JPS6056292B2 - Complementary MOS integrated circuit device - Google Patents

Complementary MOS integrated circuit device

Info

Publication number
JPS6056292B2
JPS6056292B2 JP56062909A JP6290981A JPS6056292B2 JP S6056292 B2 JPS6056292 B2 JP S6056292B2 JP 56062909 A JP56062909 A JP 56062909A JP 6290981 A JP6290981 A JP 6290981A JP S6056292 B2 JPS6056292 B2 JP S6056292B2
Authority
JP
Japan
Prior art keywords
channel mos
gate
pairs
integrated circuit
circuit device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56062909A
Other languages
Japanese (ja)
Other versions
JPS57176756A (en
Inventor
五佐雄 大倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP56062909A priority Critical patent/JPS6056292B2/en
Publication of JPS57176756A publication Critical patent/JPS57176756A/en
Publication of JPS6056292B2 publication Critical patent/JPS6056292B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/118Masterslice integrated circuits
    • H01L27/11803Masterslice integrated circuits using field effect technology
    • H01L27/11807CMOS gate arrays

Description

【発明の詳細な説明】 この発明は相補形MOS集積回路装置に係り、特にトラ
ンジスタアレイ、ゲートアレイのように単位セルを複数
個列状に並べた部分を有する集積回路装置における単位
セルの配列構造および機能素子間の分離構成の改良に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a complementary MOS integrated circuit device, and particularly to an arrangement structure of unit cells in an integrated circuit device having a portion in which a plurality of unit cells are arranged in a row, such as a transistor array or a gate array. The present invention also relates to improvements in the separation structure between functional elements.

以下、ゲートアレイを例にとつて説明する。第1図はゲ
ートアレイの概念的配置構成図で、入出力回路部1、内
部配線部2および内部ゲート部3で構成されている。内
部ゲート部3は単位となるセルが列状に配置されている
。一般に、単位となるセル(以下単位セルという。
Hereinafter, a description will be given using a gate array as an example. FIG. 1 is a conceptual layout and configuration diagram of a gate array, which is composed of an input/output circuit section 1, an internal wiring section 2, and an internal gate section 3. In the internal gate section 3, cells serving as units are arranged in a row. Generally, a unit cell (hereinafter referred to as a unit cell).

)は1種類の場合もあり、複数種類の場合もある。そし
て、論理機能を備えた機能素子は1個もしくは複数個の
単位セルで構成されたり、または単位セル内に複数個の
機能素子が形成される。このようにして構成された複数
個の機能素子は図の内部配線部2に施される内部配線に
よつて互いに接続され、さらに入出力回路部1に存在す
る入出力回路と接続されて論理回路を構成する。第2図
は従来の単位セルの配置の一例を示す図で、図中破線で
囲つた単位セル30はMOSI−ランジスタ(MOST
)を構成するゲート領域31aおよび31b)ソースも
しくはドレインとなる領域32aおよび32b)並びに
隣接する単位セルとの間を電気的に分離するための分離
領域33を含むように構成される。
) may be one type or multiple types. A functional element having a logic function is formed of one or more unit cells, or a plurality of functional elements are formed within a unit cell. The plurality of functional elements configured in this manner are connected to each other by internal wiring provided in the internal wiring section 2 shown in the figure, and are further connected to the input/output circuit existing in the input/output circuit section 1 to form a logic circuit. Configure. FIG. 2 is a diagram showing an example of the arrangement of conventional unit cells. The unit cell 30 surrounded by a broken line in the figure is a MOSI transistor (MOST).
) forming gate regions 31a and 31b) forming regions 32a and 32b forming sources or drains), and isolation regions 33 for electrically isolating adjacent unit cells.

