JPS6055668A - Semiconductor nonvolatile memory device - Google Patents

Semiconductor nonvolatile memory device

Info

Publication number
JPS6055668A
JPS6055668A JP58163217A JP16321783A JPS6055668A JP S6055668 A JPS6055668 A JP S6055668A JP 58163217 A JP58163217 A JP 58163217A JP 16321783 A JP16321783 A JP 16321783A JP S6055668 A JPS6055668 A JP S6055668A
Authority
JP
Japan
Prior art keywords
region
threshold voltage
nonvolatile memory
substrate
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58163217A
Other languages
Japanese (ja)
Inventor
Katsutada Horiuchi
勝忠 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58163217A priority Critical patent/JPS6055668A/en
Publication of JPS6055668A publication Critical patent/JPS6055668A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • H01L29/7881Programmable transistors with only two possible levels of programmation

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To enable the control of the lower and upper limit values of the threshold voltage value corresponding to memory information by a method wherein the second region of a nonvolatile memory transistor channel is put in parallel with a channel region, having a high impurity concentration of the same conductivity type as that of a semiconductor substrate, and covered with a charge accumulated region. CONSTITUTION:After field oxide films 2 are selectively formed on the surface of the Si substrate 1, a gate oxide film 5 is formed, and then the surface of the substrate 1 is selectively exposed by removal of desired parts. The first high impurity concentration region of P-conductivity type is formed in the surface of the substrate 1 at the active region where no Si thin film 4 remains, and the second one 17 of P type conductivity type in the surface of the substrate at the active region. After an Si thin film is reduced in resistance, a control gate is formed by etching in such a manner that a floating gate 4 and the first and second region 17 are covered. A transistor 14 at the region covered with the floating gate is modified in the threshold voltage value to an arbitrary value according to the rewrite pulse conditions.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体不揮発性記憶装置に係り、特に書込みマ
ージンの向上に好適な半導体不揮発性記憶装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a semiconductor nonvolatile memory device, and particularly to a semiconductor nonvolatile memory device suitable for improving write margins.

〔発明の背景〕[Background of the invention]

従来の電気的書換え可能な半導体不揮発性記憶装置(以
降不揮発性メモリと略記する。)の基本セルは第1図に
示されるごとき断面、等価回路、および書換え特性を有
している。第1図においてlは半導体基板、2は素子間
分離用のフィルド酸化膜、3は電荷蓄積層4と半導体基
板1間の電荷遷移を律速するトンネル障壁絶縁膜、5及
び8は制御トランジスタ13の各々ゲート絶縁膜とゲー
ト電極である。6及7は閾電圧を任意値に改変可能な不
揮発性メモリトランジスタ14の第2ゲート絶縁膜と制
御ゲート電極である。9はデータ線に接続される制御ト
ランジスタ13のドレイン拡散層、10は制御トランジ
スタ13のソースと不揮発性メモリトランジスタ14の
ドレイン領域ねた拡散層、11は不揮発性メモリトラン
ジスタ14のソース拡散層、12は保護絶縁膜である。
A basic cell of a conventional electrically rewritable semiconductor nonvolatile memory device (hereinafter abbreviated as nonvolatile memory) has a cross section, an equivalent circuit, and rewritable characteristics as shown in FIG. In FIG. 1, l is a semiconductor substrate, 2 is a field oxide film for isolation between elements, 3 is a tunnel barrier insulating film that controls charge transition between the charge storage layer 4 and the semiconductor substrate 1, and 5 and 8 are control transistors 13. They are a gate insulating film and a gate electrode, respectively. 6 and 7 are a second gate insulating film and a control gate electrode of the nonvolatile memory transistor 14 whose threshold voltage can be changed to an arbitrary value. 9 is a drain diffusion layer of the control transistor 13 connected to the data line; 10 is a diffusion layer between the source of the control transistor 13 and the drain region of the nonvolatile memory transistor 14; 11 is a source diffusion layer of the nonvolatile memory transistor 14; 12 is a protective insulating film.

第1図から明らかなごとく、従来の不揮発性メモリの基
本セルは2トランジスタで構成されており集積化の上で
基本セルの微細化が本質的に困難であった。従来不揮発
性メモリの他の欠点は不揮発性メモリトランジスタ14
における閾電圧値の改変可能範囲が制御ゲート7へ印加
する書換えパルス条件により一義的に決定される点であ
る。
As is clear from FIG. 1, the basic cell of a conventional nonvolatile memory is composed of two transistors, and it is essentially difficult to miniaturize the basic cell in terms of integration. Another disadvantage of conventional non-volatile memory is that the non-volatile memory transistor 14
The point is that the range in which the threshold voltage value can be changed is uniquely determined by the rewriting pulse conditions applied to the control gate 7.

