JPH0524342B2 - - Google Patents

Info

Publication number
JPH0524342B2
JPH0524342B2 JP59057132A JP5713284A JPH0524342B2 JP H0524342 B2 JPH0524342 B2 JP H0524342B2 JP 59057132 A JP59057132 A JP 59057132A JP 5713284 A JP5713284 A JP 5713284A JP H0524342 B2 JPH0524342 B2 JP H0524342B2
Authority
JP
Japan
Prior art keywords
fuel injection
throttle opening
opening
speed
throttle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59057132A
Other languages
Japanese (ja)
Other versions
JPS60201048A (en
Inventor
Mitsunori Takao
Takahiko Kimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP5713284A priority Critical patent/JPS60201048A/en
Priority to US06/714,861 priority patent/US4725954A/en
Publication of JPS60201048A publication Critical patent/JPS60201048A/en
Publication of JPH0524342B2 publication Critical patent/JPH0524342B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • F02D41/105Introducing corrections for particular operating conditions for acceleration using asynchronous injection

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は内燃機関の燃料供給制御装置に係り、
特に内燃機関の加速時に燃料噴射量を補正する内
燃機関の燃料供給制御装置に係るものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a fuel supply control device for an internal combustion engine,
In particular, the present invention relates to a fuel supply control device for an internal combustion engine that corrects the fuel injection amount during acceleration of the internal combustion engine.

[従来の技術] 従来、内燃機関の加速時における必要燃料噴射
量は定常時の燃料噴射量よりも多く必要である。
この必要燃料噴射量と燃料噴射量との差を補正す
るためにスロツトル開度の開き速度が所定値以上
の時、加速状態と判断して開き角度に応じて燃料
噴射量を増量補正する装置が提案されている(例
えば、特開昭58−150045号公報等)。
[Prior Art] Conventionally, the amount of fuel injection required during acceleration of an internal combustion engine is required to be greater than the amount of fuel injection during steady state.
In order to correct the difference between the required fuel injection amount and the fuel injection amount, a device is installed that determines that the throttle is in an acceleration state and increases the fuel injection amount according to the opening angle when the opening speed of the throttle opening is greater than a predetermined value. It has been proposed (for example, Japanese Unexamined Patent Publication No. 150045/1983).

[発明が解決しようとする課題] しかしながら、開き速度が同一の加速状態であ
つても、スロツトル開度が異なれば必要燃料噴射
量は異なる。スロツトル弁全閉付近からの加速時
に比べて全開付近からの加速時には必要燃料噴射
量は少ない。したがつて、前述の装置のように加
速時の開き速度に応じて一義的に燃料噴射量を増
量補正すると、加速状態に応じた適切な燃料噴射
量とならず、排気エミツシヨンが悪化するという
問題点がある。
[Problems to be Solved by the Invention] However, even if the opening speed is the same in the acceleration state, the required fuel injection amount will differ if the throttle opening is different. The required amount of fuel injection is smaller when accelerating from around the throttle valve fully open than when accelerating from around the fully closed throttle valve. Therefore, if the fuel injection amount is corrected to increase primarily depending on the opening speed during acceleration as in the above-mentioned device, the problem is that the fuel injection amount will not be appropriate depending on the acceleration state and the exhaust emissions will deteriorate. There is a point.

本発明は前述のような問題点に鑑みてなされた
ものであり、その目的とするところは、スロツト
ル開度と開き速度とに応じて適切に加速時の燃料
噴射量を増量補正して、排気エミツシヨンの悪化
を防止できる装置を提供することにある。
The present invention has been made in view of the above-mentioned problems, and its purpose is to appropriately increase the amount of fuel injection during acceleration in accordance with the throttle opening degree and opening speed, thereby reducing exhaust gas. An object of the present invention is to provide a device that can prevent deterioration of emissions.

[課題を解決するための手段] 本発明は第1図に示すように、内燃機関に吸入
される空気量を調節するスロツトル弁のスロツト
ル開度を検出するスロツトル開度検出手段M1と、 前記スロツトル開度の開き速度を検出する開き
速度検出手段M2と、 前記スロツトル開度と前記開き速度とに応じて
設定された加算燃料噴射実施域を記憶する記憶手
段M3と、 検出された前記開き速度に基づいて、前記加算
燃料噴射実施域からスロツトル開度上下限値を算
出する算出手段とM4と、 検出された前記スロツトル開度が算出された前
記スロツトル開度上下限値内にあるか否かを判断
する判断手段M5と、 該判断手段M5により領域内にあると判断され
たときに、前記開き速度に応じて燃料供給量を増
量する燃料供給手段M6と、 を備えることを特徴とする内燃機関の燃料供給制
御装置を要旨としている。
[Means for Solving the Problems] As shown in FIG. 1, the present invention includes a throttle opening detection means M1 for detecting the throttle opening of a throttle valve that adjusts the amount of air taken into an internal combustion engine; an opening speed detection means M2 for detecting the opening speed of the opening degree; a storage means M3 for storing an additional fuel injection implementation area set according to the throttle opening degree and the opening speed; a calculation means for calculating the upper and lower limits of the throttle opening from the additive fuel injection implementation area based on the addition fuel injection implementation area; An internal combustion engine comprising: a determining means M5 for determining; and a fuel supplying means M6 for increasing the amount of fuel supplied in accordance with the opening speed when the determining means M5 determines that the opening speed is within the range. The main focus is on the fuel supply control system.

