JPS6055050B2 - Method for producing diacetoxybutene - Google Patents

Method for producing diacetoxybutene

Info

Publication number
JPS6055050B2
JPS6055050B2 JP59002331A JP233184A JPS6055050B2 JP S6055050 B2 JPS6055050 B2 JP S6055050B2 JP 59002331 A JP59002331 A JP 59002331A JP 233184 A JP233184 A JP 233184A JP S6055050 B2 JPS6055050 B2 JP S6055050B2
Authority
JP
Japan
Prior art keywords
catalyst
butadiene
sulfur
reaction
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59002331A
Other languages
Japanese (ja)
Other versions
JPS59176233A (en
Inventor
照夫 松田
国吉 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP59002331A priority Critical patent/JPS6055050B2/en
Publication of JPS59176233A publication Critical patent/JPS59176233A/en
Publication of JPS6055050B2 publication Critical patent/JPS6055050B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 本発明はブタジエンからジアセトキシブテンを製造す
る方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing diacetoxybutene from butadiene.

更に詳しくは、固体触媒を用いて、液相下で、酢酸と
分子状酢酸とブタジエンからジアセトキシブテンを製造
する方法に関するものである。
More specifically, the present invention relates to a method for producing diacetoxybutene from acetic acid, molecular acetic acid, and butadiene in a liquid phase using a solid catalyst.

有機溶剤および合成樹脂原料として近年需要用が伸び
てきている1、4−ブタンジオールは種々の方法によつ
て合成されていることが知られている。 現在工業化さ
れている方法としては、レツペ反応により、アセチレン
とホルマリンとを原料として製造する方法が知られてい
るが、この方法は反応工程が複雑なうえ原材料費が高い
という欠点がある。
It is known that 1,4-butanediol, whose demand has been increasing in recent years as an organic solvent and a raw material for synthetic resins, is synthesized by various methods. As a currently industrialized method, there is a known method of producing it using acetylene and formalin as raw materials by the Retzpe reaction, but this method has the drawbacks that the reaction process is complicated and the cost of raw materials is high.

またブタジエンを眼科としてこれをハロゲン化し、ジハ
ロゲン化ブテンを合成し、これを加水分解してブテンジ
オールとし、更に水添反応を行つてブタンジオールを合
成する方法も知られているが、この方法はレツペ法と同
様に工程が複雑なうえ原材料費が高いという欠点がある
。 現在最も工業的に重要視されている方法としては、
ブタジエンを酢酸の存在下で一段て酸化してジアセトキ
シブテンを合成し、これを水添加水分解してブタンジオ
ールを合成する方法である。
Another known method is to use butadiene as an ophthalmologist to halogenate it, synthesize dihalogenated butene, hydrolyze it to produce butene diol, and then perform a hydrogenation reaction to synthesize butane diol. Like the Retuppe method, it has the drawbacks of a complicated process and high raw material costs. Currently, the most industrially important method is
In this method, butadiene is oxidized in one step in the presence of acetic acid to synthesize diacetoxybutene, which is then hydrolyzed with water to synthesize butanediol.

ジアセトキシブテンの一段合成法としては、気相法、
液相法が提案されているが、気相法の場合には、副生物
が多く生成することおよび触媒の寿命等の問題がある。
液相法でジアセトキシブテンを合成する方法の中にも触
媒が反応液中に均一にとけている場合と不均一触媒を用
いる場合とがある。前者は触媒の分離、回収工程がきわ
めて複雑になるので工業的には不利であり、後者の方が
有利である。後者の不均一系触媒を利用する方法につい
ては種々提案されているが、反応速度が低いこと、反応
の選択性が悪いこと、触媒が高価なことおよび触媒の寿
命が短かいこと等の欠点がある。後者の不均一系触媒を
利用する方法として、特開昭49−11812号明細書
にはパラジウムと、アンチモン、ビスマス、セレン、テ
ルルの少なくとも1種を含有する担持触媒が示されてい
る。
One-step synthesis methods for diacetoxybutene include gas phase method,
A liquid phase method has been proposed, but in the case of a gas phase method, there are problems such as the production of a large amount of by-products and the lifespan of the catalyst.
Among the liquid phase methods for synthesizing diacetoxybutene, there are cases in which the catalyst is uniformly dissolved in the reaction liquid and cases in which a heterogeneous catalyst is used. The former is industrially disadvantageous because the catalyst separation and recovery steps become extremely complicated, whereas the latter is more advantageous. Various methods have been proposed for the latter method using heterogeneous catalysts, but they have drawbacks such as low reaction rate, poor reaction selectivity, expensive catalysts, and short catalyst lifetimes. be. As a method of utilizing the latter heterogeneous catalyst, JP-A-49-11812 discloses a supported catalyst containing palladium and at least one of antimony, bismuth, selenium, and tellurium.