電荷遷移機構と1−てトンネル障壁絶縁膜3全介する直
接トンネル効果、又はファウラ・ノードハイム(1’i
’owler−NQrdl+eim ) トyネル効果
を利用する不揮発性メモリにおいては制御ゲート7へ正
の高電圧全印加すると電子が半導体基板lから電荷蓄積
I@4に注入され高電圧印加除去後の閾電圧は正方向に
改変され第1図(C)の(ロ)で示す状態になる。逆に
制御ゲート7へ負の高電圧を印加すると電荷蓄積層4よ
り電子が放出され高電圧除去後の閾電圧値は負方向に改
変され第1図(C)のfl)の状態で表わされる。」1
記(イ)および←)の状態が記憶データの”0”および
゛1″状態に相当する。上記各状態は制御ゲー17に印
加される書換え高電圧パルスの高さ、およびパルス幅に
のみ依存し、上記パルス条件が各基本セル間で多少でも
異なれば各基本セル内の不揮発性メモリの1及び0状態
は各基本セルごとに異なってしまう。したがって書換え
パルス条件に十分の子桁を見積って不揮発性メモリ動作
条件を設定しなければ書換え誤動作全おこす欠点を有し
ている。上記書換えパルス条件が各基本セル間で異なる
要因としては例えば制御ゲート7の配線抵抗の存在など
であり多数個の基本セルの合成よりなる不揮発性メモリ
集積回路においては不可避である。
The charge transition mechanism is the direct tunnel effect through the entire tunnel barrier insulating film 3, or the Fowler-Nordheim (1'i
'owler-NQrdl+eim) In a nonvolatile memory that uses the tunnel effect, when a full positive high voltage is applied to the control gate 7, electrons are injected from the semiconductor substrate l into the charge storage I@4, and the threshold voltage after the high voltage application is removed. is modified in the positive direction and becomes the state shown in (b) of FIG. 1(C). Conversely, when a negative high voltage is applied to the control gate 7, electrons are emitted from the charge storage layer 4, and the threshold voltage value after the high voltage is removed is changed in the negative direction and is expressed as fl) in FIG. 1(C). . ”1
The states (a) and ←) correspond to the "0" and "1" states of the stored data.The above states depend only on the height and pulse width of the rewriting high voltage pulse applied to the control game 17. However, if the above pulse conditions differ even slightly between basic cells, the 1 and 0 states of the nonvolatile memory in each basic cell will differ for each basic cell.Therefore, it is necessary to estimate sufficient child digits for the rewrite pulse conditions. Non-volatile memory has the disadvantage that if the operating conditions are not set, all rewrite malfunctions will occur.The reason why the rewrite pulse conditions mentioned above differ between each basic cell is, for example, the presence of wiring resistance of the control gate 7. This is unavoidable in non-volatile memory integrated circuits that consist of a combination of basic cells.

〔発明の目的〕[Purpose of the invention]

本発明の目的は上述した従来技術の欠点を解消し、記憶
情報の1および0に対応する閾電圧値の下限、および上
限値を所望値に制御し得る不揮発性メモリを提供するこ
とにある。本発明の他の目的は1ビツトが1トランジス
タで構成可能な大規模集積回路に適した不揮発性メモリ
ヲ提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the drawbacks of the prior art described above and to provide a nonvolatile memory in which the lower and upper limits of threshold voltage values corresponding to 1 and 0 of stored information can be controlled to desired values. Another object of the present invention is to provide a nonvolatile memory suitable for large-scale integrated circuits in which one bit can be constructed from one transistor.

〔発明の概要〕[Summary of the invention]

上記の目的を達成するため、本発明においてはlピッi
m成する1つの不揮発性メモリトランジスタのチャネル
領域全三領域で構成している。
In order to achieve the above object, the present invention provides l pi i
The channel region of one nonvolatile memory transistor consists of three regions.

