JPS59176233A - Production of diacetoxybutene - Google Patents

Production of diacetoxybutene

Info

Publication number
JPS59176233A
JPS59176233A JP59002331A JP233184A JPS59176233A JP S59176233 A JPS59176233 A JP S59176233A JP 59002331 A JP59002331 A JP 59002331A JP 233184 A JP233184 A JP 233184A JP S59176233 A JPS59176233 A JP S59176233A
Authority
JP
Japan
Prior art keywords
catalyst
weight
sulfur
butadiene
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59002331A
Other languages
Japanese (ja)
Other versions
JPS6055050B2 (en
Inventor
Teruo Matsuda
松田 照夫
Kuniyoshi Manabe
真鍋 国吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP59002331A priority Critical patent/JPS6055050B2/en
Publication of JPS59176233A publication Critical patent/JPS59176233A/en
Publication of JPS6055050B2 publication Critical patent/JPS6055050B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the titled compound useful for the synthesis of butanediol, etc., in high yield and selectivity, in one step, by reacting butadiene with acetic acid and an O2-containing gas in a liquid phase in the presence of a solid catalyst such as Pd-S-Sb catalyst having excellent catalyst performance. CONSTITUTION:The objective compound is prepared by reacting butadiene with acetic acid and an O2-contaning gas at 20-200 deg.C under normal pressure -200atm in the presence of a solid catalyst having the composition of formula I , formula II or formula III (X is one or more elements selected from the I , IV, V, VI, VII and VIII groups, lanthanide group and actinide group of the periodic table), e.g. Pd-S-Te, etc. The catalyst can be prepared e.g. by dissolving S or an S compound in a solvent, adding a carrier to the solution, evaporating the mixture slowly to dryness to carry the S on the carrier, adding a solution of a noble metal and the component X, evaporating the product slowly to dryness to support the noble metal and the component X on the carrier, drying at 150-300 deg.C, and reducing in the stream of H2, etc.

Description

【発明の詳細な説明】 本発明はブタジェンからジアセトキシブテンを製造する
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing diacetoxybutene from butadiene.

更に詳しくは、固体触媒を用いて、液相下で、酢酸と分
子状酸素とブタジェンからジアセトキシブテンを製造す
る方法に関するものである。
More specifically, the present invention relates to a method for producing diacetoxybutene from acetic acid, molecular oxygen, and butadiene in a liquid phase using a solid catalyst.

有機溶剤および合成樹脂原料として近年需要が伸びてき
ている1、4−ブタンジオールは種々の方法によって合
成されていることが知られている。
It is known that 1,4-butanediol, whose demand has been increasing in recent years as an organic solvent and raw material for synthetic resins, is synthesized by various methods.

現在工業化されている方法としては、レッペ反応lこよ
り、アセチレンとホルマリンとを原料として製造する方
法が知られているが、この方法は反応工程が複雑なうえ
原材料費が高いという欠点がある。またブタジェンを原
料として、これをハロゲン化し、ジハロケン化ブテンを
合成し、これを加水分解してブチンジオールとし、更(
こ水添反応を行ってブタンジオールを合成する方法も知
られているが、この方法はレッペ法と同様に工程が複雑
なうえ原材料費が高いという欠点がある。
As a currently industrialized method, there is known a method of producing it using acetylene and formalin as raw materials through the Reppe reaction, but this method has the drawbacks of complicated reaction steps and high raw material costs. Also, using butadiene as a raw material, it is halogenated to synthesize dihalokenated butene, which is hydrolyzed to produce butynediol, and further (
A method of synthesizing butanediol by carrying out this hydrogenation reaction is also known, but this method, like the Reppe method, has the drawbacks of complicated steps and high raw material costs.

現在最も工業的に重要視されている方法としては、ブタ
ジェンを酢酸の存在下で一段で酸化してジアセトキシブ
テンを合成し、これを水添加水分解してブタンジオール
を合成する方法である。
The method that is currently considered most important industrially is the one-step oxidation of butadiene in the presence of acetic acid to synthesize diacetoxybutene, which is then hydrolyzed with water to synthesize butanediol.