この触媒では触媒担体として硝酸処理した活性炭を用い
ることが示されており、硝酸処理がない場合はかなり活
性が悪くなることが報告されている。また、特開昭50
−140406号明細書においては、白金および少なく
とも周期系の第5族又は第6族の元素(5,6族元素と
して燐、砒素、蒼鉛、アンチモン、セレン又はテルル)
を含有する触媒が示されている。しかし、これら触媒は
相対的に反応率および選択性が悪いこと、および触媒が
高価なこと等の欠点があつた。
It has been shown that activated carbon treated with nitric acid is used as a catalyst carrier in this catalyst, and it has been reported that the activity deteriorates considerably in the absence of nitric acid treatment. Also, JP-A-50
In specification No. 140406, platinum and at least an element of group 5 or 6 of the periodic system (phosphorus, arsenic, blue lead, antimony, selenium, or tellurium as elements of group 5 and 6)
A catalyst containing . However, these catalysts have drawbacks such as relatively poor reaction rates and selectivities and high catalyst costs.

本発明者らは、これら従来法の欠点を克服するため鋭意
検討を重ねた結果、パラジウム、白金およびロジウムの
少なくとも一種とイオウとを含有する固体触媒を用いて
酢酸と分子状酸素含有ガスとブタジエンとを液相下で反
応させることにより、ジアセトキシブテンを高収率で得
ることができることを知り先に特許出願した。
As a result of intensive studies to overcome the drawbacks of these conventional methods, the present inventors discovered that acetic acid, a molecular oxygen-containing gas, and butadiene were combined using a solid catalyst containing at least one of palladium, platinum, and rhodium and sulfur. After discovering that diacetoxybutene can be obtained in high yield by reacting with and in a liquid phase, he applied for a patent.

しかし、この方法においては、目的物以外に副生物が若
干生成することにより、更に高選択率、高活性の触媒の
開発が望まれた。
However, in this method, some by-products were produced in addition to the target product, so it was desired to develop a catalyst with even higher selectivity and activity.

本発明者らは、これらの欠点を克服するために種々検討
した結果、これらの触媒系にX成分を添加することによ
り、触媒性能が飛躍的に向上すること、および従来報告
されている触媒、例えば、Pd−Te,Pd−S蒔に比
べて、活性炭の硝酸処理.を行なわなくても、高活性、
高選択率の結果を得ることが伴つた。
As a result of various studies to overcome these drawbacks, the present inventors have found that by adding component X to these catalyst systems, the catalytic performance is dramatically improved, and that the previously reported catalysts, For example, compared to Pd-Te and Pd-S sowing, activated carbon is treated with nitric acid. High activity even without
This was accompanied by obtaining high selectivity results.

またこれら、Pdと一つの金属成分を含む二元系ては活
性をあまり示さない触媒、例えばPd−Sb(ブタジエ
ン反応率32.5%、ジアセトキシブテζン収率12%
、詳細は比較例4参照)でも、本発明の特徴であるイオ
ウを含む三元系触媒、例えばPd−S−Sb(ブタジエ
ン反応率95%、ジアセトキシブテン収率90%、詳細
は実施例3参照)にするとすぐれた触媒性能を示すこと
を知り本発明にz到達した。
In addition, these binary catalysts containing Pd and one metal component do not show much activity, such as Pd-Sb (butadiene reaction rate 32.5%, diacetoxybutene ζ yield 12%).
, see Comparative Example 4 for details), a ternary catalyst containing sulfur, which is a feature of the present invention, such as Pd-S-Sb (butadiene reaction rate 95%, diacetoxybutene yield 90%, details see Example 3) The present invention was developed based on the knowledge that the catalyst showed excellent catalytic performance.

即ち本発明は酢酸、分子状酸素およびブタジエンをパラ
ジウムを主体とした金属とイオウと更にX成分の少なく
とも一種とを含有する固体触媒を用いて液相下で反応さ
せ、ジアセトキシブテンを製造する方法である。
That is, the present invention is a method for producing diacetoxybutene by reacting acetic acid, molecular oxygen, and butadiene in a liquid phase using a solid catalyst containing a metal mainly consisting of palladium, sulfur, and at least one of the X components. It is.

以下本発明を更に詳しく説明する。The present invention will be explained in more detail below.

本発明方法に使用される触媒の担体としてはアルミナ、
シリカアルミナ、軽石、シリカゲル、合成ゼオライト、
活性炭等が挙げられるが、中でもシリカゲル、活性炭が
特にすぐれている。
Alumina,
silica alumina, pumice, silica gel, synthetic zeolite,
Examples include activated carbon, among which silica gel and activated carbon are particularly excellent.