すなわち、第1の領域は電荷蓄積層で覆われた領域で閾
電圧値が1換えパルス条件に依存して改変される領域で
ある。第2の領域は上記第1の領域と直列に接続された
領域であり、閾電圧値は所望によりチャネルイオン打込
みにより設定された値會有する。」二記第2の領域は不
揮発性メモリトランジスタにおける改変可能閾電圧値の
下限値を決定する領域である。第三の領域はソースおよ
びドレイン領域に接続され、かつ上記第1および第2の
領域と並列に構成された領域である。上記第3の領域の
閾電圧値はチャンネルイオン打込みにより制御され、上
記第2の領域における閾電圧値より大きく設定されてお
り、不揮発性メモリトランジスタにおける改変可能閾電
圧値の上限値を決定する領域である。チャネル領域が上
述のごとく構成された不揮発性メモリトランジスタにお
いてはある一定条件以上の1換えパルスを印加すること
により電荷蓄積層内に一定量以上の正、又は負の電荷金
注入(又は放出)すれば蓄積電荷量によらず閾電圧値の
下限、及び上限が各々上記の第2、および第3の領域に
おける閾電圧値で制限される。
That is, the first region is a region covered with a charge storage layer, and the threshold voltage value is changed depending on the switching pulse conditions. The second region is connected in series with the first region, and has a threshold voltage value set by channel ion implantation as desired. The second region is a region that determines the lower limit of the changeable threshold voltage value in the nonvolatile memory transistor. The third region is connected to the source and drain regions and is configured in parallel with the first and second regions. The threshold voltage value of the third region is controlled by channel ion implantation and is set larger than the threshold voltage value of the second region, and the region determines the upper limit of the modifiable threshold voltage value in the nonvolatile memory transistor. It is. In a nonvolatile memory transistor whose channel region is configured as described above, it is possible to inject (or release) more than a certain amount of positive or negative charge gold into the charge storage layer by applying a switching pulse that meets a certain condition or more. In other words, the lower limit and upper limit of the threshold voltage value are limited by the threshold voltage values in the second and third regions, respectively, regardless of the amount of accumulated charge.

したがってらる一定条件以上の書換えパルスの印加によ
り書換えパルス条件によらず改変閾電圧値は一定値に設
定され、読出し速度のビット間バラツキ等の欠点を改善
できる。
Therefore, by applying a rewrite pulse above a certain condition, the modified threshold voltage value is set to a constant value regardless of the rewrite pulse condition, and defects such as bit-to-bit variation in read speed can be improved.

本発明により1ビツトを1トランジスタで構成するため
には上述した第2の領域における閾電圧値fnチャネル
トランジスタにおいては正値にpチャネルトランジスタ
においては負値に設定する。
In order to configure one bit with one transistor according to the present invention, the threshold voltage in the second region described above is set to a positive value for fn channel transistors and a negative value for p channel transistors.

上記は書換え禁止モード、すなわち制御ゲート電位が零
電位に設定された状態で不揮発性メモIJ )ランジス
タが遮断する条件に対応する。
The above corresponds to the rewrite inhibit mode, that is, the condition in which the nonvolatile memory transistor is cut off with the control gate potential set to zero potential.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例によってさらに詳細に説明する。 Hereinafter, the present invention will be explained in more detail with reference to Examples.

説明の都合上、図面をもって説明するが要部が拡大して
示されているので注意を要する。
For convenience of explanation, the explanation will be made using drawings, but please note that important parts are shown enlarged.

