JPS6056149A - Controller for air-fuel ratio of engine and ignition timing during idling - Google Patents

Controller for air-fuel ratio of engine and ignition timing during idling

Info

Publication number
JPS6056149A
JPS6056149A JP16446983A JP16446983A JPS6056149A JP S6056149 A JPS6056149 A JP S6056149A JP 16446983 A JP16446983 A JP 16446983A JP 16446983 A JP16446983 A JP 16446983A JP S6056149 A JPS6056149 A JP S6056149A
Authority
JP
Japan
Prior art keywords
air
ignition timing
sensor
fuel ratio
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16446983A
Other languages
Japanese (ja)
Inventor
Hideo Ichimura
市村 英夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP16446983A priority Critical patent/JPS6056149A/en
Publication of JPS6056149A publication Critical patent/JPS6056149A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D37/00Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
    • F02D37/02Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Abstract

PURPOSE:To reduce the variation rate of engine revolution during idling by adding the ignition timing control during idling on the basis of the engine revolution state to the air-fuel control on the basis of the oxygen concentration in exhaust system. CONSTITUTION:When the engine cooling-water temp. is over a certain temp. and an O2 sensor 11 is in activated operation state, the output data of the O2 sensor 11 is read-in, and the air-fuel ratio in the intake system of an engine 31 is controlled by an air-fuel ratio controlling means 14 according to the data. When idle operation state is formed at this time, the output data of the O2 sensor 11 is compared with a standard set value in an ignition timing control means 16 in idling according to the output of an engine revolution state detector 12 including the O2 sensor 11. When the output of the O2 sensor 11 is larger than the standard set value, ignition timing is controlled to the delay side, and when the output is smaller than the set value, ignition timing is controlled to the advance side, and thus the time delay in air-fuel control is dissolved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、内燃機関の吸気系の空燃比を排気系の酸素濃
度に基づいて制御する空燃比制御に、エンジン回転状態
に基づ〈アイドル時における点火時期制御を加えたエン
ジンの空燃比・アイドル時点火時期制御装置に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention provides air-fuel ratio control for controlling the air-fuel ratio in the intake system of an internal combustion engine based on the oxygen concentration in the exhaust system. The present invention relates to an engine air-fuel ratio/idling ignition timing control device that includes ignition timing control at idle.

(従来技術) 従来、内燃機関における有害排気成分にはNOx。(Conventional technology) Conventionally, NOx is a harmful exhaust component in internal combustion engines.

HC,COなどがあり、それらを除去するためにNOx
の還元にはH3の還元性ガスが、HC,COの酸化には
0.の酸化性ガスがそれぞれ両反応に必要最小限の量だ
け存在することが要求されている。そのために、これら
のガス成分と密接な関係にある吸気系の空燃比を理論空
燃比近傍の極めて狭い範囲内に制御しなければ、両反応
を活性化できないことが知られている。この課題に対す
る最も有効な手段は、Hc、coの濃度とも関連の深い
排気系の排気ガス中の酸素濃度を測定し、この測定値に
基づいて吸気系の空燃比を制御することでちり、0、セ
ンサを排気ガス中に配し、この出力を吸気系空燃比の制
御系に与え、電子燃料噴射弁、気化器のエアブリード量
、吸気系二次空気制御弁などを制御することである。
There are HC, CO, etc., and NOx is used to remove them.
A reducing gas of H3 is used for the reduction of HC, and 0.0 is used for the oxidation of HC and CO. It is required that each of the oxidizing gases be present in the minimum amount necessary for both reactions. Therefore, it is known that both reactions cannot be activated unless the air-fuel ratio of the intake system, which has a close relationship with these gas components, is controlled within an extremely narrow range near the stoichiometric air-fuel ratio. The most effective means to solve this problem is to measure the oxygen concentration in the exhaust gas of the exhaust system, which is closely related to the concentration of Hc and co, and to control the air-fuel ratio of the intake system based on this measurement value. , a sensor is placed in the exhaust gas, and its output is given to the intake system air-fuel ratio control system to control the electronic fuel injection valve, the air bleed amount of the carburetor, the intake system secondary air control valve, etc.