ジアセトキシブテンの一段合成法としては、気相法、液
相法が提案されているが、気相法の場合は、副生物が多
く生成することおよび触媒の寿命等の問題がある。敵相
法゛でジアセトキシブテンを合成する方法の中にも触媒
が反応液中に均一にとけている場合と不均一触媒を用い
る場合とがある。前者は触媒の分離、回収工程がきわめ
て複雑になるので工業的には不利であり、後者の方が有
利である。後者の不均一触媒系を利用する方法について
は種々提案されているが、反応速度が低いこと、反応の
選択性が悪いこと、触媒が高価なことおよび触媒の寿命
が短かいこと等の欠点がある。
A gas phase method and a liquid phase method have been proposed as one-step synthesis methods for diacetoxybutene, but in the case of the gas phase method, there are problems such as production of many by-products and catalyst life. Among the methods for synthesizing diacetoxybutene by the enemy phase method, there are cases in which the catalyst is uniformly dissolved in the reaction solution, and cases in which a heterogeneous catalyst is used. The former is industrially disadvantageous because the catalyst separation and recovery steps become extremely complicated, whereas the latter is more advantageous. Various methods using the latter heterogeneous catalyst system have been proposed, but they have drawbacks such as low reaction rate, poor reaction selectivity, expensive catalysts, and short catalyst lifetimes. be.

後者の不均一系触媒を利用する方法として、特開昭49
−11812号明細書にはパラジウムと、アンチモン、
ビスマス、セレン、テルルの少なくとも1種を含有する
担持触媒が示されている。この触媒では触媒担体として
硝酸処理した活性炭を用いることが示されており、硝酸
処理がない場合はかなり活性が恕くなることが報告され
ている。また、特開昭50−140406号明細書にお
いては、白金および少なくとも周期系の第5族又は第6
族の元素(5,6族元素として燐、砒素、蒼鉛、アンチ
モン、セレン又はテルル)を含有する触媒が示されてい
る。
As a method using the latter heterogeneous catalyst, JP-A-49
-11812 specifies palladium, antimony,
A supported catalyst containing at least one of bismuth, selenium and tellurium is shown. It has been shown that activated carbon treated with nitric acid is used as a catalyst carrier in this catalyst, and it has been reported that the activity is considerably reduced in the absence of nitric acid treatment. Furthermore, in JP-A-50-140406, platinum and at least periodic group 5 or 6
Catalysts containing Group 5 and Group 6 elements (phosphorus, arsenic, pyrochloride, antimony, selenium or tellurium as elements of Groups 5 and 6) are indicated.

しかし、これら触媒は相対的に反応率および選択性が悪
いこと、および触媒が同価なこと等の欠点があった。
However, these catalysts have drawbacks such as relatively poor reactivity and selectivity, and the equivalence of the catalysts.

本発明者らは、これら従来法の欠点を克服するため鋭意
検討を咳ねtこ結果、パラジウム、白金およびロジウム
の少なくとも−:重とイオウとを含有する固体触媒を用
い−C酢酸と分子状酸素含有ガスとブタジェンとを液相
ドで反応させることにより、ジアセトキシブテンを高収
率で得ることができることを知り先に峙許出1’、if
f Lだ。
In order to overcome these drawbacks of the conventional methods, the present inventors conducted intensive studies and found that using a solid catalyst containing at least -:heavy of palladium, platinum, and rhodium and sulfur, -C acetic acid and molecular I learned that diacetoxybutene can be obtained in high yield by reacting oxygen-containing gas and butadiene in a liquid phase.
f L.

しかし、この方法においては、目的物以外に副生物が若
干生成することにより、更に高選択率、高活性の触媒の
開発が望まれtコ。
However, in this method, some by-products are produced in addition to the target product, so it is desired to develop a catalyst with even higher selectivity and activity.

本発明者らは、これらの欠点を克服するために種々検討
した結果、これらの触媒系にX成分を添加することによ
り、触媒性能が飛躍的に向上すること、および従来報告
されている触媒、例えば、Pd−Te、Pd−8b等に
比べて、活性炭の硝酸処理を行なわなくても、高活性、
高選択率の結果を得ることが判った。
As a result of various studies to overcome these drawbacks, the present inventors have found that by adding component X to these catalyst systems, the catalytic performance is dramatically improved, and that the previously reported catalysts, For example, compared to Pd-Te, Pd-8b, etc., activated carbon can be highly activated without being treated with nitric acid.
It was found that high selectivity results were obtained.

またこれら、Pd  と一つの金属成分を含む二元系で
は活性をあまり示さない触媒、例えばPd−5b(ブタ
ジェン反応率32.5%、ジアセトキシブテン収率12
%、詳細は比較例4参照)でも、本発明の特徴であるイ
オウを含む三元系触媒、例えはPd−5−5b(ブタジ
ェン反応率95%、ジアセトキシブテン収率90%、詳
細は実施例8参照)にするとすぐれた触媒性能を示すこ
とを知り本発明に到達した。
In addition, these catalysts do not show much activity in binary systems containing Pd and one metal component, such as Pd-5b (butadiene reaction rate 32.5%, diacetoxybutene yield 12%).
%, see Comparative Example 4 for details), but using a ternary catalyst containing sulfur, which is a feature of the present invention, for example, Pd-5-5b (butadiene reaction rate 95%, diacetoxybutene yield 90%, details in implementation) The present invention was achieved by finding that the catalyst (see Example 8) exhibits excellent catalytic performance.