第2図乃至第6図は本発明による半導体不揮発性記憶装
置の実施例を示した図で、1けp導電型比抵抗10Ω−
σのシリコン基板である。シリコン基板1i而に公知の
素子分離技術を利用して0.8μmの厚いフィルド酸化
膜2を選択的に形成した後、活性領域の半導体表面を露
出し、30nmの清浄なゲート酸化R5を形成する。し
かる後、写真蝕刻法によりゲート酸化膜5の所望部分全
選択的に除去し開孔15によりシリコン基板lの表向全
選択的に露出せしめる。次に残置されたフォトレジスト
膜を除去し、清浄化した後、窪素ガス(N、)で稀釈さ
れた酸素ガス(02)を用い、Og/ N a 比3X
]、0−’なる分圧条件で1050C140・分の熱酸
化を実行し、開孔部15のシリコン基板tS面に5Ωm
のシリコン酸化膜を形成した。次に化学気相反応により
0.2μmなる厚さのシリコン薄膜4を全面的に堆積さ
せた後、5×10”crn−’なる燐イオン全イオン打
込みにより全面的に注入してから活性化熱処理會施して
シリコン薄膜4會十分に低抵抗化させた。次に写真蝕刻
法によりシリコン薄膜4が一対の酸化膜開孔部15の各
々を局部的に覆うごとく帯状に蝕刻した。
2 to 6 are diagrams showing embodiments of the semiconductor non-volatile memory device according to the present invention, with a specific resistance of 1 digit p conductivity type 10Ω-
It is a silicon substrate of σ. After selectively forming a 0.8 μm thick filled oxide film 2 on the silicon substrate 1i using a known device isolation technique, the semiconductor surface of the active region is exposed and a 30 nm clean gate oxide R5 is formed. . Thereafter, a desired portion of the gate oxide film 5 is selectively removed by photolithography, and the entire surface of the silicon substrate 1 is selectively exposed through the opening 15. Next, after removing and cleaning the remaining photoresist film, using oxygen gas (02) diluted with silicon gas (N, ), the Og/N a ratio was 3X.
], 0-' thermal oxidation for 1050C140 minutes was performed to form a 5Ωm
A silicon oxide film was formed. Next, a silicon thin film 4 with a thickness of 0.2 μm is deposited on the entire surface by chemical vapor phase reaction, and then phosphorus ions of 5×10"crn-' are implanted on the entire surface by total ion implantation, and then an activation heat treatment is performed. The silicon thin film 4 was then etched to a sufficiently low resistance by photolithography.Then, the silicon thin film 4 was etched into a band shape so as to locally cover each of the pair of oxide film openings 15.

続いて、 2 X 10”Crn−”なるポロンイオン
全25KeV なる加速エネルギでイオン注入し、帯状
のシリコン薄膜4が残置されていない活性領域のシリコ
ン基板1表面をp導電型の第1の高不純物濃度領域を形
成した。次に上記写真蝕刻に用いたフォトレジスト膜を
除去し、再び第2の写真蝕刻により上記第1の写真蝕刻
と垂直方向にシリコン薄膜4を蝕刻した。上記、第2の
写真蝕刻に用いたフォトレジスト膜16’に残置したま
tlXlo”crrl−” なる砒素イオン’に80K
eVなる加速エネルギによりイオン注入し、ソース拡散
層11、およびドレイン拡散層1(l形成した。上記イ
オン注入条件はゲート酸化膜直下のシリコン基板1表面
でほぼ最大不純物濃度となる条件である。続いて上記第
2の写真蝕刻に用いたフォトレジスト膜16會マスクに
してシリコン薄膜4を片側0.3μmの割合でサイドエ
ツチングしてフローティングゲート4を形成した。次に
残置されているフォトレジスト膜16を除去し、7 X
 10 ”cm−”なるボロンイオン=i30KeV 
の加速エネルギでイオン注入した。上記イオン注入によ
りフローティングゲート4が残置されていない活性領域
のシリコン基板lfi面ip導電型の第2の高不純物濃
度領域17に形成した。しかる後90(lの乾式熱酸化
により形成し九15nmのシリコン酸化膜と化学気相反
応により形成した3Qnmのシリコン窒化膜の2層絶縁
膜6をシリコン基板1表面、およびフローティングゲー
ト4上に形成した。次に化学気相反応により再びシリコ
ン薄膜7ケ全面に堆積1〜燐のイオン打込みにより上記
シリコン薄膜7會十分低抵抗化してから写真蝕刻法によ
りフローティングゲート4、第1の高不純物濃度領域お
よび第2の高不純物濃度領域17Th覆うごとく蝕刻し
て制御ゲート?形成した。続いて公知技術を利用して保
護絶縁膜の形成、コンタクト孔の形成、および所望の回
路構成に従った配線接続をおこなって不揮発性メモリ全
製造した。
Subsequently, 2×10"Crn-" boron ions are implanted with a total acceleration energy of 25 KeV, and the surface of the silicon substrate 1 in the active region where the band-shaped silicon thin film 4 is not left is doped with the first high impurity impurity of p conductivity type. A concentration region was formed. Next, the photoresist film used in the photolithography was removed, and the silicon thin film 4 was etched again in a direction perpendicular to the first photolithography by a second photolithography. The arsenic ions left on the photoresist film 16' used in the second photolithography were heated at 80K.
Ion implantation was performed with an acceleration energy of eV to form a source diffusion layer 11 and a drain diffusion layer 1 (l).The above ion implantation conditions are such that the impurity concentration is approximately the maximum on the surface of the silicon substrate 1 directly under the gate oxide film.Continued. Then, using the photoresist film 16 used in the second photolithography as a mask, the silicon thin film 4 was side-etched at a rate of 0.3 μm on each side to form a floating gate 4. Next, the remaining photoresist film 16 was etched. 7X
10 "cm-" boron ion = i30KeV
The ions were implanted with an acceleration energy of . By the above ion implantation, the floating gate 4 was formed in the second high impurity concentration region 17 of the ip conductivity type on the lfi surface of the silicon substrate in the active region where the floating gate 4 is not left. Thereafter, a two-layer insulating film 6 consisting of a silicon oxide film of 915 nm formed by dry thermal oxidation of 90 nm and a silicon nitride film of 3 Q nm formed by chemical vapor reaction is formed on the surface of the silicon substrate 1 and on the floating gate 4. Next, the silicon thin film 7 was deposited again on the entire surface of the 7 silicon films by chemical vapor phase reaction.The resistance of the silicon thin film 7 was made sufficiently low by ion implantation of phosphorus, and then the floating gate 4 and the first high impurity concentration region were formed by photolithography. Then, a control gate was formed by etching to cover the second high impurity concentration region 17Th.Next, using known techniques, a protective insulating film was formed, a contact hole was formed, and wiring connections were made according to a desired circuit configuration. All non-volatile memory was manufactured.