(従来技術の問題点) このよう力空燃比制御では、吸気系の空燃比を排気系の
酸素濃度に基づいて制御しているため、空燃比制御に時
間遅れが生じ、’l ’MM比の変化で工ンジン回転変
動率が大きくなる。このエンジン回転変41)Jは2秒
間に1〜1,5回の周期であるため逓減させるのが困難
である。だがアイドル時の0.センサの出力に基づくエ
ンジン回転変動の悪化に対する対策には、エンジンマウ
ント法の見直しやアイドル時の空燃比のリッチ化による
方法がある。しかし、前者には技術的な限界があり、後
者には、二次空気の追加のため、コスト増加、燃費悪化
の問題がある。
(Problems with the prior art) In this type of power air-fuel ratio control, since the air-fuel ratio in the intake system is controlled based on the oxygen concentration in the exhaust system, there is a time delay in air-fuel ratio control, and the 'l' MM ratio Due to this change, engine rotational fluctuation rate increases. This engine rotation change 41)J has a cycle of 1 to 1.5 times per 2 seconds, so it is difficult to reduce it gradually. However, 0 at idle. Countermeasures against worsening engine speed fluctuations based on sensor output include revising the engine mounting method and enriching the air-fuel ratio at idle. However, the former has technical limitations, and the latter has problems of increased cost and deterioration of fuel efficiency due to the addition of secondary air.

(発明の目的) 本発明は、このような問題点を解消するためになされた
ものであり、排気系の酸素濃度に基づく空燃比制御に、
エンジン回転状態に基づくアイドル時の点火時期制御を
加えることによって、アイドル時のエンジン回転変動率
を逓減させようとするものである。
(Object of the Invention) The present invention has been made to solve these problems, and it provides air-fuel ratio control based on the oxygen concentration in the exhaust system.
By adding ignition timing control during idling based on the engine rotational state, the engine speed fluctuation rate during idling is attempted to be gradually reduced.

(発明の概要) 第1図は、本発明の構成を明示する全体構成図である。(Summary of the invention) FIG. 1 is an overall configuration diagram clearly showing the configuration of the present invention.

本発明のエンジンの空燃比・アイドル時点火時期制御装
置は、排気系の酸素濃度を測定するO、センサ11とs
 OHセンサ11の出力に基づいて、吸気系の空燃比を
制御する空燃比制御手段14と、アイドル時に、エンジ
ン回転状態検出器12の出力と基準設定値とを比較して
、点火時期を制御するアイドル時点火時期制御手段16
とを備えている。
The engine air-fuel ratio/idle ignition timing control device of the present invention includes an O sensor 11 and a S sensor 11 for measuring the oxygen concentration in the exhaust system.
Based on the output of the OH sensor 11, an air-fuel ratio control means 14 that controls the air-fuel ratio of the intake system compares the output of the engine rotation state detector 12 with a reference set value during idling to control the ignition timing. Idle ignition timing control means 16
It is equipped with

(実施例) 以下添付図面に基づいて、本発明の詳細な説明する。(Example) The present invention will be described in detail below based on the accompanying drawings.

第2図は、本発明の実施例を示すブロック抱成図である
。同図において、11は二酸化ジルコニウムなどによっ
て構成されたOtセンサであり、内燃機関の排気系(図
示なし)の中に設飲され、排気ガスの酸素分圧と大気の
酸素分圧との差に基づいて出力信号S、を発生し、排気
系の酸素0度を測定する。なお、とのO!セセン11は
、排気系の酸素濃度を測定することにより、エンジン回
転状態を検出するので、エンジン回転状態検出器12と
しても動作する。
FIG. 2 is a block diagram showing an embodiment of the present invention. In the figure, reference numeral 11 is an Ot sensor made of zirconium dioxide, etc., which is installed in the exhaust system (not shown) of an internal combustion engine, and is used to measure the difference between the oxygen partial pressure of the exhaust gas and the oxygen partial pressure of the atmosphere. Based on this, an output signal S is generated to measure 0 degrees of oxygen in the exhaust system. In addition, O! Since the sensor 11 detects the engine rotational state by measuring the oxygen concentration in the exhaust system, it also operates as the engine rotational state detector 12.