図中一点鎖線で囲つた部分34はこの部分以外の半導体
基板と逆の伝導形を有する部分で、一般にウェル(井戸
)と呼ばれる。通常、半導体基板としてはn形のものを
用い、この部分34にはp形不純物を導入している。し
たがつて、一点鎖線で囲つた部分34にはnチャネルM
OSTが構成され、その外部の半導体基板側にはpチャ
ネルMOSTが構成される。第2図の例では単位セル3
0中には3対のゲート領域31a、31bが配置されて
いるので、最大3入力の機能ゲートが構成できる。とこ
ろが、4入力以上の機能ゲートやフリップフロップなど
を構成しようとすれば複数の単位セル30を用いること
になる。
A portion 34 surrounded by a dashed line in the figure is a portion having a conductivity type opposite to that of the semiconductor substrate other than this portion, and is generally called a well. Normally, an n-type semiconductor substrate is used, and a p-type impurity is introduced into this portion 34. Therefore, the n-channel M
An OST is configured, and a p-channel MOST is configured on the semiconductor substrate side outside the OST. In the example in Figure 2, unit cell 3
Since three pairs of gate regions 31a and 31b are arranged in 0, a functional gate with a maximum of three inputs can be configured. However, if a functional gate or flip-flop with four or more inputs is to be configured, a plurality of unit cells 30 will be used.

第3図はこの従来例を用いて4入力NORゲートを構成
した場合の構成図で、図中41は1層目のアルミニウム
(,Al)配線、42は2層目のA1配線を示す。
FIG. 3 is a block diagram of a 4-input NOR gate constructed using this conventional example. In the figure, 41 indicates the first layer of aluminum (, Al) wiring, and 42 indicates the second layer of A1 wiring.

第1図に示した内部配線領域2から2層目のA1配線4
2を介して4つの入力1N1〜IN4がpチャネルおよ
びnチャネルMOSTのゲート電極31a,31b,3
1c,31dに入力され、再び2層目のに配線42を介
して出力0UTが内部配線領域2へ送出される。この4
入力NORゲートにおけるMOST相互間の接続は1層
目のA1配線41でなされている。51は1層目のN配
線41と半導体基板表面に形成されたp形またはn形の
ソースまたはドレイン領域32a,32b,32c,3
2dとを接続するためのコンタクトホールを示す。
A1 wiring 4 in the second layer from the internal wiring area 2 shown in FIG.
2, the four inputs 1N1 to IN4 are connected to the gate electrodes 31a, 31b, 3 of the p-channel and n-channel MOST.
1c and 31d, and the output 0UT is sent to the internal wiring area 2 via the second layer wiring 42 again. This 4
Connection between the MOSTs in the input NOR gate is made by the first layer A1 wiring 41. Reference numeral 51 denotes the first layer N wiring 41 and p-type or n-type source or drain regions 32a, 32b, 32c, 3 formed on the surface of the semiconductor substrate.
2d is shown.

52は2層目のAl配線42とゲート領域31a,31
b,31c,31dとの接続点、53は一層目のAl配
線41と二層目のAl配線42との接続点である。
52 is the second layer Al wiring 42 and gate regions 31a, 31
b, 31c, and 31d, and 53 is a connection point between the first layer Al wiring 41 and the second layer Al wiring 42.

この従来の構成では各隣接単位セル30相互間にこれら
を電気的に分離するための分離領域33を設けているが
、このため、例えば4入力NORゲートを構成するとき
、第3図に示したようにゲート領域31aと31bとの
対を3対とゲート領域31cと31dとの対を1対とを
必要とし、2つの単位セル30を結合する必要がある。
In this conventional configuration, an isolation region 33 is provided between each adjacent unit cell 30 to electrically isolate them. For this reason, for example, when configuring a 4-input NOR gate, the Thus, three pairs of gate regions 31a and 31b and one pair of gate regions 31c and 31d are required, and two unit cells 30 must be combined.

