲第1項記載の残留応力除去方
法。
[Claims] 1. (Rotating a single or stranded copper wire directly or in a covered state while passing through a rotating body whose wire axis center is biased. A method for removing residual stress in a single hard copper wire or a stranded wire, which is characterized by continuously applying plastic strain in the entire radial direction of the hard copper wire by from 0.15%
The method for removing residual stress according to claim 1, wherein the residual stress is 6%.
JP16458783A 1983-09-07 1983-09-07 Method for removing residual stress of solid wire of twisted wire of hard drawn copper wire Pending JPS6056431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16458783A JPS6056431A (en) 1983-09-07 1983-09-07 Method for removing residual stress of solid wire of twisted wire of hard drawn copper wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16458783A JPS6056431A (en) 1983-09-07 1983-09-07 Method for removing residual stress of solid wire of twisted wire of hard drawn copper wire

Publications (1)

Publication Number Publication Date
JPS6056431A true JPS6056431A (en) 1985-04-02

Family

ID=15796005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16458783A Pending JPS6056431A (en) 1983-09-07 1983-09-07 Method for removing residual stress of solid wire of twisted wire of hard drawn copper wire

Country Status (1)

Country Link
JP (1) JPS6056431A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58153332A (en) * 1982-03-08 1983-09-12 Mitsubishi Electric Corp Dry etching device
CN110238321A (en) * 2019-07-22 2019-09-17 长沙如洋环保科技有限公司 A kind of construction reinforcing bar straightening machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58153332A (en) * 1982-03-08 1983-09-12 Mitsubishi Electric Corp Dry etching device
JPH0442821B2 (en) * 1982-03-08 1992-07-14 Mitsubishi Electric Corp
CN110238321A (en) * 2019-07-22 2019-09-17 长沙如洋环保科技有限公司 A kind of construction reinforcing bar straightening machine

Similar Documents

Publication Publication Date Title
US10032544B2 (en) Terminal treatment apparatus for a coaxial cable to separate a sheath from a conductor
US9240662B2 (en) Terminal treatment method and terminal treatment apparatus for coaxial cable
JPS6056431A (en) Method for removing residual stress of solid wire of twisted wire of hard drawn copper wire
JPS5865535A (en) Residual stress removing method of single wire or twisted wire of hard drawn copper wire
US6411760B1 (en) Multifilament twisted and drawn tubular element and co-axial cable including the same
JPS5865536A (en) Residual stress removing method of single wire or twisted wire of hard drawn copper wire
JP2593207B2 (en) High-strength steel wire and steel cord for reinforcing rubber products
JPS6056432A (en) Method for removing residual stress of solid wire or twisted wire of hard drawn copper wire
JPS63284780A (en) Conductor separation mechanism for pair twist cluster cable
US781078A (en) Art or process of removing scale from wires, rods, &c.
SU866630A1 (en) Device for stripping insulation from wire
CN207787319U (en) A kind of prestress wire pickling-free sheller
SU1258873A1 (en) Device for applying coatings on wire
JPS60239583A (en) Twisting of profile wire
JP2000282157A (en) Foil conductor
JP3031514B2 (en) Insulated wire with easy terminal processing
JPH0594860A (en) Connecting method for electrical wire
JPS63882B2 (en)
JPS6123604B2 (en)
JPH02250617A (en) Method and apparatus for separating core wire from shielded fine wires in shielded conductor
JPH0632742Y2 (en) Separator for shield part of single core shield wire
SU1258875A1 (en) Method of applying coatings on wire
SU1309142A1 (en) Method of preparing electric wires for wiring
WO2019021563A1 (en) Small-diameter insulated electric wire
JPH03208208A (en) Aluminium transmission line and manufacture thereof