15は電子制御装置、例えば中央処理装置(CPU)1
5、読み出し専用メモリ(ROM)17、読み出しW(
き込み可能メモリ(RAM)19.入力ポート21、出
力ボート23、パスライン25などからなるマイクロコ
ンピュータである。CPU15はマイクロコンピュータ
の頭脳部であシ、演算装置と制御装置とから々っていて
、ROM17から取りだしたプログ2ムの命令によって
、データに対しての算術、論理演算その他の処理を実行
する。
15 is an electronic control unit, for example, a central processing unit (CPU) 1
5. Read-only memory (ROM) 17. Read W (
Programmable memory (RAM)19. It is a microcomputer consisting of an input port 21, an output port 23, a pass line 25, etc. The CPU 15 is the brain part of the microcomputer, and includes an arithmetic unit and a control unit, and executes arithmetic, logical operations, and other processing on data according to instructions from a program retrieved from the ROM 17.

このため、周辺装置などを含めてすべての装置の作動の
指示と制御を行なうと共に、周辺装置からの制御に従か
う。ROM17には、CPU15の制御プログラム、ア
イドル時点火時期制御処理プログラムなどが格納されて
いる。RAM19には、0.センサ11の出力に基づく
データなどの入力データ、ROM17のテーブルルック
アップによるデータ、CPU15の演算データなどが書
き込まれる。入力ポート21には、O,センサ11から
の出力信号が与えられる。出力ボート23は、空燃比制
御信号82、アイドル時点火時期制御信号88などを出
力する。パスライン25は、これらを接続するだめのア
ドレスバスライン、データパスライン、制御1ハスライ
ンなどを含む。
Therefore, it instructs and controls the operation of all devices including peripheral devices, and also follows the control from the peripheral devices. The ROM 17 stores a control program for the CPU 15, an idle ignition timing control processing program, and the like. RAM19 contains 0. Input data such as data based on the output of the sensor 11, data based on table lookup of the ROM 17, calculation data of the CPU 15, etc. are written. An output signal from the sensor 11 is applied to the input port 21 . The output boat 23 outputs an air-fuel ratio control signal 82, an idling ignition timing control signal 88, and the like. The path line 25 includes an address bus line, a data path line, a control 1 bus line, etc. that connect these lines.

27は空燃比制御装置であり、Otセンサ11の出力に
基づいて、電子制御装置13がら空燃比制御信号S、を
受け、電子燃料噴射弁、気化器のエアブリード量、吸気
系二次空気制御弁(いずれも図示なし)などを制御する
27 is an air-fuel ratio control device, which receives an air-fuel ratio control signal S from the electronic control device 13 based on the output of the Ot sensor 11, and controls the electronic fuel injection valve, the air bleed amount of the carburetor, and the intake system secondary air control. Controls valves (none of which are shown), etc.

29はアイドル時点火時期制御製型であり、アイドル時
に、0.センサ11の出力に基づいて、電子制御装置1
5からアイドル時点火時期制御信号S、を受け、点火コ
イル(図示なし)の作動時期を制御する。
29 is a mold that controls the ignition timing at idle, and when idling, 0. Based on the output of the sensor 11, the electronic control device 1
5 receives an idle ignition timing control signal S, and controls the operating timing of an ignition coil (not shown).

31は空燃比制御装置27、アイドル時点火時期制御装
置29などを備えたエンジンである。
31 is an engine equipped with an air-fuel ratio control device 27, an idle ignition timing control device 29, and the like.

次に、本発明の実施例の動作を説明する。Next, the operation of the embodiment of the present invention will be explained.

第3図は、アイドル時点火時期制御の処理プログラムの
70−チャートであり、PI〜P、のステップにより実
行される。第4図は、そのクイミングチャートであり、
4A図は0.センサの出力、4B図はエンジン回転数、
4C図は点火時期進遅、4D図は点火時期制御後のエン
ジン回転数などを示す。
FIG. 3 is a 70-chart of a processing program for idle ignition timing control, which is executed by steps PI to P. Figure 4 is the swimming chart,
Figure 4A is 0. The output of the sensor, Figure 4B is the engine rotation speed,
Diagram 4C shows ignition timing advance/delay, and diagram 4D shows engine speed after ignition timing control.

寸ず、第5図のP、で、エンジンの冷却水温が一定温度
以上か、判定する。エンジンが一定以上の温度にないと
、排気ガスの温度も低く、Otセンサ11け十分の出力
を発生し2ないからである。
At step P in FIG. 5, it is determined whether the engine cooling water temperature is above a certain temperature. This is because if the engine temperature is not above a certain level, the temperature of the exhaust gas will also be low, and the Ot sensor 11 will not generate enough output.