特に石炭から調製された活性炭中には、イオウが若干含
まれているので、新たなイオウを添加することがノなく
貴金属とX成分を添加することにより、活性な触媒が調
製される。触媒成分としてはパラジウム単独あるいは、
パラジウムに白金及び/又はロジウムを共存させ得る。
In particular, since activated carbon prepared from coal contains a small amount of sulfur, an active catalyst can be prepared by adding the noble metal and the X component without adding new sulfur. As a catalyst component, palladium alone or
Platinum and/or rhodium may coexist with palladium.

この共存量はパラジウム1モルに対して各々10モル以
下である。パラジウム、白金、ロジウムおよびイオウ原
料は、例えば塩化パラジウム、硝酸パラジウム、酢酸パ
ラジウム、塩化白金酸、塩化白金(■)、塩化白金(■
)、塩化白金酸カリウム、塩化ロジウム、硝酸ロジウム
、硫酸ロジウム、単体イオウ、チオ尿素、チオシアン酸
アンモニウム、一塩化イオウ、二塩化イオウ等の無機体
イオウ、硫化フェニル、βーチオジグリコール、ジメチ
ルジスルフィド等の有機体イオウおよび活性炭中に存在
する無機体、有機体イオウ等が挙げられる。更に本発明
において使用するX成分即ち周期律表1,4,5,6,
7,8,ランタニドおよびアクチニド族の元素としてL
i,Na,K,Rb,Cs,Cu,Ag,Au,Sn,
Pb,Ti,Zr,P,,As,Sb,Bi,V,Nb
,Ta,Se,Te,Cr,MO,W,Mn,Re,F
e,CO,Ni,Ru,Ir,La,Ce,Th,u等
が挙げられる。
The amount of each coexisting is 10 mol or less per 1 mol of palladium. Palladium, platinum, rhodium and sulfur raw materials include, for example, palladium chloride, palladium nitrate, palladium acetate, chloroplatinic acid, platinum chloride (■), platinum chloride (■
), inorganic sulfur such as potassium chloroplatinate, rhodium chloride, rhodium nitrate, rhodium sulfate, elemental sulfur, thiourea, ammonium thiocyanate, sulfur monochloride, sulfur dichloride, phenyl sulfide, β-thiodiglycol, dimethyl disulfide Examples include organic sulfur such as sulfur, and inorganic and organic sulfur present in activated carbon. Furthermore, the X components used in the present invention, that is, periodic table 1, 4, 5, 6,
7,8, L as an element of the lanthanide and actinide groups
i, Na, K, Rb, Cs, Cu, Ag, Au, Sn,
Pb, Ti, Zr, P,, As, Sb, Bi, V, Nb
, Ta, Se, Te, Cr, MO, W, Mn, Re, F
Examples include e, CO, Ni, Ru, Ir, La, Ce, Th, and u.

これらの元素の化合物は特に限定しないが、酸化物、水
酸化物、塩化物、硝酸塩、硫酸塩、カルボン酸塩等の形
で用いることができる。
Compounds of these elements are not particularly limited, but can be used in the form of oxides, hydroxides, chlorides, nitrates, sulfates, carboxylates, and the like.

担体に対するパラジウムの添加量は0.1〜30重量%
が好ましく、最も好ましくは0.2〜2踵量%である。
The amount of palladium added to the carrier is 0.1 to 30% by weight.
is preferable, and most preferably 0.2 to 2% by heel weight.

添加量が0.1重量%以下の場合には反応速度が非常に
遅くなり経済的に不利となる。また添加量が3踵量%以
上の場合には、副生物の生成量が多くなり好ましくない
傾向を有する。担体に対するイオウの添加量は0.05
〜10鍾量%が好ましく、最も好ましくは0.1〜5.
呼量%である。
If the amount added is less than 0.1% by weight, the reaction rate will be extremely slow, which will be economically disadvantageous. Furthermore, if the amount added is 3% or more, the amount of by-products produced tends to be large, which is undesirable. The amount of sulfur added to the carrier is 0.05
~10% by weight is preferred, most preferably 0.1~5%.
Call volume%.

イオウの添加量が0.05重量%以下の場合には、反応
速度が非常に遅くなり経済的に不利となる。また同添加
量が10鍾量%以上の場合には副生物が多くなり好まし
くない。担体に対するX成分の添加量は0.05〜5鍾
量%が好ましく、最も好ましくは0.1〜3濾量%であ
る。
If the amount of sulfur added is less than 0.05% by weight, the reaction rate will be extremely slow, which will be economically disadvantageous. Furthermore, if the amount added is 10% by weight or more, the amount of by-products increases, which is not preferable. The amount of component X added to the carrier is preferably 0.05 to 5% by weight, most preferably 0.1 to 3% by weight.