[作用] 以上の構成により、スロツトル開度検出手段
M1がスロツトル開度を検出し、開き速度検出手
段M2が、スロツトル開度の開き速度を検出する。
また、記憶手段M3がスロツトル開度と開き速度
とに応じて設定された加算燃料噴射実施域を記憶
する。
[Function] With the above configuration, the throttle opening detection means
M1 detects the throttle opening, and opening speed detection means M2 detects the opening speed of the throttle opening.
Further, the storage means M3 stores an additional fuel injection implementation range set according to the throttle opening degree and opening speed.

そして、算出手段M4が、検出された開き速度
に基づいて、加算燃料噴射実施域からスロツトル
開度上下限値を算出し、判断手段M5が、検出さ
れたスロツトル開度が算出されたスロツトル開度
上下限値内にあるか否かを判断する。
Then, the calculating means M4 calculates the upper and lower limits of the throttle opening from the addition fuel injection implementation range based on the detected opening speed, and the determining means M5 calculates the throttle opening at which the detected throttle opening is calculated. Determine whether the value is within the upper or lower limit values.

また、燃料供給手段M6が、判断手段M5により
領域内にあると判断されたときに、開き速度に応
じて燃料供給量を増量する。
Further, when the fuel supply means M6 is determined to be within the range by the determination means M5, the fuel supply amount is increased in accordance with the opening speed.

[実施例] 以下、本発明に適応した一実施例について図面
に基づいて説明する。
[Example] Hereinafter, an example adapted to the present invention will be described based on the drawings.

第2図は本実施例に係る内燃機関の電子燃料噴
射制御装置を示す構成図である。図において、1
は6気筒エンジン、2は吸気マニホールド3の内
部圧力を検出する吸気管圧力センサ、4はエンジ
ン1の吸気マニホールド3の各シリンダ吸気ポー
ト近傍に設けられた電磁作動式の燃料噴射弁であ
つて、燃料噴射弁4には圧力を一定に調整された
燃料が圧送される。5はエンジン点火装置の一部
をなす点火コイル、6は点火コイル5からの点火
エネルギーを各シリンダに設けられた点火プラグ
(図示せず)に分配するデイストリビユータであ
る。デイストリビユーター6は周知のようにエン
ジンのクランク軸の2回転につき1回転するもの
であつて、その内部にエンジン回転角を検出する
回転角センサ7を備えている。8はマイクロコン
ピユータからなる制御装置であり、これについて
は後述する。
FIG. 2 is a configuration diagram showing an electronic fuel injection control device for an internal combustion engine according to this embodiment. In the figure, 1
is a six-cylinder engine; 2 is an intake pipe pressure sensor that detects the internal pressure of the intake manifold 3; 4 is an electromagnetically actuated fuel injection valve provided near each cylinder intake port of the intake manifold 3 of the engine 1; Fuel whose pressure is adjusted to be constant is fed under pressure to the fuel injection valve 4 . 5 is an ignition coil forming a part of the engine ignition system, and 6 is a distributor that distributes ignition energy from the ignition coil 5 to spark plugs (not shown) provided in each cylinder. As is well known, the distributor 6 rotates once for every two revolutions of the engine crankshaft, and is provided with a rotation angle sensor 7 therein for detecting the engine rotation angle. 8 is a control device consisting of a microcomputer, which will be described later.

9はエンジン1のスロツトル弁、10はスロツ
トル弁9のスロツトル開度を検出するスロツトル
センサ、11はエンジン1の暖機状態を検出する
冷却水温度センサ、12は吸入空気温度を検出す
る吸気温度センサ、13は排気マニホールド14
に設けられ排気ガス中の酸素濃度から空燃比を検
出する空燃比センサであつて、空燃比が理論空燃
比より小さいすなわちリツチのときに1ボルト程
度、また理論空燃比よりも大きいすなわちリーン
のときに0.1ボルト程度の電圧を出力する。
9 is a throttle valve of the engine 1, 10 is a throttle sensor that detects the throttle opening of the throttle valve 9, 11 is a cooling water temperature sensor that detects the warm-up state of the engine 1, and 12 is an intake air temperature that detects the intake air temperature. Sensor, 13 is exhaust manifold 14
It is an air-fuel ratio sensor installed in the exhaust gas that detects the air-fuel ratio from the oxygen concentration in exhaust gas, and when the air-fuel ratio is smaller than the stoichiometric air-fuel ratio, that is, rich, it is about 1 volt, and when it is larger than the stoichiometric air-fuel ratio, that is, lean. Outputs a voltage of about 0.1 volt.