上記の製造工程ケ経て製造された不揮発性メモリの閾電
圧値は+0.7vであった。次に制御ゲー(9) ドアに+20Vのパルス高さを有する100nsから1
0μsの各種幅を有するパルスを印加し、パルス印加後
の閾電圧値を測定したところ、パルス条件によらずいず
れも6.Ovとなっていた。この状態において、−20
Vのパルス高さヲ有する1oonsから10μsの各種
幅を有するパルスを印加し、パルス印加後の閾電圧値を
測定したところパルス条件によらず0.7Vとなった。
The threshold voltage value of the nonvolatile memory manufactured through the above manufacturing process was +0.7v. Then control game (9) 100ns to 1 with +20V pulse height on the door.
When pulses with various widths of 0 μs were applied and the threshold voltage values after the pulse application were measured, they were all 6. It was Ov. In this state, -20
Pulses having a pulse height of V and various widths from 1 ounces to 10 μs were applied, and the threshold voltage value after the pulse application was measured and found to be 0.7 V regardless of the pulse conditions.

上記結果より本実施例に基づく不揮発性メモリトランジ
スタは第5図に示すごとき等価回路で示され、第6図の
ごとき書換え特性を有することがわかる。
From the above results, it can be seen that the nonvolatile memory transistor according to this example is represented by an equivalent circuit as shown in FIG. 5, and has rewrite characteristics as shown in FIG. 6.

すなわちチャネル領域のフローティングゲートで覆われ
た領域はトランジスタ14で表わされ、閾電圧値が書換
えパルス条件に従って任意値に改変される。トランジス
タ14と直列接続されたトランジスタ18は第2の高不
純物濃度領域17に対応するもので閾電圧値はチャネル
イオン打込み量で決定され+〇、6vなる値を有する。
That is, the region covered by the floating gate in the channel region is represented by the transistor 14, and the threshold voltage value is changed to an arbitrary value according to the rewriting pulse conditions. A transistor 18 connected in series with the transistor 14 corresponds to the second high impurity concentration region 17, and its threshold voltage value is determined by the amount of channel ion implantation and has a value of +6V.