すなわち、両単位セル30に含まれるnチャネルMOS
Tのソースまたはドレイン領域32aおよび32c並び
にpチャネルMOSTのソースまたはドレイン領域32
bおよび32dをそれぞれ電気的に等電位にするために
接続する2本の配線411が必要になる。
That is, the n-channel MOS included in both unit cells 30
T source or drain regions 32a and 32c and p-channel MOST source or drain region 32
Two wires 411 are required to connect b and 32d to electrically equalize the potential.

しかも、この部分のソースまたはドレイン領域は他の部
分のソースまたはドレイン領域より面積が大きくなるの
で、半導体基板または前述のウェルとの間の浮遊容量が
大きくなり、機能ゲートの動作速度が遅くなるという欠
点を有している。この発明は以上のような点に鑑みてな
されたもので、分離領域を形成せず任意の規模の単位セ
ルを構成できるようにすることによつて集積密度の大き
い動作速度の速い相補形MOS集積回路装置を提供する
ことも目的としている。
Moreover, since the area of the source or drain region in this part is larger than the source or drain region in other parts, the stray capacitance between it and the semiconductor substrate or the above-mentioned well increases, which slows down the operating speed of the functional gate. It has drawbacks. The present invention has been made in view of the above points, and by making it possible to configure a unit cell of any size without forming an isolation region, it is possible to integrate complementary MOS with high integration density and high operating speed. It also aims to provide circuit devices.

第4図はこの発明の一実施例を示す配置図で、?乎例と
同等部分は同一符号で示し、その説明を省略する。
FIG. 4 is a layout diagram showing one embodiment of this invention. Parts equivalent to those in this example are indicated by the same reference numerals, and their explanation will be omitted.

この実施例では従来例における単位セル間を分離する分
離領域33を設けず、単位セル30を任意に構成できる
ようになつている。すなわち、例えば第4図に示したよ
うに4対のMOSTで単位セル30を構成しようと思え
ば、これに隣接するゲート領域〔図では311aおよび
311bで示したが本質的にはその他のゲート領域31
aおよび31bと同一である。
In this embodiment, the isolation region 33 for separating unit cells in the conventional example is not provided, and the unit cells 30 can be configured as desired. That is, for example, if one wants to configure a unit cell 30 with four pairs of MOSTs as shown in FIG. 31
Same as a and 31b.

〕それぞれ接地電位および正電源電位に接続してこのゲ
ート領域311aおよび311bに対応するMOSTを
しや断させることによつて、単位セル30を隣接領域か
ら分離することができる。
] Unit cell 30 can be isolated from adjacent regions by disconnecting the MOSTs corresponding to gate regions 311a and 311b by connecting them to ground potential and positive power supply potential, respectively.

第5図はこの実施例を用いて4入力NORゲートを構成
したときの構成図で、従来例と同等部分は同一符号で示
してあるので、上記説明からこの構成は容易に理解でき
るであろう。なお、上例では4入力ゲートを構成した例
を挙げたが任意入力(第4図の実施例ては1〜7入力)
ゲートを単一の単位セルとして構成できる。
FIG. 5 is a block diagram of a four-input NOR gate constructed using this embodiment. Parts equivalent to those of the conventional example are designated by the same reference numerals, so this construction can be easily understood from the above explanation. . In the above example, a 4-input gate was used, but any inputs (inputs 1 to 7 in the example shown in Fig. 4) can be used.
The gate can be constructed as a single unit cell.