なお制御装置8はエンジン制御用の制御信号の
大きさおよび時期を演算する制御装置であつて、
吸気管圧力センサ2、回転角センサ7、スロツト
ルセンサ10、冷却水温度センサ11、吸気温度
センサ12および空燃比センサ13の各検出信号
に基づいて燃料噴射量を演算して燃料噴射弁4の
開弁時間を調整する。
The control device 8 is a control device that calculates the magnitude and timing of a control signal for engine control, and
The fuel injection amount is calculated based on the detection signals of the intake pipe pressure sensor 2, the rotation angle sensor 7, the throttle sensor 10, the cooling water temperature sensor 11, the intake air temperature sensor 12, and the air-fuel ratio sensor 13. Adjust the valve opening time.

同様に、各検出信号に基づいて、例えば後述す
るROM内のデータマツプを使用して最適点火時
期が算出され、これに基づいて点火時期信号が点
火コイル5に送られ、点火時期が調整される。
Similarly, the optimum ignition timing is calculated based on each detection signal using, for example, a data map in the ROM which will be described later, and based on this, an ignition timing signal is sent to the ignition coil 5 to adjust the ignition timing.

第3図は第2図の制御装置8の詳細なブロツク
回路図である。図において、100は吸気管圧
力、エンジン回転数により通常行われる基本とな
る同期噴射の同期噴射量を、またスロツトル開度
の開き速度等に基づき加算燃料噴射量を演算する
セントラルプロセツサユニツトである。なお、上
記同期噴射は同期燃料供給に上記加算噴射は加算
燃料供給に相当する。101は割込み指令ユニツ
ト、102はセントラルプロセツサユニツト10
0からの所定周波数のクロツク信号によつて所定
回転角の周期をカウントしてエンジン回転数を算
出する回転数用カウンタユニツト、103は空燃
比センサ13の検出信号を受信してセントラルプ
ロセツサユニツト100に転送するデイジタル入
力ポート、104は吸気管圧力センサ2、スロツ
トルセンサ10からの検出信号をA/D変換して
セントラルプロセツサユニツト100に読み込ま
せる機能を有するA/D変換処理ユニツトであ
る。
FIG. 3 is a detailed block circuit diagram of the control device 8 of FIG. In the figure, 100 is a central processor unit that calculates the synchronous injection amount of the basic synchronous injection that is normally performed based on the intake pipe pressure and engine speed, and the additional fuel injection amount based on the throttle opening speed, etc. . Note that the above-mentioned synchronous injection corresponds to synchronous fuel supply, and the above-mentioned additive injection corresponds to additive fuel supply. 101 is an interrupt command unit, and 102 is a central processor unit 10.
A rotational speed counter unit 103 calculates the engine rotational speed by counting cycles of a predetermined rotational angle based on a clock signal of a predetermined frequency from 0. A digital input port 104 is an A/D conversion processing unit having a function of A/D converting the detection signals from the intake pipe pressure sensor 2 and the throttle sensor 10 and reading them into the central processor unit 100.

105はセントラルプロセツサユニツト100
の制御プログラムが格納されると共に各ユニツト
101,102,103,104からの出力情報
が記憶されるメモリユニツトであつて、105A
は制御プログラム及び初期データが格納されるリ
ードオンリメモリ(以下、ROMと呼ぶ。)10
5Bは入力されるデータや演算制御に必要なデー
タが一時的に読み書きされるランダムアクセスメ
モリ(以下、RAMと呼ぶ。)105Cは図示せ
ぬキースイツチがオフされても以後の内燃機関作
動に必要なデータを保持するようバツテリによつ
てバツクアツプされた不揮発性メモリのバツクア
ツプランダムアクセスメモリ(バツクアツプ
RAM)である。
105 is the central processor unit 100
105A is a memory unit in which a control program is stored and output information from each unit 101, 102, 103, 104 is stored.
is a read-only memory (hereinafter referred to as ROM) 10 in which control programs and initial data are stored.
5B is a random access memory (hereinafter referred to as RAM) in which input data and data necessary for arithmetic control are temporarily read and written. 105C is a memory that is necessary for subsequent operation of the internal combustion engine even if a key switch (not shown) is turned off. Backup random access memory (backup random access memory) is nonvolatile memory that is backed up by a battery to hold data.
RAM).