X成分の添加量が0.05重量%以下の場合には、X成
分添加による効果が充分みられない。また添加量が5踵
量%以上の場合副生物が多くなり好ましくない。触媒の
調製法は、例えばイオウ又はイオウ化合物を適当な溶媒
にとかし、この中に担体を入れてゆつくり蒸発乾固させ
てまずイオウを担体に担持させたのち、貴金属とX成分
の溶液を添加して、先と同様に蒸発乾固させて貴金属と
X成分を担持させる。
When the amount of the X component added is 0.05% by weight or less, the effect of the addition of the X component cannot be seen sufficiently. Moreover, if the amount added is 5% or more, the amount of by-products increases, which is not preferable. A method for preparing a catalyst is, for example, by dissolving sulfur or a sulfur compound in a suitable solvent, putting a carrier therein and slowly evaporating to dryness to first support sulfur on the carrier, and then adding a solution of the noble metal and component X. Then, it is evaporated to dryness in the same manner as before to support the noble metal and the X component.

これとは逆にます始めに貴金属とX成分とを担持させ、
後でイオウを添加担持させることもできる。
On the contrary, by first supporting the precious metal and the X component,
Sulfur can also be added and supported later.

また、イオウ化合物と貴金属化合物とX成分とが同時に
溶解する場合には一度に担持させることも可能である。
また、担体中にイオウが存在する場合には新たにイオウ
化合物を添加することなく、貴金属とX成分を担持させ
ることもできる。
Further, when the sulfur compound, the noble metal compound, and the X component are dissolved at the same time, it is also possible to support them all at once.
Further, when sulfur is present in the carrier, the noble metal and the X component can be supported without adding a new sulfur compound.

イオウ、貴金属およびX成分を担持させたのち、150
〜300℃で乾燥させ、その後は通常の方法即ち水素ま
たはメタノール飽和蒸気等の気流中で還元させるかまた
はヒドラジン、NaBH,、ギ酸等の還元剤で還元させ
ることができる。
After supporting sulfur, precious metals and X component, 150
It can be dried at ~300 DEG C. and then reduced by conventional methods, ie in a gas stream such as hydrogen or methanol saturated steam, or with a reducing agent such as hydrazine, NaBH, or formic acid.

本発明に使用される触媒の形状は反応器の形式により種
々の状態で使用することができる。
The catalyst used in the present invention can be used in various shapes depending on the type of reactor.

例えばスラリー方式で行う場合には微粉状が好ましく、
固定床式の場合は粒状が好ましい。触媒の使用量は全液
量に対して0.2〜3鍾量%が好ましく、最も好ましく
は0.5〜2鍾量%である。触媒量が0.種量%以下の
場合には、反応速度が非常におそくなり工業的には不利
である。また触媒量が3踵量%以上の場合には、副生物
が多。3くなるので好ましくない。
For example, when using a slurry method, fine powder is preferable;
In the case of a fixed bed type, granular forms are preferred. The amount of catalyst used is preferably 0.2 to 3% by weight, most preferably 0.5 to 2% by weight based on the total amount of liquid. Catalyst amount is 0. If the amount is less than %, the reaction rate becomes very slow, which is industrially disadvantageous. In addition, when the amount of catalyst is 3% or more, there are many by-products. 3, which is not desirable.

酢酸の使用量は原料ブタジエンに対して2〜100モル
比が好ましく、最も好ましくは5〜50モル倍である。
The amount of acetic acid used is preferably 2 to 100 molar ratios, most preferably 5 to 50 molar times, relative to the raw material butadiene.

この際モル比が2以下の場合には、反応速度がおそくな
ると同時に選択率の低下が著しくなる。またモル比が1
00モル倍以上に大きい場合には、反応後、目的物の分
離が不経済となり工業的に不利である。本発明に使用さ
れる分子状酸素は純酸素または不活性ガスで希釈された
酸素、例えば空気等を使用することができる。
In this case, if the molar ratio is less than 2, the reaction rate becomes slow and at the same time the selectivity decreases significantly. Also, the molar ratio is 1
If the amount is 00 moles or more, separation of the target product after the reaction becomes uneconomical, which is industrially disadvantageous. The molecular oxygen used in the present invention may be pure oxygen or oxygen diluted with an inert gas, such as air.

酸素の使用量は化学量論量、即ち反応したブタジエンに
対して0.5モル倍以上存在すればよい。酸素濃度は特
に限定されないが、気相中において爆発範囲に入らない
範囲であればよい。
The amount of oxygen used should be stoichiometric, that is, the amount of oxygen should be at least 0.5 times the mole of reacted butadiene. The oxygen concentration is not particularly limited, but may be within a range that does not fall within the explosive range in the gas phase.