フリップフロップのように多数の単位ゲートを必要とす
る場合についても同様である。また単位セルに含まれる
ゲート領域の形状はすべて同一の場合を示したが、異つ
た形状のものを含んでいてもよく、更に、勿論、複数種
類の単位セルを一つの集積回路内に構成してもよい。な
お、上例では半導体基板にn形のものを用いたが、p形
基板を用いてもよいことはいうまでもない。以上説明し
たように、この発明になる相補形MOS集積回路装置で
は複数個の相補形MOST対・を各対間に分離領域を設
けることなく並列配設し、上記複数個の対のうち所要個
数の対を用いて論理機能素子を構成し、かつ上記論理機
能素子に隣接する相補形MOST対の各ゲート電極に所
要電圧を供給してこれをしや断させることによつて・上
記論理機能素子を残余の部分から電気的に分離するよう
にしたので、従来方式のように分離領域を超えて単位セ
ル間を接続する配線も不要となり、不必要な分離領域を
含まず、しかも相補形MOST対を有効に利用できるの
で、装置の集積)度を向上させることができ、これに伴
つて動作速度の向上が期待できる。
The same applies to cases where a large number of unit gates are required, such as flip-flops. Furthermore, although the case in which the shapes of the gate regions included in the unit cells are all the same is shown, gate regions of different shapes may also be included, and of course, it is also possible to configure multiple types of unit cells in one integrated circuit. It's okay. In the above example, an n-type semiconductor substrate was used, but it goes without saying that a p-type substrate may also be used. As explained above, in the complementary MOS integrated circuit device according to the present invention, a plurality of complementary MOST pairs are arranged in parallel without providing a separation region between each pair, and a required number of the plurality of pairs is arranged in parallel. By configuring a logic functional element using a pair of and supplying a required voltage to each gate electrode of a complementary MOST pair adjacent to the logic functional element to disconnect it. Since it is electrically isolated from the rest of the unit, there is no need for wiring that connects unit cells across the isolation region as in the conventional method, and there is no need for unnecessary isolation regions. can be used effectively, the degree of integration of the device can be improved, and along with this, an improvement in operating speed can be expected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はゲートアレイの概念的配置構成図、第2図は従
来の単位セルの配置の一例を示す図、第3図はこの従来
例を用いて4入力NORゲートを構成した場合の構成図
、第4図はこの発明の一実施例を示す配置図、第5図は
この実施例を用いて4入力NORゲートを構成したとき
の構成図である。 図において、31a,31b,31c,31dはゲート
電極、32a,32b,32c,32dはソースまたは
ドレイン領域、33は分離領域、34はp形領域(nチ
ャネルMOST構成領域)、41は第1層のAI配線、
31は第2層のA1配線である。
Fig. 1 is a conceptual layout diagram of a gate array, Fig. 2 is a diagram showing an example of a conventional arrangement of unit cells, and Fig. 3 is a diagram illustrating a configuration of a 4-input NOR gate using this conventional example. , FIG. 4 is a layout diagram showing one embodiment of the present invention, and FIG. 5 is a configuration diagram when a four-input NOR gate is constructed using this embodiment. In the figure, 31a, 31b, 31c, and 31d are gate electrodes, 32a, 32b, 32c, and 32d are source or drain regions, 33 is an isolation region, 34 is a p-type region (n-channel MOST forming region), and 41 is a first layer. AI wiring,
31 is the A1 wiring of the second layer.

Claims (1)

【特許請求の範囲】[Claims] 1 それぞれpチャネルMOSトランジスタとnチャネ
ルMOSトランジスタとからなる複数個の対を各対の間
に分離領域を設けることなく互いに隣接する上記対につ
いて上記pチャネルMOSトランジスタおよび上記nチ
ャネルMOSトランジスタがそれぞれ相隣つて並ぶよう
に配設し、上記複数個の対のうちの所要個数の対を用い
て論理機能を有する機能素子を構成し、かつ上記機能素
子に隣接する上記対の上記pチャネルMOSトランジス
タおよび上記nチャネルMOSトランジスタのゲート電
極をそれぞれ正電源電位および負電源電位に保持して当
該pチャネルMOSトランジスタおよびnチャネルMO
Sトランジスタをしや断させることによつて上記機能素
子を残余の部分から電気的に分離するようにしたことを
特徴とする相補形MOS集積回路装置。
1 A plurality of pairs each consisting of a p-channel MOS transistor and an n-channel MOS transistor are arranged so that the p-channel MOS transistor and the n-channel MOS transistor are in phase with each other for the pairs adjacent to each other without providing a separation region between each pair. The p-channel MOS transistors are arranged side by side and constitute a functional element having a logic function using a required number of pairs out of the plurality of pairs, and the p-channel MOS transistors of the pair adjacent to the functional element; The gate electrodes of the n-channel MOS transistors are held at a positive power supply potential and a negative power supply potential, respectively, and the p-channel MOS transistors and n-channel MOS transistors are
A complementary MOS integrated circuit device, characterized in that the functional element is electrically isolated from the rest by cutting off the S transistor.
JP56062909A 1981-04-23 1981-04-23 Complementary MOS integrated circuit device Expired JPS6056292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56062909A JPS6056292B2 (en) 1981-04-23 1981-04-23 Complementary MOS integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56062909A JPS6056292B2 (en) 1981-04-23 1981-04-23 Complementary MOS integrated circuit device