106はレジスタを含む点火時期制御用カウン
タユニツトであつて、セントラルプロセツサユニ
ツト100によつて計算された点火コイル5に通
電する時期および通電を遮断する時期つまり点火
時期を表わすデイジタル信号をエンジン回転角
(クランク角)に対応する期間及び時期として算
出する。107は電力増幅器であつて、点火時期
制御用カウンタユニツト106の出力を増幅して
点火コイル5に通電すると共に点火コイル5の通
電を遮断する時期つまり点火時期を制御する。
Reference numeral 106 is a counter unit for controlling ignition timing including a register, which converts digital signals representing the timing to energize and cut off energization to the ignition coil 5 calculated by the central processor unit 100, that is, the ignition timing, into the engine rotation angle. Calculated as the period and time corresponding to (crank angle). A power amplifier 107 amplifies the output of the ignition timing control counter unit 106 to energize the ignition coil 5 and to control the timing at which the ignition coil 5 is de-energized, that is, the ignition timing.

108はレジスタを含む燃料噴射時間制御用カ
ウンタユニツトであつて、同一機能を有する2個
のダウンカウンタからなる。この場合、各ダウン
カウンタはセントラルプロセツサユニツト100
により計算された燃料噴射弁4の開弁時間つまり
燃料噴射量を表わすデイジタル信号を燃料噴射弁
4の開弁時間を与えるパルス時間幅のパルス信号
に変換する。109はカウンタユニツト108か
らのパルス信号を増幅して燃料噴射弁4に供給す
る電力増幅器であつて、カウンタユニツト108
の構成に対応して2チヤンネル設けてある。11
0は各ユニツト101,102,103,10
4,105,106,108との間の情報転送を
行うコモンバスである。また41ないし46は各
シリンダに燃料を噴射する燃料噴射弁である。
108 is a fuel injection time control counter unit including a register, and is composed of two down counters having the same function. In this case, each down counter is connected to a central processor unit 100.
The digital signal representing the valve opening time of the fuel injection valve 4 calculated by , that is, the fuel injection amount, is converted into a pulse signal having a pulse time width giving the valve opening time of the fuel injection valve 4 . 109 is a power amplifier that amplifies the pulse signal from the counter unit 108 and supplies it to the fuel injection valve 4;
Two channels are provided corresponding to the configuration. 11
0 is each unit 101, 102, 103, 10
This is a common bus that transfers information between the terminals 4, 105, 106, and 108. Further, 41 to 46 are fuel injection valves that inject fuel into each cylinder.

第3図に示すように、回転角センサ7は3個の
センサ71,72,73からなる。すなわち、第
1の回転角センサ71は、第4図Aに示すよう
に、エンジンクランク軸の2回転毎につまりデイ
ストリビユータ6の1回転毎に1回だけ、クラン
ク角0から角度θだけ手前の位置において角度信
号Aを発生する。第2の回転角センサ72は、第
4図Bに示すように、エンジンクランク軸の2回
転毎に1回だけ、クランク角360゜から角度θだけ
手前の位置において角度信号Bを発生する。第3
の回転角センサ73は、第4図Cに示すように、
エンジンクランク軸の1回転毎にエンジン気筒数
に等しい個数の角度信号間隔に、つまり本実施例
のように6気筒の場合はクランク角0゜から60゜毎
に6個の角度信号Cを発生する。
As shown in FIG. 3, the rotation angle sensor 7 consists of three sensors 71, 72, and 73. That is, as shown in FIG. 4A, the first rotation angle sensor 71 detects the angle θ from the crank angle 0 only once every two rotations of the engine crankshaft, that is, every one rotation of the distributor 6. An angle signal A is generated at the position. As shown in FIG. 4B, the second rotation angle sensor 72 generates an angle signal B only once every two revolutions of the engine crankshaft at a position an angle θ before the crank angle of 360°. Third
As shown in FIG. 4C, the rotation angle sensor 73 of
For each revolution of the engine crankshaft, 6 angle signals C are generated at angle signal intervals equal to the number of engine cylinders, that is, in the case of 6 cylinders as in this embodiment, 6 angle signals C are generated at every crank angle of 0° to 60°. .

割込み指令ユニツト101は各回転角センサ7
1,72,73からの角度信号つまりクランク軸
回転角信号を入力して、点火時期の演算の割込み
と燃料噴射の演算の割込みとを指令する信号を送
出するものであつて、この場合、第4図Dに示す
ように、第3の回転角センサ73の角度信号Cを
2分周して得られる信号を第1の回転角センサ7
1の角度信号Aが送出された直後に割込み指令信
号Dとして送出する、この割込み指令信号Dはク
ランク軸の2回転当り6回つまりクランク軸の2
回転でエンジン気筒数だけ送出される。従つて、
6気筒の場合には、クランク角120゜毎に1回送出
され、マイクロプロセツサユニツト100に対し
て点火時期の演算の割込み指令を行う。
The interrupt command unit 101 is connected to each rotation angle sensor 7.
The angle signals, that is, the crankshaft rotation angle signals from 1, 72, and 73 are input, and a signal is sent to command the interruption of ignition timing calculation and the interruption of fuel injection calculation. As shown in FIG. 4D, the signal obtained by dividing the frequency of the angle signal C of the third rotation angle sensor 73 by two is transmitted to the first rotation angle sensor 7.
This interrupt command signal D is sent out as an interrupt command signal D immediately after the angle signal A of 1 is sent out.
The number of engine cylinders is delivered by rotation. Therefore,
In the case of a 6-cylinder engine, the signal is sent once every 120 degrees of crank angle to issue an interrupt command to the microprocessor unit 100 to calculate the ignition timing.