冷却水温が一定以上になると、次にP、でエンジンがア
イドル運転状態にあるか、判定する。
When the coolant temperature reaches a certain level, it is then determined at P whether the engine is in an idling state.

エンジンがアイドル運転状態になるとs P8において
0.センサ11の出力データを読み込む0次にP、で、
0.センサ11の出力と基準設定値(第4A図の点線)
とを比較して、02センサ11の出力が基準設定値より
大か、判定する。
When the engine is in idle operation state, s is 0 at P8. At the 0th order P, which reads the output data of the sensor 11,
0. Output of sensor 11 and reference setting value (dotted line in Figure 4A)
It is determined whether the output of the 02 sensor 11 is greater than the reference setting value.

YESの場合にはPIlで、基準設定値周辺のO,セン
サ11の出力変化値から第1テーブルをルックアップし
、最速の点火時期の遅れ角を選択する。
In the case of YES, the first table is looked up from the output change value of sensor 11 and O around the reference setting value in PIl, and the fastest ignition timing delay angle is selected.

次にP6において、PIlでピックアップした第1テー
ブルデータに基づき、点火時期を遅らせる。
Next, in P6, the ignition timing is delayed based on the first table data picked up in PIL.

NOの場合にはP7で、基準設定値周辺のO,センサ1
1の出力変化値から第2テーブルをル・ツクアップし、
最適の点火時期の進み角を選択する。
In the case of NO, in P7, O around the reference setting value, sensor 1
Look up the second table from the output change value of 1,
Select the optimal ignition timing advance angle.

次にP、において、P6でピックアップした第2テーブ
ルデータに基づき、点火時期を進める。
Next, at P, the ignition timing is advanced based on the second table data picked up at P6.

このように0.センサの出力に基づく空燃比制御のみで
は、空燃比制御に時間遅れがあるため0.センサの出力
に比例して空燃比が変化しエンジン回転数が大きく変化
するので、0!センサの出力と基準設定値とを比較する
ことにより、基準設定値周辺の0.センサの出力変化値
からO,センサの出力が大きいときには点火時期を遅ら
せ、小さいときには点火時期を進めて、点火時期を制御
し、アイドル時のエンジン回転変動率を小さくする。
In this way, 0. If the air-fuel ratio is controlled only based on the output of the sensor, there is a time delay in the air-fuel ratio control. The air-fuel ratio changes in proportion to the sensor output, and the engine speed changes significantly, so 0! By comparing the sensor output and the reference setting value, the 0. Based on the sensor output change value, when the sensor output is large, the ignition timing is delayed, and when it is small, the ignition timing is advanced to control the ignition timing and reduce the engine rotation fluctuation rate during idling.

なお、エンジン回転変動検出器たる0!センサに替えて
、デストリピユータを用い、デストリピユータからエン
ジン回転数を検出し2、基準回転数と比較してアイドル
時の点火時期を制御することもできる。
In addition, the engine rotation fluctuation detector 0! Instead of a sensor, it is also possible to use a detripulator to detect the engine rotational speed from the detripulator and compare it with a reference rotational speed to control the ignition timing during idling.