即ち本発明は酢酸、分子状酸素およびブタジェンをパラ
ジウム、白金およびロジウムの少な(とも一種とイオウ
と更にX成分の少なくとも一種とを含有する固体触媒を
用いて液相下で反応させ、ジアセトキシブテンを製造す
る方法である。
That is, the present invention involves reacting acetic acid, molecular oxygen, and butadiene in a liquid phase using a solid catalyst containing a small amount of palladium, platinum, and rhodium, sulfur, and at least one of the X components to form diacetoxybutene. This is a method of manufacturing.

以下本発明を更に詳しく説明する。The present invention will be explained in more detail below.

本発明方法に使用される触媒の担体としてはアルミナ、
シリカアルミナ、軽石、シリカゲル、合成ゼオライト、
活性炭等が挙げられるが、中でもシリカゲル、活性炭が
特にすぐれている。特に石炭から調製された活性炭中に
は、イオウが若干含まれているので、新たなイオウを添
加することがな(貴金属とX成分を添加することにより
、活性な触媒が調製される。
Alumina,
silica alumina, pumice, silica gel, synthetic zeolite,
Examples include activated carbon, among which silica gel and activated carbon are particularly excellent. In particular, activated carbon prepared from coal contains some sulfur, so it is not necessary to add new sulfur (an active catalyst is prepared by adding the noble metal and the X component.

触媒成分として用いられるパラジウム、白金、ロジウム
およびイオウ原料は、例えば塩化パラジウム、硝酸パラ
ジウム、酢酸パラジウム、塩化白金酸、塩化白金(川、
塩化白金(IVI、塩化白金酸カリウム、塩化ロジウム
、硝酸ロジウム、硫酸ロジウム、単体イオウ、チオ尿素
、チオシアン酸アンモニウム、−塩化イオウ、二塩化イ
オウ等の無機体イオウ、硫化フェニル、β−チオジグリ
コール、ジメチルジスルフィド等の有機体イオウおよび
活性炭中に存在する無機体、有機体イオウ等が挙げられ
る。
Palladium, platinum, rhodium and sulfur raw materials used as catalyst components are, for example, palladium chloride, palladium nitrate, palladium acetate, chloroplatinic acid, platinum chloride (river,
Platinum chloride (IVI, potassium chloroplatinate, rhodium chloride, rhodium nitrate, rhodium sulfate, elemental sulfur, thiourea, ammonium thiocyanate, inorganic sulfur such as -sulfur chloride, sulfur dichloride, phenyl sulfide, β-thiodiglycol) , organic sulfur such as dimethyl disulfide, and inorganic and organic sulfur present in activated carbon.

更lこ本発明において使用するX成分即ち周期律表1.
4.5.6.7.8.ランタニドおよびアクチLλ ニド族の元素として榊、Na、に、Rb、Cs 、Cu
、Ag。
Furthermore, the X component used in the present invention, that is, periodic table 1.
4.5.6.7.8. Sakaki, Na, Rb, Cs, Cu as lanthanide and acti Lλ nide group elements
,Ag.

Au 、 Sn、Pb 、Ti 、Zr 、P、As 
、Sb、Bi 、V、Nb 、’ra 、 Se 、T
e 。
Au, Sn, Pb, Ti, Zr, P, As
, Sb, Bi, V, Nb, 'ra, Se, T
e.

Cr 、Mo、W、Mn 、Re 、 Fe 、C:o
 、Ni 、Ru 、 lr 、La 、Ce 、Th
 、U等が挙げられる。
Cr, Mo, W, Mn, Re, Fe, C:o
, Ni, Ru, lr, La, Ce, Th
, U, etc.

これらの元素の化合物は特に限定しないが、酸化物、水
酸化物、塩化物、硝酸塩、硫酸塩、カルボン酸塩等の形
で用いることができる。
Compounds of these elements are not particularly limited, but can be used in the form of oxides, hydroxides, chlorides, nitrates, sulfates, carboxylates, and the like.

担体に対するパラジウム、白金およびロジウムの中の少
なくとも一種の貴金属の添加量は0.1〜30@量%が
好ましく、最も好ましくは0.2〜20重量%である。
The amount of at least one noble metal selected from palladium, platinum and rhodium added to the carrier is preferably 0.1 to 30% by weight, most preferably 0.2 to 20% by weight.