反応温度は30〜200℃が好ましく、最も好ましくは
50〜150℃である。反応温度が30℃以下に低い場
合には、反応速度が非常に遅くなるので経済的でなくな
る。また反応温度が200℃以上に高い場合には1,4
−ジアセトキシーシスー2−ブテンの選択率が非常に悪
くなるので好ましくない。反応圧力は常圧ないし20洩
圧が好ましく、最も好ましくは常圧ないし10洩圧であ
る。
The reaction temperature is preferably 30-200°C, most preferably 50-150°C. If the reaction temperature is lower than 30° C., the reaction rate becomes very slow, making it uneconomical. In addition, if the reaction temperature is higher than 200℃, 1,4
-Diacetoxy-cis-2-butene selectivity becomes very poor, which is not preferable. The reaction pressure is preferably normal pressure to 20 leakage pressure, most preferably normal pressure to 10 leakage pressure.

圧力が20洩圧以上の場合、安全性および装置の経済性
の点で好ましくない。以上述べたごとく、本発明の方法
によつてブタジエンと酢酸と分子状酸素含有ガスとを触
媒の存在下で反応させることにより、ジアセトキシブテ
ンを選択的に得ることができるので工業的に非常に有利
である。以下本発明を実施例によつて説明するが本発明
はこれら実施例によつて限定される
リ5〜!L)ものではない。尚実施例の中のブ
タジエンの転化率は原料ブタジエンに対する反応したブ
タジエンのMOl%、ジアセトキシブテン類の収率は原
料ブタジエンに対する生成ジアセトキシブテン類のMO
l%、ジアセトキシブテン類への選択率はブタジエン転
化率に対するジアセトキシブテン類の収率をそれぞれ示
す。
If the pressure is 20 leak pressure or more, it is unfavorable in terms of safety and economical efficiency of the device. As described above, the method of the present invention allows diacetoxybutene to be selectively obtained by reacting butadiene, acetic acid, and a molecular oxygen-containing gas in the presence of a catalyst, which is very useful industrially. It's advantageous. The present invention will be explained below with reference to Examples, but the present invention is limited by these Examples.
Ri5~! L) It's not a thing. In addition, the conversion rate of butadiene in the examples is the MOI% of reacted butadiene with respect to the raw material butadiene, and the yield of diacetoxybutenes is the MOI% of the produced diacetoxybutenes with respect to the raw material butadiene.
1% and selectivity to diacetoxybutenes indicate the yield of diacetoxybutenes relative to the conversion of butadiene, respectively.

実施例1 塩化イオウ0.67g(5rr1m01)を20m1の
二硫化炭素にとかし、この中にれきせい炭から調整した
イオウを0.95重量%含む活性炭5.0gを入れ1時
間浸、,.漬後湯浴上で徐々に蒸発乾固させた。
Example 1 0.67g (5rr1m01) of sulfur chloride was dissolved in 20ml of carbon disulfide, and 5.0g of activated carbon containing 0.95% by weight of sulfur prepared from crystalline carbon was added thereto and soaked for 1 hour. After soaking, it was gradually evaporated to dryness on a hot water bath.

次にこの触媒を塩化パラジウム0.44g(2.5rn
m01)と酢酸鉛0.075g(0.2rnm0りとを
含む?一塩酸溶液20m1に入れ、湯浴上で徐々に蒸発
乾固させた。
Next, this catalyst was mixed with 0.44 g of palladium chloride (2.5 rn
The mixture was poured into 20 ml of a monohydrochloric acid solution containing 0.075 g (0.2 rnmol) of lead acetate and slowly evaporated to dryness on a hot water bath.

その後この触媒を焼成管につめ、窒素気流中150℃で
3時間乾燥させたのち、室温で飽和させたメタノール窒
素混合ガスにて200℃で2時間還元させたのち、更に
400℃で時間還元させた。
The catalyst was then packed in a calcining tube and dried at 150°C for 3 hours in a nitrogen stream, then reduced at 200°C for 2 hours with a methanol/nitrogen mixture saturated at room temperature, and further reduced at 400°C for an hour. Ta.