また、割込み指令ユニツト101は、第4図E
に示すように、第3の回転角センサ73の角度信
号Cを6分周して得られる信号を、第1の回転角
センサ71の角度信号Aおよび第2の回転角セン
サ72の角度信号Bが送出されてから6番目、つ
まりクランク角300゜を起点として360°(1回転)
毎に割込み指令信号Eとして送出する。この割込
み指令信号Eはセントラルプロセツサユニツト1
00に対して燃料噴射量の演算の割込み指令を行
う。
Further, the interrupt command unit 101 is configured as shown in FIG.
As shown in , the signal obtained by dividing the angle signal C of the third rotation angle sensor 73 by 6 is divided into the angle signal A of the first rotation angle sensor 71 and the angle signal B of the second rotation angle sensor 72. 360° (1 rotation) starting from the 6th point after the is sent out, that is, the crank angle of 300°
It is sent as an interrupt command signal E every time. This interrupt command signal E is sent to the central processor unit 1.
An interrupt command for calculating the fuel injection amount is given to 00.

次に制御装置8にて実行される加算燃料噴射の
制御プログラムのフローチヤートについて説明す
る。第5図に制御プログラムをサブルーチンの形
で示す。本ルーチンの処理は図示せぬ処理のうち
の一処理として20ms毎に繰り返し処理される。
まず処理が開始されると、ステツプ200でスロツ
トル開度TAiをスロツトルセンサ10からの信号
を取り込んでTAiを算出する。ステツプ201で前回
本ルーチンを処理したとき求められたスロツトル
開度をスロツトル開度TAi-1として所定アドレス
のRAM105BよりCPU100へ読み込む。ス
テツプ202で前述ステツプ200にて算出されたスロ
ツトル開度TAiを次回の処理の為にTAi-1として所
定アドレスのRAM105Bへ格納する。ステツ
プ203でスロツトル開度TAiとスロツトル開度TAi
-1との差を演算し、当該値をΔTAとして設定す
る。なお本ルーチンは20ms毎に処理される為、
ΔTAは20ms間のスロツトル開度の変化であり、
開き速度に相当する。
Next, a flowchart of a control program for additive fuel injection executed by the control device 8 will be described. FIG. 5 shows the control program in the form of a subroutine. The process of this routine is repeated every 20 ms as one of the processes not shown.
First, when the process is started, in step 200, a signal from the throttle sensor 10 is taken in to calculate the throttle opening T Ai . In step 201, the throttle opening obtained when this routine was last processed is read into the CPU 100 from the RAM 105B at a predetermined address as the throttle opening T Ai-1 . In step 202, the throttle opening T Ai calculated in step 200 is stored as T Ai-1 in the RAM 105B at a predetermined address for the next processing. In step 203, throttle opening T Ai and throttle opening T Ai
Calculate the difference from -1 and set the value as ΔT A. Note that this routine is processed every 20ms, so
ΔT A is the change in throttle opening for 20ms,
Corresponds to opening speed.

ステツプ204で、ROM105Aに格納され第
6図に示した如き特性で示されるマツプより
ΔTAに対する加算燃料噴射実施域の基本下限値
TALO、基本上限値TAHOを求める。なお、第6図
はスロツトル開度とスロツトル開度の開き速度と
により設定される加算燃料噴射実施域と加算燃料
噴射禁止域との領域を示すグラフである。そして
加算燃料噴射実施域は開き速度が増大するにつれ
て離れてゆく2本の折れ線L1とL2とによつて囲
まれた領域である。当該領域以外は加算燃料噴射
禁止域である。
In step 204, the basic lower limit value of the additional fuel injection implementation range for ΔT A is determined from the map stored in the ROM 105A and represented by the characteristics shown in FIG.
Find T ALO and the basic upper limit T AHO . Note that FIG. 6 is a graph showing the areas of the additional fuel injection implementation area and the additional fuel injection prohibited area, which are set based on the throttle opening degree and the opening speed of the throttle opening degree. The additional fuel injection implementation area is an area surrounded by two polygonal lines L1 and L2 that move apart as the opening speed increases. Areas other than this area are areas where additional fuel injection is prohibited.