添加量が0.1重16 %以下の場合には反応速度が非
常に遅くなり経済的に不利となる。また添加量が3゜市
硼%以上の場合には、副生物の生成虐が多くなり好まし
くない傾向を有する。
If the amount added is less than 0.1% by weight or 16%, the reaction rate will be extremely slow and this will be economically disadvantageous. Furthermore, if the amount added is 3% or more, there is an undesirable tendency to produce a large amount of by-products.

担体に対するイオウの添加量は0.05〜100重量%
が好ましく、最も好ましくは0.1〜5.0重潰%であ
る。
The amount of sulfur added to the carrier is 0.05 to 100% by weight.
is preferable, and most preferably 0.1 to 5.0%.

イオウの添加量が0.05重量%以下の場合(こは、反
応速度が非膚に遅くなり経済的に不利となる。また同添
加緻が100重搦:%以上の場合には副生物が多くなり
好ましくない。
When the amount of sulfur added is less than 0.05% by weight (this causes the reaction rate to be extremely slow, which is economically disadvantageous), and when the amount of sulfur added is more than 100% by weight, by-products are produced. Too many, which is not desirable.

担体に対するX成分の添加量は0.05〜30重最%が
好ましく、最も好ましくは0.1〜30重沿%である。
The amount of component X added to the carrier is preferably 0.05 to 30% by weight, most preferably 0.1 to 30% by weight.

X成分の添加量が0.05重遺ゼ以Fの場合には、X成
分添加による効果が充分みられない。また添加量が50
重量%以上の場合副生物が多くなり好ましくない。
If the amount of the X component added is 0.05 F or less, the effect of the addition of the X component will not be sufficient. Also, the amount added is 50
If it exceeds % by weight, the amount of by-products increases, which is not preferable.

触媒の調製法は、例えばイオウ又はイオウ化合物を適当
な溶媒にとかし、この中に担体を入れてゆっくり蒸発乾
固させてまずイオウを担体に担持させたのち、肘金属と
X成分の溶液を添加して、先と同様に蒸発乾固させて貴
金属とX成分を担持させる。
The method for preparing the catalyst is, for example, by dissolving sulfur or a sulfur compound in a suitable solvent, placing a carrier therein and slowly evaporating it to dryness to first support the sulfur on the carrier, and then adding a solution of the elbow metal and component X. Then, it is evaporated to dryness in the same manner as before to support the noble metal and the X component.

これとは逆にまず始めに貴金属とX成分とを担持させ、
後でイオウを添加担持させることもできる。また、イオ
ウ化合物と貴金属化合物とX成分とが同時に溶解する場
合には一度に担持させることも可能である。
On the contrary, first the precious metal and the X component are supported,
Sulfur can also be added and supported later. Further, when the sulfur compound, the noble metal compound, and the X component are dissolved at the same time, it is also possible to support them all at once.

また、担体中にイオウが存在する場合には新たにイオウ
化合物を添加することなく、貴金属とX成分を担持させ
ることもできる。
Further, when sulfur is present in the carrier, the noble metal and the X component can be supported without adding a new sulfur compound.

イオウ、貴金属およびX成分を担持させたのち、150
〜300℃で乾燥させ、その後は通常の方法即ち水素ま
たはメタノール飽和蒸気等の気流中で還元させるかまt
こはヒドラジン、NaBH4、ギ酸等の還元剤で還元さ
せることができる。
After supporting sulfur, precious metals and X component, 150
Dry at ~300°C and then reduce in a conventional method, i.e., in a gas stream such as hydrogen or methanol saturated steam, in an oven.
This can be reduced with a reducing agent such as hydrazine, NaBH4, or formic acid.

本発明に使用される触媒の形状は反応器の形式により種
々の状態で使用することができる。
The catalyst used in the present invention can be used in various shapes depending on the type of reactor.

例えばスラリ一方式で行う場合には微粉状が好ましく、
固定床式の場合は粒状が好ましい。
For example, when using a slurry-only method, fine powder is preferable.
In the case of a fixed bed type, granular forms are preferred.

4M1奴の使用滑は全欣量(こ対して0.2〜3゜市i
1t%が好ましく、最も好ましくはQ、 5〜2゜中;
I:%である。触媒)Iトが0.2重r11%以下の場
合には、反応速度か非騎におそくなり工業的には不利で
ある。まt、:触媒量か30重量%以上の’F+合には
、副生物が多くなるので好ましくない。
The slide used by 4M1 is the total amount (0.2~3゜ city i)
1t% is preferred, most preferably Q, 5-2°;
I:%. If the amount of catalyst) is less than 0.2% by weight or 11%, the reaction rate becomes extremely slow, which is industrially disadvantageous. Also, if the catalytic amount is 30% by weight or more of 'F+, it is not preferable because by-products will increase.