上記各トランジスタと並列に接続されたトランジスタ1
9はフローティングゲート4と自己整合的に形成され(
10) たp導電型の第1の高不純物濃度領域を表わすもので閾
電圧値は6.Ovである。第5図に示す等価回路から明
らかなごとくトランジスタ14の閾電圧値は書換えパル
ス条件により第6図のへ又はホのごとく改変されても観
測される閾電圧値の下限は二のごとくトランジスタ18
の閾電圧値v?Lにより、また上限値はハのごとくトラ
ンジスタ19により制限される。したがっである一定の
書換えパルス高さ又は幅を満す条件において、本実施例
に基づく不揮発性メモリは1換えパルス条件に依存しな
い書換え特性ケ得ることができる。さらに本実施例のと
と< +−ランジスタ18に対応するチャネル領域の一
部17の閾電圧値が正値に設定すれば制御ゲート7が零
電位に保たれる限り、ドレイン10に印加されるパルス
条件によらず不揮発性発性メモリトランジスタiJ′遮
断状態が保てるため1ビツトに本実施例に基づく1つの
不揮発性メモリトランジスタで構成できる。
Transistor 1 connected in parallel with each of the above transistors
9 is formed in self-alignment with the floating gate 4 (
10) represents the first high impurity concentration region of p-conductivity type and has a threshold voltage value of 6. It is Ov. As is clear from the equivalent circuit shown in FIG. 5, even if the threshold voltage value of the transistor 14 is changed as shown in FIG.
Threshold voltage value v? The upper limit value is limited by the transistor 19 as shown in (c). Therefore, under conditions that satisfy a certain rewriting pulse height or width, the nonvolatile memory according to this embodiment can obtain rewriting characteristics that do not depend on the one rewriting pulse condition. Furthermore, in this embodiment, if the threshold voltage value of the part 17 of the channel region corresponding to the transistor 18 is set to a positive value, as long as the control gate 7 is kept at zero potential, the voltage will be applied to the drain 10. Since the non-volatile memory transistor iJ' can be kept in the cut-off state regardless of the pulse conditions, one non-volatile memory transistor based on this embodiment can be used for one bit.

〔発明の効果〕 本発明によれば半導体不揮発性記憶装置のlお(11) よび0記憶状態に対応する各閾電圧値全書換えパルス条
件によらず設定値に保つことができるので書換えパルス
子桁が大幅に改善され、読出し速度の変動幅も極めて小
さく抑えられる効果がおる。
[Effects of the Invention] According to the present invention, each threshold voltage value corresponding to the l(11) and 0 memory states of a semiconductor nonvolatile memory device can be maintained at the set value regardless of the full rewrite pulse conditions, so that the rewrite pulse This has the effect that the number of digits has been significantly improved and the range of variation in read speed has been kept extremely small.

さらに本発明によれば1ビツトを1つのトランジスタで
構成する半導体不揮発性記憶装置が実現できるので高集
積化に極めて適している。
Further, according to the present invention, a semiconductor nonvolatile memory device in which one bit is composed of one transistor can be realized, which is extremely suitable for high integration.

本発明の実施例においては電荷蓄積層としてフローティ
ングゲートを用いる例について説明したが電荷蓄積層と
してはシリコン酸化膜とシリコン窒化膜の組合せのごと
く異種絶縁膜間の界面又は絶縁膜内に形成さられトラッ
プを利用するもの、いわゆるMNO8構造やMAO8構
造であってもよい。
In the embodiments of the present invention, an example in which a floating gate is used as a charge storage layer has been described, but the charge storage layer may be formed at an interface between different types of insulating films, such as a combination of a silicon oxide film and a silicon nitride film, or within an insulating film. A structure using a trap, a so-called MNO8 structure or MAO8 structure, may also be used.

また前記実施例においてはnチャネルトランジスタに基
づく半導体不揮発性記憶装置について説明したがpチャ
ンネル、さらには相補型(0MO8と称される)に基づ
く半導体不揮発性記憶装置にも本発明は適用できる。
Further, in the above embodiments, a semiconductor non-volatile memory device based on an n-channel transistor has been described, but the present invention can also be applied to a semiconductor non-volatile memory device based on a p-channel transistor, or even a complementary type (referred to as 0MO8).

【図面の簡単な説明】[Brief explanation of the drawing]

(12) NF2図は従来の半導体不揮発性記憶装置の断面、単位
セル構成、および曹換え特性ケ示す図、第2図乃至第4
図は本発明の実施例を示す断面図と平面図、第5図は本
発明による半導体不揮発性記憶装置の学位セルに関する
等価回路図、第6図は本発明による半導体不揮発性記憶
装置の単位セルに(13) 第1図 閾唯し−ノEイ直□ 烹3図(B) 3 ”! /I r口 第3 図(A) /IJ t+ ピジ
(12) NF2 diagrams are diagrams showing the cross section, unit cell configuration, and refill characteristics of conventional semiconductor nonvolatile memory devices, and Figures 2 to 4
The figures are a sectional view and a plan view showing an embodiment of the present invention, FIG. 5 is an equivalent circuit diagram of a cell of a semiconductor non-volatile memory device according to the present invention, and FIG. 6 is a unit cell of a semiconductor non-volatile memory device according to the present invention. ni (13) Figure 1 Threshold - No E I Straight □ Heat 3 Figure (B) 3 ''! /I r mouth Figure 3 (A) /IJ t+ Pidge