次にステツプ205ないし207で内燃機関の運転条
件に応じて基本下限値TALO、基本上限値TAHO
修正する、即ちステツプ205で冷却水温THWと
エンジン回転数NEとをそれぞれ冷却水温センサ
11と回転角センサ7とからの信号に基づき読み
込み、ステツプ206で第7図、第8図に示した特
性の予め定められたROM105A内のマツプよ
り冷却水温THWとエンジン回転数NEとに応じ
て修正係数K1,K2,K3及びK4を求める。
Next, in steps 205 to 207, the basic lower limit value T ALO and the basic upper limit value T AHO are corrected according to the operating conditions of the internal combustion engine. That is, in step 205, the coolant temperature THW and the engine speed NE are respectively adjusted to the coolant temperature sensor 11. The correction coefficient is read based on the signal from the rotation angle sensor 7, and in step 206, a correction coefficient is determined according to the cooling water temperature THW and the engine speed NE from a predetermined map in the ROM 105A with the characteristics shown in FIGS. 7 and 8. Find K 1 , K 2 , K 3 and K 4 .

ここでK1,K3は基本下限値TALOの修正係数、
K2,K4は基本上限値の修正係数であり、図から
エンジン回転数NEが高くなるにつれて折れ線L1
を下げ、折れ線L2を上げて加算燃料噴射実施域
を狭くしている。他方冷却水温THWが低いとき
のみ折れ線L1を上げ、折れ線L2を下げている。
つまり冷却水温THW,エンジン回転数NEが低
い程加算燃料噴射実施域を広げるように、またエ
ンジン回転数NEが高い程加算燃料噴射実施域を
狭くするようにそれぞれの修正係数の特性が設定
されている。これはエンジン回転数NE、冷却水
温THWに応じて適切な燃料噴射量を算出するた
めである。なお、加算燃料噴射実施域が修正係数
により新たに修正されても加算燃料噴射実施域の
領域は開き速度が増大するにつれて離れてゆく2
本の折れ線によつて囲まれた形状の領域であるこ
とには変わらない。ステツプ207で下限値TALO
上限値TAHOとを修正係数K1,K2,K3及びK4で修
正し新たな下限値TAL、上限値TAHとを求める。
Here, K 1 and K 3 are correction coefficients of the basic lower limit value T ALO ,
K 2 and K 4 are correction coefficients for the basic upper limit value, and from the figure, as the engine speed NE increases, the line L1
is lowered and the polygonal line L2 is raised to narrow the additional fuel injection implementation range. On the other hand, the polygonal line L1 is raised and the polygonal line L2 is lowered only when the cooling water temperature THW is low.
In other words, the characteristics of each correction coefficient are set so that the lower the cooling water temperature THW and engine speed NE are, the wider the additional fuel injection implementation range is, and the higher the engine speed NE is, the narrower the additional fuel injection implementation range. There is. This is to calculate an appropriate fuel injection amount according to the engine speed NE and cooling water temperature THW. Note that even if the additional fuel injection implementation area is newly modified by the correction coefficient, the area of the additional fuel injection implementation area will move away as the opening speed increases2.
It is still an area surrounded by the polygonal lines of the book. In step 207, the lower limit value T ALO ,
The upper limit value T AHO is corrected by correction coefficients K 1 , K 2 , K 3 and K 4 to obtain a new lower limit value T AL and upper limit value T AH .

次にステツプ208でスロツトル開度TAiと下限値
TALとを比較し、ステツプ209でスロツトル開度
TAiと上限値TAHとを比較しTAL≦TAi≦TAHが成立
したときは、ステツプ210で加算噴射時間TASY
演算し、他方TAi<TAL、TAi>TAHが成立したと
きはそのまま本ルーチンを終了する。なお加算噴
射時間TASYはΔTAの一次関数として求める。但し
A,Bは定数である。ステツプ211で加算噴射時
間TASYに基づく信号を燃料噴射弁4へ出力して本
ルーチンを終了する。
Next, in step 208, the throttle opening T Ai and lower limit value are determined.
Compare T AL and throttle opening in step 209.
When T Ai is compared with the upper limit value T AH and T AL ≦T Ai ≦ T AH holds true, the additional injection time T ASY is calculated in step 210, and on the other hand, if T Ai < T AL and T Ai > T AH If it is established, this routine ends immediately. Note that the additional injection time T ASY is determined as a linear function of ΔT A. However, A and B are constants. In step 211, a signal based on the additional injection time T ASY is output to the fuel injection valve 4, and this routine ends.

このように本ルーチンが行われて加算燃料噴射
が行われることにより同期噴射に付加的に加算燃
料噴射が加算され最適に燃料噴射量制御が行われ
る。なお、加算のタイミングは適宜設定し得る。
By performing this routine and performing the additive fuel injection in this manner, the additive fuel injection is additionally added to the synchronous injection, and fuel injection amount control is optimally performed. Note that the timing of addition can be set as appropriate.