この触媒0.1gを内容積25m1のガラス封管に入れ
、その上に酢酸4.2g(70n1m01)を入れたの
ち、このガラス封管を−70℃のドライアイイスメタノ
ール浴で冷却し、ブタジエン0.108g(2rr]M
Oりを入れ、次にガラス封管の気相部を純酸素で置換さ
せたのち、バーナーで管を封じた。この反応管を85℃
の湯浴中で回転させながら2時間反応させた。生成後は
ガスクロマトグラフで分析したところブタジエンの転化
率は85.0%、ジアセトキシブテン類の収率77.0
%、ジアセトキシブテン類への選択率90.6%であつ
た。
0.1 g of this catalyst was placed in a glass sealed tube with an internal volume of 25 m1, and 4.2 g (70 n1 m01) of acetic acid was placed on top of it. The glass sealed tube was cooled in a dry ice methanol bath at -70°C, and the butadiene 0. .108g (2rr) M
After introducing oxygen, the gas phase of the glass sealed tube was replaced with pure oxygen, and then the tube was sealed with a burner. This reaction tube was heated to 85°C.
The mixture was allowed to react for 2 hours while rotating in a hot water bath. After generation, gas chromatography analysis showed that the conversion rate of butadiene was 85.0%, and the yield of diacetoxybutenes was 77.0%.
%, and the selectivity to diacetoxybutenes was 90.6%.

実施例2 塩化イオウ0.67g(5n1m0I)を20m1の二
硫化炭素にとかし、この中にれきせい炭から調製したイ
オウを0.95重量%含む活性炭5.0gを入れ1時間
浸漬させたのち、湯浴上で徐々に蒸発乾固させた。
Example 2 0.67 g of sulfur chloride (5n1m0I) was dissolved in 20 ml of carbon disulfide, and 5.0 g of activated carbon containing 0.95% by weight of sulfur prepared from crystalline coal was added thereto and immersed for 1 hour. It was gradually evaporated to dryness on a water bath.

次にこの触媒を塩化パラジウム0.44g(2.5n1
m01)を含む駆一塩酸溶液20m1に入れ、湯浴上で
徐々に蒸発乾固させた。
Next, this catalyst was mixed with 0.44 g of palladium chloride (2.5 n1
The mixture was poured into 20 ml of dihydrochloric acid solution containing m01) and gradually evaporated to dryness on a hot water bath.

その後更に塩化第一スS゛0.044g(0.2n1m
0りを含むエタノール溶液20m1中に浸漬させたのち
湯浴上で徐々に蒸発乾固させた。
After that, 0.044 g (0.2 n1 m
After being immersed in 20 ml of an ethanol solution containing 0.0 ml, the sample was gradually evaporated to dryness on a hot water bath.

その後実施例1と同じ方法て処理したのち反応を行なつ
たところ、ブタジエン転化率90.0%、ジアセトキシ
ブテン類の収率81.5%、ジアセトキシブテン類への
選択率90.5%であつた。
Thereafter, the reaction was carried out in the same manner as in Example 1, and the conversion of butadiene was 90.0%, the yield of diacetoxybutenes was 81.5%, and the selectivity to diacetoxybutenes was 90.5%. It was hot.

実施例3〜10 酢酸鉛の代りに、以下の金属塩を用いた以外は実施例1
と全く同一の方法で触媒の調製および反応を行なつた。
Examples 3 to 10 Example 1 except that the following metal salts were used instead of lead acetate.
The catalyst was prepared and the reaction was carried out in exactly the same manner.

結果は下表の通りであつた。ただし実施例3は三塩化ア
ンチモン0.044g(イ).2mm01)、実施例4
は二酸化テルル0.032g(4).2n1m0り、実
施例5は三塩化ルテニウム0.044g(0.2mm0
1)、実施例6は硝酸ウラン0.10g(0.2mm0
1)、実施例7は塩化金酸0.084g(0.2n1m
01)、実施例8は塩化マンガン0.04g(0.2n
1m0り、実施例9は硝酸第一セリウム0.088g(
0.2mm01)、実施例10は五塩化ニオブ0.05
4g(0.2mm01)を用いた。実施例11 塩化イオウ0.67g(5n1m01)を20m1のア
セトンにとかし、この中にせきれい炭から調製したイオ
ウを0.95重量%含む活性炭5.0gを入れ1時間浸
漬させたのち、湯浴上で徐々に蒸発乾固させた。
The results were as shown in the table below. However, in Example 3, 0.044 g of antimony trichloride (a). 2mm01), Example 4
is tellurium dioxide 0.032g (4). In Example 5, 0.044 g of ruthenium trichloride (0.2 mm
1), Example 6 is uranium nitrate 0.10g (0.2mm0
1), Example 7 uses 0.084 g (0.2 n1 m
01), Example 8 is manganese chloride 0.04g (0.2n
In Example 9, 0.088 g of cerous nitrate (
0.2mm01), Example 10 is niobium pentachloride 0.05
4g (0.2mm01) was used. Example 11 0.67 g (5n1 m01) of sulfur chloride was dissolved in 20 ml of acetone, and 5.0 g of activated carbon containing 0.95% by weight of sulfur prepared from Sekirei charcoal was added thereto, immersed for 1 hour, and then placed on a hot water bath. It was gradually evaporated to dryness.