Publications (2)

Publication Number Publication Date
JPS57176756A JPS57176756A (en) 1982-10-30
JPS6056292B2 true JPS6056292B2 (en) 1985-12-09

Family

ID=13213845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56062909A Expired JPS6056292B2 (en) 1981-04-23 1981-04-23 Complementary MOS integrated circuit device

Country Status (1)

Country Link
JP (1) JPS6056292B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57186348A (en) * 1981-05-11 1982-11-16 Ricoh Co Ltd Master sliced large-scale integrated circuit
JPS57196556A (en) * 1981-05-27 1982-12-02 Toshiba Corp Semiconductor integrated circuit device
JPS6038835A (en) * 1983-08-11 1985-02-28 Mitsubishi Electric Corp Semiconductor integrated circuit device
JPH0695570B2 (en) * 1985-02-07 1994-11-24 三菱電機株式会社 Semiconductor integrated circuit device
JPS6264135A (en) * 1985-09-13 1987-03-23 Fujitsu Ltd Switching path display device
JPH0642538B2 (en) * 1986-09-08 1994-06-01 ヒユーズ・エアクラフト・カンパニー Master slice for integrated circuits
JPH0289365A (en) * 1988-09-27 1990-03-29 Nec Corp Cmos integrated circuit

Also Published As

Publication number Publication date
JPS57176756A (en) 1982-10-30

Similar Documents

Publication Publication Date Title
EP0080361B1 (en) Complementary metal-oxide semiconductor integrated circuit device of master slice type
US6683335B2 (en) Gate array layout for interconnect
EP0177336B1 (en) Gate array integrated device
JPH0695570B2 (en) Semiconductor integrated circuit device
JPS61218159A (en) Semiconductor integrated circuit device
KR900003029B1 (en) Integrated circuit device with chip
US5404035A (en) Multi-voltage-level master-slice integrated circuit
JPS6056292B2 (en) Complementary MOS integrated circuit device
JPH02152254A (en) Semiconductor integrated circuit device
US5072285A (en) Semiconductor integrated circuit having region for forming complementary field effect transistors and region for forming bipolar transistors
US5416431A (en) Integrated circuit clock driver having improved layout
US5063430A (en) Semiconductor integrated circuit device having standard cells including internal wiring region
US5001487A (en) Semiconductor integrated circuit device
US4523216A (en) CMOS device with high density wiring layout
EP0105985A1 (en) Complementary metal-oxide semiconductor integrated circuit device
JPH10173055A (en) Cell-based semiconductor device and standard cell
EP0467361B1 (en) BICMOS gate array device
JPS6358372B2 (en)
US4870471A (en) Complementary metal-oxide semiconductor integrated circuit device with isolation
JPH0122736B2 (en)
EP0113828A2 (en) Master slice semiconductor chip having a new multi-function FET cell
JP2679034B2 (en) Semiconductor integrated device
JP2807878B2 (en) Semiconductor integrated circuit device
JPH0969572A (en) Semiconductor device and its manufacture
JPS5940565A (en) Semiconductor integrated circuit device