以上詳記したように本実施例によれば開き速度
が増大するに従つて離れてゆく2本の折れ線L1,
L2により加算燃料噴射実施域が決定され、開き
速度に対する加算燃料噴射を実施するスロツトル
開度を限定していることにより、開き速度、スロ
ツトル開度に応じた加算燃料噴射を行うことがで
きる。しかも上記折れ線L1,L2の傾きを運転条
件を示すパラメータ例えば、エンジン回転数
NE、冷却水温THWによつて変更しているため
更に緻密に加算燃料噴射量を制御することができ
る。
As described in detail above, according to this embodiment, the two polygonal lines L1, which move apart as the opening speed increases,
The additional fuel injection implementation range is determined by L2, and by limiting the throttle opening for performing additional fuel injection with respect to the opening speed, additional fuel injection can be performed according to the opening speed and throttle opening. Moreover, the slopes of the above-mentioned polygonal lines L1 and L2 are expressed as parameters that indicate operating conditions, such as engine speed.
Since it is changed based on NE and cooling water temperature THW, the additional fuel injection amount can be controlled more precisely.

このため燃料噴射量演算遅れと燃料供給遅れと
を解決しつつ、スロツトル開度及びその開き速度
の変化にも応じて最適な空燃比が保持される。し
たがつて排気エミツシヨンの改善を図ることがで
きる。また車両の加速性を向上することができ
る。
Therefore, while solving the fuel injection amount calculation delay and the fuel supply delay, the optimum air-fuel ratio is maintained in response to changes in the throttle opening degree and opening speed. Therefore, the exhaust emission can be improved. Furthermore, the acceleration performance of the vehicle can be improved.

以上本発明の一実施例を説明したが、本発明は
このような実施例に何ら限定されることなく本発
明の要旨を逸脱しない範囲において種々なる態様
で実施できることは勿論である。例えば、実施例
は基本下限値TALO、基本上限値TAHOの補正を冷
却水温THW、エンジン回転数NEによつて行つ
ているが、エンジン本体の温度等のエンジン状
態、自動変速機のミツシヨン位置、車速等の車両
状態を表わすパラメータを用いて補正して実施す
ることができる。
Although one embodiment of the present invention has been described above, it goes without saying that the present invention is not limited to such an embodiment and can be implemented in various forms without departing from the gist of the present invention. For example, in the embodiment, the basic lower limit value T ALO and the basic upper limit value T AHO are corrected based on the cooling water temperature THW and the engine speed NE, but the engine condition such as the temperature of the engine body, the transmission position of the automatic transmission, etc. , the correction can be carried out using parameters representing the vehicle state such as vehicle speed.

[発明の効果] したがつて、詳述したように本発明において
は、スロツトル開度と開き速度とに応じて加算燃
料噴射実施域を設定し、スロツトル開度と開き速
度とが加算燃料噴射実施域にある時、燃料供給量
が開き速度に応じて増量される。よつて、スロツ
トル開度及び開き速度に応じて燃料供給量を増量
するか否かが判断されて増量がされるため、車両
の加速性能を損なうことなく排気エミツシヨンが
悪化することを防止できるという優れた効果があ
る。
[Effects of the Invention] Therefore, as described in detail, in the present invention, the additive fuel injection execution area is set according to the throttle opening degree and opening speed, and the addition fuel injection execution area is set depending on the throttle opening degree and opening speed. When the opening speed is within the range, the fuel supply amount is increased according to the opening speed. Therefore, since it is determined whether or not to increase the amount of fuel supplied according to the throttle opening degree and opening speed, the amount is increased, which is advantageous in that it is possible to prevent deterioration of exhaust emissions without impairing the acceleration performance of the vehicle. It has a positive effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本的構成図、第2図は内燃
機関の電子燃料噴射制御装置を示す構成図、第3
図は制御装置のブロツク図、第4図は回転角セン
サから発生される信号及び割込み指令ユニツトか
ら出力される信号のタイムチヤート、第5図は制
御プログラムのフローチヤート、第6図は加算燃
料噴射実施域と加算燃料噴射禁止域とを示すスロ
ツトル開度の開き速度対スロツトル開度のグラ
フ、第7図は冷却水温THWと修正係数K1,K2
との関係を示すグラフ、第8図はエンジン回転数
NEと修正係数K3,K4との関係を示すグラフをそ
れぞれ表す。 4…燃料噴射弁、7…回転角センサ、8…制御
装置、10…スロツトルセンサ、11…冷却水温
センサ、105…メモリユニツト、108…カウ
ンタユニツト。
FIG. 1 is a basic configuration diagram of the present invention, FIG. 2 is a configuration diagram showing an electronic fuel injection control device for an internal combustion engine, and FIG.
Figure 4 is a block diagram of the control device, Figure 4 is a time chart of signals generated from the rotation angle sensor and signals output from the interrupt command unit, Figure 5 is a flowchart of the control program, and Figure 6 is the additive fuel injection. A graph of throttle opening speed versus throttle opening showing the execution range and additional fuel injection prohibition range, Figure 7 shows the cooling water temperature THW and correction coefficients K 1 , K 2
Graph showing the relationship between engine rotation speed and Figure 8
Graphs showing the relationship between NE and correction coefficients K 3 and K 4 are respectively shown. 4...Fuel injection valve, 7...Rotation angle sensor, 8...Control device, 10...Throttle sensor, 11...Cooling water temperature sensor, 105...Memory unit, 108...Counter unit.