次にこの触媒を水20cc中に入れ約3紛放置し吸着し
た塩化イオウを加水分解させたのち、湯浴上で蒸発乾固
させた。次にこの触媒を五塩化タンタル0.072g(
0.2mm0り含むエチルアルコール溶液20a1に入
れ湯浴上で徐々に蒸発乾固させた。
Next, this catalyst was placed in 20 cc of water and allowed to stand for about 3 minutes to hydrolyze the adsorbed sulfur chloride, followed by evaporation to dryness on a hot water bath. Next, 0.072 g of tantalum pentachloride (
It was poured into an ethyl alcohol solution 20a1 containing 0.2 mm of water and gradually evaporated to dryness on a hot water bath.

その後更にこの触媒を塩化パラジウム0.44g(0.
25n1m0りを含む駆一塩酸溶液20m1に入れ、湯
浴上で徐々に蒸発乾固させた。
Thereafter, 0.44 g of palladium chloride (0.
The mixture was poured into 20 ml of dihydrochloric acid solution containing 25 nm and 1 mol of water, and gradually evaporated to dryness on a hot water bath.

その後実施例1と同じ方法で処理したのち反応を行なつ
たところブタジエンの転化率85.5%、ジアセトキシ
ブテン類の収率79.9%、ジアセトキシブテン類への
選択率93.5%であつた。
Thereafter, the reaction was carried out in the same manner as in Example 1, and the conversion of butadiene was 85.5%, the yield of diacetoxybutenes was 79.9%, and the selectivity to diacetoxybutenes was 93.5%. It was hot.

比較例1 酢酸塩を添加しない以外は実施例1と全く同一の方法で
触媒の調製および反応を行なつたところブタジエンの転
化率60.0%、ジアセトキシブテン類の収率52.8
%、ジアセトキシブテン類への選択率88.0%であつ
た。
Comparative Example 1 A catalyst was prepared and the reaction was carried out in the same manner as in Example 1 except that no acetate was added. The conversion of butadiene was 60.0% and the yield of diacetoxybutenes was 52.8.
%, and the selectivity to diacetoxybutenes was 88.0%.

比較例2 イオウを殆んど含まず、硝酸処理を行なつていないヤシ
ガラ炭Mgを塩化パラジウム0.44g(2.5rnm
0I)および二酸化テルル0.063g(0.375r
nm0りを含むへー塩酸溶液20T1L1中に入れ約1
時間浸漬させたのち、湯浴上で徐々に蒸発乾固させた。
Comparative Example 2 0.44g of palladium chloride (2.5rnm
0I) and tellurium dioxide 0.063g (0.375r
Pour it into 20T1L1 of hydrochloric acid solution containing nm0 and approx.
After soaking for an hour, it was gradually evaporated to dryness on a hot water bath.

その後実施例1の方法で処理したのち同条件で反応を行
なつたところブタジエンの転化率30.7%、ジアセト
キシブテン類の収率26.1%、ジアセトキシブテンへ
の選択率85.0%であつた。比較例31踵量%硝酸水
溶液で、6時間加熱還流処理を行なつたヤシガラ炭を用
いた他は比較例2と同一・の方法で行なつたところ、ブ
タジエンの転化率52.0%、ジアセトキシブテン類の
収率45.5%、ジアセトキシブテン類への選択率87
.5%であつた。
After that, the treatment was carried out in the same manner as in Example 1, and the reaction was carried out under the same conditions. The conversion of butadiene was 30.7%, the yield of diacetoxybutenes was 26.1%, and the selectivity to diacetoxybutene was 85.0. It was %. Comparative Example 3 The same method as in Comparative Example 2 was used except that coconut shell charcoal that had been heated and refluxed for 6 hours with a heel weight % aqueous solution of nitric acid was used. Yield of acetoxybutenes: 45.5%, selectivity to diacetoxybutenes: 87
.. It was 5%.

比較例4二酸化テルルの代りに三塩化アンチモン0.0
85g)(0.375n1m0りを用いた以外は比較例
2と同一の方法で行なつたところ、ブタジエンの転化率
2&5%、ジアセトキシブテンの収率12.0%、ジア
セトキシブテンへの選択率42.1%であつた。
Comparative Example 4 Antimony trichloride 0.0 instead of tellurium dioxide
85g) (0.375n1m0) was carried out in the same manner as in Comparative Example 2, and the conversion of butadiene was 2% and 5%, the yield of diacetoxybutene was 12.0%, and the selectivity to diacetoxybutene was It was 42.1%.