Claims (1)

【特許請求の範囲】[Claims] 1、半導体基板の一表面に設けられた半導体基板と反対
導電型を有するソースおよびドレイン領域と、上記ソー
スおよびドレイン領域に挿まれたチャネル領域上に設け
られた第1の絶縁膜と、上記第1の絶縁膜の一部の上に
設けられ、外部より電気的に隔離された電荷蓄積領域と
、上記電荷蓄積領域音束なくとも覆うごとく設けられた
コントロールゲートケ有する半導体不揮発性記憶装置に
おいて、上記チャネル領域の一部に電荷蓄積領域により
制御されない第1.および第2の領域が構成され、上記
第2の領域は半導体基板と同一導電型の高不純物濃度ケ
有し、かつ上記電荷蓄積領域で覆われたチャネル領域と
並列に構成されることを特徴とする半導体不揮発性記憶
装置。
1. a source and drain region having a conductivity type opposite to that of the semiconductor substrate provided on one surface of the semiconductor substrate; a first insulating film provided on a channel region inserted in the source and drain regions; A semiconductor non-volatile memory device having a charge storage region provided on a part of the insulating film of No. 1 and electrically isolated from the outside, and a control gate provided so as to cover at least an acoustic flux of the charge storage region. The first part of the channel region is not controlled by the charge storage region. and a second region, the second region has a high impurity concentration of the same conductivity type as the semiconductor substrate, and is configured in parallel with the channel region covered with the charge storage region. Semiconductor non-volatile memory device.
JP58163217A 1983-09-07 1983-09-07 Semiconductor nonvolatile memory device Pending JPS6055668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58163217A JPS6055668A (en) 1983-09-07 1983-09-07 Semiconductor nonvolatile memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58163217A JPS6055668A (en) 1983-09-07 1983-09-07 Semiconductor nonvolatile memory device

Publications (1)

Publication Number Publication Date
JPS6055668A true JPS6055668A (en) 1985-03-30

Family

ID=15769528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58163217A Pending JPS6055668A (en) 1983-09-07 1983-09-07 Semiconductor nonvolatile memory device

Country Status (1)

Country Link
JP (1) JPS6055668A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5172196A (en) * 1984-11-26 1992-12-15 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5172196A (en) * 1984-11-26 1992-12-15 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device

Similar Documents

Publication Publication Date Title
US4754320A (en) EEPROM with sidewall control gate
US4561004A (en) High density, electrically erasable, floating gate memory cell
JP3573691B2 (en) Nonvolatile semiconductor memory device and method of manufacturing the same
US5338954A (en) Semiconductor memory device having an insulating film and a trap film joined in a channel region
JP2555027B2 (en) Semiconductor memory device
US4945068A (en) Manufacturing method of semiconductor nonvolatile memory device
WO1992007382A1 (en) Structure of semiconductor device and manufacturing method thereof
US4317272A (en) High density, electrically erasable, floating gate memory cell
JPS61105862A (en) Semiconductor device
JPS59186375A (en) Method of forming dual electron injection structure
JPH07240478A (en) Preparation of nonvolatile semiconductor memory device
JP2963469B2 (en) Manufacturing method of floating gate MOS transistor
JPS6055668A (en) Semiconductor nonvolatile memory device
JPH0582798A (en) Semiconductor memory device and its manufacture
JP2637149B2 (en) Manufacturing method of nonvolatile semiconductor memory device
JPH05226662A (en) Semiconductor storage device
JPS5982770A (en) Semiconductor memory
JP2793722B2 (en) Nonvolatile semiconductor memory device and method of manufacturing the same
JP2989205B2 (en) Method of manufacturing nonvolatile semiconductor memory device
JP2577383B2 (en) Method of manufacturing nonvolatile semiconductor memory device
JP2002368142A (en) Non-volatile semiconductor memory device and production method therefor
JP2604863B2 (en) Method for manufacturing semiconductor nonvolatile memory device
JP3400267B2 (en) Manufacturing method of nonvolatile semiconductor memory
JP3095271B2 (en) Thin-film field-effect transistor, method of manufacturing the same, and nonvolatile storage element and nonvolatile storage device using the transistor
JP2633547B2 (en) Semiconductor memory device and method of manufacturing the same