Claims (1)

【特許請求の範囲】 1 内燃機関に吸入される空気量を調節するスロ
ツトル弁のスロツトル開度を検出するスロツトル
開度検出手段と、 前記スロツトル開度の開き速度を検出する開き
速度検出手段と、 前記スロツトル開度と前記開き速度とに応じて
設定された加算燃料噴射実施域を記憶する記憶手
段と、 検出された前記開き速度に基づいて、前記加算
燃料噴射実施域からスロツトル開度上下限値を算
出する算出手段と、 検出された前記スロツトル開度が算出された前
記スロツトル開度上下限値内にあるか否かを判断
する判断手段と、 該判断手段により領域内にあると判断されたと
きに、前記開き速度に応じて燃料供給量を増量す
る燃料供給手段と、 を備えることを特徴とする内燃機関の燃料供給制
御装置。
[Scope of Claims] 1. Throttle opening detection means for detecting the throttle opening of a throttle valve that adjusts the amount of air taken into the internal combustion engine; Opening speed detection means for detecting the opening speed of the throttle opening; a storage means for storing an additional fuel injection implementation range set according to the throttle opening degree and the opening speed; and a storage means for storing an additional fuel injection implementation range set according to the throttle opening degree and the opening speed; a calculating means for calculating the throttle opening; a determining means for determining whether the detected throttle opening is within the calculated upper and lower limits of the throttle opening; and a determining means for determining whether the detected throttle opening is within the range. A fuel supply control device for an internal combustion engine, comprising: a fuel supply means for increasing the amount of fuel supplied in accordance with the opening speed.
JP5713284A 1984-03-23 1984-03-23 Fuel supply control apparatus for internal-combustion engine Granted JPS60201048A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5713284A JPS60201048A (en) 1984-03-23 1984-03-23 Fuel supply control apparatus for internal-combustion engine
US06/714,861 US4725954A (en) 1984-03-23 1985-03-22 Apparatus and method for controlling fuel supply to internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5713284A JPS60201048A (en) 1984-03-23 1984-03-23 Fuel supply control apparatus for internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS60201048A JPS60201048A (en) 1985-10-11
JPH0524342B2 true JPH0524342B2 (en) 1993-04-07

Family

ID=13047031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5713284A Granted JPS60201048A (en) 1984-03-23 1984-03-23 Fuel supply control apparatus for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS60201048A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62282141A (en) * 1986-05-30 1987-12-08 Japan Electronic Control Syst Co Ltd Electronically controlled fuel injection device for internal combustion engine
JPH063169Y2 (en) * 1987-05-19 1994-01-26 日産自動車株式会社 Fuel injection device for internal combustion engine
JPH08504Y2 (en) * 1987-08-31 1996-01-10 株式会社ユニシアジェックス Electronically controlled fuel injection type internal combustion engine interrupt injection control device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5949336A (en) * 1982-09-14 1984-03-21 Japan Electronic Control Syst Co Ltd Electronically controlled fuel injector for internal- combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5949336A (en) * 1982-09-14 1984-03-21 Japan Electronic Control Syst Co Ltd Electronically controlled fuel injector for internal- combustion engine

Also Published As

Publication number Publication date
JPS60201048A (en) 1985-10-11

Similar Documents

Publication Publication Date Title
US4509477A (en) Idle operation control for internal combustion engines
US4508075A (en) Method and apparatus for controlling internal combustion engines
US4319451A (en) Method for preventing overheating of an exhaust purifying device
US5224452A (en) Air-fuel ratio control system of internal combustion engine
US4448162A (en) Optimum control for internal combustion engines
JPS639093B2 (en)
JPS6335825B2 (en)
US4499881A (en) Method and apparatus for controlling internal combustion engines
JPH0141823B2 (en)
JPS6246690B2 (en)
US4314540A (en) Method and apparatus for ignition system spark timing control where exhaust gas recirculation is used
US5345911A (en) Air fuel ratio control apparatus for internal combustion engine
JPH0524342B2 (en)
JPS60249651A (en) Electronic control type fuel injector
JP3353311B2 (en) Idle ignition timing control device
JPS5968530A (en) Control method of internal-combustion engine
JPS5843584B2 (en) Ignition timing control device
JP2526249B2 (en) Ignition timing control device for internal combustion engine
JP2615561B2 (en) Fuel injection amount control device for internal combustion engine
JP2940916B2 (en) Air-fuel ratio control device for internal combustion engine
JPH049265B2 (en)
JPH0754744A (en) Correcting method for idle stabilizing ignition timing
JP2528901B2 (en) Ignition timing control device for internal combustion engine
JPH0587664B2 (en)
JPS6323374B2 (en)