Claims (1)

【特許請求の範囲】 1 一般式 Pd_1Pt_0_〜_1_0Rh_0_〜_1_0S
_0_・_0_5_〜_1_0X_0_._0_5_〜
_1_0(ただし、XはPd、Sn、Ru、U、Au、
Mn、Ce、Nb、Taから選ばれた少なくとも1成分
、以下X成分という)で示される組成を含有する固体触
媒の存在下にブタジエンと酢酸と酸素含有ガスとを液相
下で反応させることを特徴とするジアセトキシブテンの
製造方法。 2 反応温度が30〜200℃好ましくは50〜150
℃である特許請求の範囲第1項記載の方法。 3 反応圧力が常圧〜200気圧好ましくは常圧〜10
気圧である特許請求の範囲第1項記載の方法。 4 酢酸とブタジエンがモル比で2〜100:1好まし
くは5〜50:1の割合で反応が行なわれる特許請求の
範囲第1項記載の方法。
[Claims] 1 General formula Pd_1Pt_0_~_1_0Rh_0_~_1_0S
_0_・_0_5_~_1_0X_0_. _0_5_~
_1_0 (X is Pd, Sn, Ru, U, Au,
Butadiene, acetic acid, and an oxygen-containing gas are reacted in a liquid phase in the presence of a solid catalyst containing at least one component selected from Mn, Ce, Nb, and Ta (hereinafter referred to as component X). Characteristic method for producing diacetoxybutene. 2 Reaction temperature is 30-200℃, preferably 50-150℃
The method according to claim 1, wherein the temperature is .degree. 3 Reaction pressure is normal pressure to 200 atm, preferably normal pressure to 10
2. The method according to claim 1, wherein the pressure is atmospheric pressure. 4. The method according to claim 1, wherein the reaction is carried out in a molar ratio of acetic acid and butadiene of 2 to 100:1, preferably 5 to 50:1.
JP59002331A 1984-01-09 1984-01-09 Method for producing diacetoxybutene Expired JPS6055050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59002331A JPS6055050B2 (en) 1984-01-09 1984-01-09 Method for producing diacetoxybutene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59002331A JPS6055050B2 (en) 1984-01-09 1984-01-09 Method for producing diacetoxybutene

Publications (2)

Publication Number Publication Date
JPS59176233A JPS59176233A (en) 1984-10-05
JPS6055050B2 true JPS6055050B2 (en) 1985-12-03

Family

ID=11526327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59002331A Expired JPS6055050B2 (en) 1984-01-09 1984-01-09 Method for producing diacetoxybutene

Country Status (1)

Country Link
JP (1) JPS6055050B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107867972A (en) * 2016-09-26 2018-04-03 中国石油化工股份有限公司 The production method of 1,4 butanediols

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107867972A (en) * 2016-09-26 2018-04-03 中国石油化工股份有限公司 The production method of 1,4 butanediols

Also Published As

Publication number Publication date
JPS59176233A (en) 1984-10-05

Similar Documents

Publication Publication Date Title
US4083809A (en) Hydrogenation catalyst and method of producing same
KR100540016B1 (en) Catalyst and process for the oxidation of ethane and/or ethylene
WO1992006066A1 (en) Process for producing diester of carbonic acid
JP2001520976A (en) Method for selective production of acetic acid by catalytic oxidation of ethane
CA2410999C (en) Integrated process for the production of vinyl acetate
JPS646183B2 (en)
JP4177252B2 (en) Selective preparation of tetrahydrofuran by hydrogenation of maleic anhydride.
US5498806A (en) Process for preparing 1-chloro-1,2,2-trifluoroethylene or 1,2,2-trifluoroethylene
EP0459463A1 (en) Process for preparing 1-chloro-1,2,2-trifluoroethylene or 1,2,2-trifluoroethylene
KR100932416B1 (en) Ethane oxidation catalyst and process utilising the catalyst
JP2763186B2 (en) Method for producing trifluoroethylene
JPS6055050B2 (en) Method for producing diacetoxybutene
US4236024A (en) Process for producing diacetoxybutene
KR100978775B1 (en) Mixed metal oxide catalyst and process for production of acetic acid
KR870000522B1 (en) Contisuous process preparing indole
JP2882561B2 (en) Method for producing carbonic acid diester
JPH03232875A (en) Production of gamma-butyrolactone
JPS5980630A (en) Preparation of oxalic acid diester
KR100628675B1 (en) Process for the production of vinyl acetate
WO1994011335A1 (en) Process for producing carbonic diester
JPS5934694B2 (en) Method for producing 1,4-diacetoxy-cis-2-butene
JP4095724B2 (en) Method for activating copper-containing catalyst and method for producing tetrahydro-2H-pyran-2-one and / or 3,4-dihydro-2H-pyran
JPS58216137A (en) Preparation of formaldehyde
JPS5833850B2 (en) Production method of allyl acetate
JPS6146464B2 (en)