(発明の効果) 以上説明した本発明によれば、排気系の酸素濃度に基づ
く空燃比制御に、アイドル時におけるエンジン回転状態
と基準設定値との比較に基づく点火時期制御とを加えて
いるため、空燃比制御に時間遅れを生じることなく、応
答速度が速くなるので、空燃比変化とエンジン回転変動
率を小さくすることができ、アイドル運転の安定性が増
す。
(Effects of the Invention) According to the present invention described above, ignition timing control based on a comparison between the engine rotational state at idle and a reference set value is added to the air-fuel ratio control based on the oxygen concentration in the exhaust system. Since the response speed is increased without causing a time delay in air-fuel ratio control, changes in air-fuel ratio and engine speed fluctuation rate can be reduced, and stability in idling operation is increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の構成を明示する全体構成図である。 第2図は1本発明の実施例を示すプロ・ツク構成図であ
る。 第3図は、アイドル時点火時期制御の処理プログラムの
フローチャートである。 第4図は、そのタイミングチャーtである。 11・・・Otセンサ、12・・・エンジン回転状態検
出器、15・・・電子制御装置、14・・・空燃比制御
手段、16・・・アイドル時点火時期制御手段、61・
・・エンジン 第1図 14 第2図 第3図
FIG. 1 is an overall configuration diagram clearly showing the configuration of the present invention. FIG. 2 is a block diagram showing an embodiment of the present invention. FIG. 3 is a flowchart of a processing program for idle ignition timing control. FIG. 4 is the timing chart t. DESCRIPTION OF SYMBOLS 11... Ot sensor, 12... Engine rotation state detector, 15... Electronic control device, 14... Air-fuel ratio control means, 16... Idle time ignition timing control means, 61.
...Engine Figure 1 Figure 14 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 排気系の酸素濃度を測定するOtセンサと、0.センサ
の出力に基づいて、吸気系の空燃比を制御する空燃比制
御手段と、アイドル時に、エンジン回転状態検出器の出
力と基準設定値とを比較して、点火時期を制御するアイ
ドル時点火時期制御手段とを備えたエンジンの空燃比・
アイドル時点火時期制御装置。
An Ot sensor that measures the oxygen concentration in the exhaust system; An air-fuel ratio control means that controls the air-fuel ratio of the intake system based on the output of the sensor, and an ignition timing at idle that controls the ignition timing by comparing the output of the engine rotation state detector and a reference setting value during idle. The air-fuel ratio of the engine is equipped with control means.
Idle ignition timing control device.
JP16446983A 1983-09-07 1983-09-07 Controller for air-fuel ratio of engine and ignition timing during idling Pending JPS6056149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16446983A JPS6056149A (en) 1983-09-07 1983-09-07 Controller for air-fuel ratio of engine and ignition timing during idling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16446983A JPS6056149A (en) 1983-09-07 1983-09-07 Controller for air-fuel ratio of engine and ignition timing during idling

Publications (1)

Publication Number Publication Date
JPS6056149A true JPS6056149A (en) 1985-04-01

Family

ID=15793768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16446983A Pending JPS6056149A (en) 1983-09-07 1983-09-07 Controller for air-fuel ratio of engine and ignition timing during idling

Country Status (1)

Country Link
JP (1) JPS6056149A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5448975A (en) * 1993-09-16 1995-09-12 Nissan Motor Co., Ltd. Ignition timing control system for internal combustion engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5820355B2 (en) * 1979-05-28 1983-04-22 日本電信電話株式会社 optical fiber key

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5820355B2 (en) * 1979-05-28 1983-04-22 日本電信電話株式会社 optical fiber key

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5448975A (en) * 1993-09-16 1995-09-12 Nissan Motor Co., Ltd. Ignition timing control system for internal combustion engine

Similar Documents

Publication Publication Date Title
JPH0436651A (en) Control method and controller for air fuel ratio of internal combustion engine
JPS6134330A (en) Air-fuel ratio controller for internal-combustion engine
JP2661396B2 (en) Failure diagnosis device for EGR control device
JPS6256339B2 (en)
JPS647217B2 (en)
JPS6056149A (en) Controller for air-fuel ratio of engine and ignition timing during idling
JPH04166637A (en) Air-fuel ratio controller of engine
JPH02188648A (en) Engine controller
JPH0689686B2 (en) Air-fuel ratio controller for engine
JPS58101243A (en) Air-fuel controller for engine
JPS60249651A (en) Electronic control type fuel injector
JPH0650204A (en) Air-fuel ratio controller of internal combustion engine
JPS6254976B2 (en)
JPS58217745A (en) Air-fuel ratio control method for internal-combustion engine
JPS6030443A (en) Fuel supply control method for engine
JPS63105264A (en) Ignition timing control device for electronic controlled fuel injection type internal combustion engine
JP3096379B2 (en) Catalyst temperature control device for internal combustion engine
JPS5941013B2 (en) Mixture concentration correction method for internal combustion engines
JPH0524342B2 (en)
JPH072998Y2 (en) Control device for internal combustion engine
JPH10122057A (en) Egr controller for engine
JPS6123845A (en) Air-fuel ratio controller
JPS6375332A (en) Control device for engine
JPS61106961A (en) Control method of exhaust gas recirculating quantity in internal-combustion engine
JPS62147048A (en) Ignition timing control device for engine