酢酸の使用扇二は原料ブタジェンに対して2〜100モ
ル倍が好ましく、峡も好ましくは5〜50モル倍である
。この院モル比が2以ドの場合には、反応速度がおそく
なると同時に選択率の低下が1怪しくなる。またモル比
が100モル倍以上に大きい場合には、反応後、目的物
の分離が不経済となり工業曲番こ不利である。
The amount of acetic acid used is preferably 2 to 100 times the mole of butadiene as a starting material, and the amount of acetic acid used is preferably 5 to 50 times the amount by mole. When this molar ratio is 2 or more, the reaction rate becomes slow and the selectivity is likely to decrease by 1. Furthermore, if the molar ratio is 100 times or more, it becomes uneconomical to separate the target product after the reaction, which is disadvantageous for industrial applications.

本発明に使用される分P状酸素は純酸素または不活性ガ
スで希釈された酸素、例えは空気等を使用することがで
きろ。酸素の使用晴は化学計論[け、即ち反応したブタ
ジェンに対して0.5モル倍以上存在すれはよい。
The P-type oxygen used in the present invention may be pure oxygen or oxygen diluted with an inert gas, such as air. The amount of oxygen used should be based on chemical theory [ie, the amount of oxygen should be at least 0.5 mole relative to the reacted butadiene.

酸素濃度は特に限定されないが、気相部において爆発範
囲に入らない範囲であればよい。
The oxygen concentration is not particularly limited, but may be within a range that does not fall within the explosive range in the gas phase.

反応温度は30〜200℃が好ましく、最も好ましくは
50〜150℃である。反応温度が30℃以下に低い場
合には、反応速度が非常に遅くなるので経済的でなくな
る。また反応温度が200℃以上に高い場合をこけ1.
4−ジアセトキシ−シス−2−ブテンの選択率が非法に
悪くなるので好ましくない。
The reaction temperature is preferably 30-200°C, most preferably 50-150°C. If the reaction temperature is lower than 30° C., the reaction rate becomes very slow, making it uneconomical. Also, if the reaction temperature is higher than 200°C, 1.
This is not preferred because the selectivity of 4-diacetoxy-cis-2-butene becomes unreasonably low.

反応圧力は常圧ないし200気圧が好ましく、最も好ま
しくは常圧ないし100気圧である。圧力が200気圧
以上の場合、安全性および装置の経済性の点で好ましく
ない。
The reaction pressure is preferably from normal pressure to 200 atm, most preferably from normal pressure to 100 atm. If the pressure is 200 atmospheres or more, it is unfavorable in terms of safety and economical efficiency of the apparatus.

以上述べtこごとく、本発明の方法によってブタジェン
と酢酸と分子状酸素含有ガスとを触媒の存在下で反応さ
せることにより、ジアセトキシブテンを選択的に得るこ
とができるので工業的に非常に有利である。以下本発明
を実施例によって説明するが本発明はこれら実施例によ
って限定されるものではない。
As stated above, the method of the present invention allows diacetoxybutene to be selectively obtained by reacting butadiene, acetic acid, and a molecular oxygen-containing gas in the presence of a catalyst, which is very advantageous industrially. It is. The present invention will be explained below with reference to Examples, but the present invention is not limited to these Examples.

尚実施例の中のブタジェンの転化率は原料ブタジェン(
こ対する反応したブタジェンのmo1%、ジアセトキシ
ブテン類の収率は原料ブタジェンに対する生成ジアセト
キシブテン類のmo1%、ジアセトキシブテン類への選
択率はブタジェン転化率に対するジアセトキシブテン類
の収率をそれぞれ示す。
In addition, the conversion rate of butadiene in the examples is based on the raw material butadiene (
The mo of reacted butadiene is 1%, the yield of diacetoxybutenes is mo1% of the generated diacetoxybutenes relative to the raw material butadiene, and the selectivity to diacetoxybutenes is the yield of diacetoxybutenes relative to the butadiene conversion rate. Each is shown below.

実施例1 塩化イオウ0.67 ? (5mmol)を20m1の
二硫化炭素にとがし、この中(これき甘い炭から調製し
たイオウを0.95重喰%含む活性炭5.02を入れ1
時間浸漬復温浴上で徐々に蒸発乾固させた。
Example 1 Sulfur chloride 0.67? (5 mmol) in 20 ml of carbon disulfide, and in this, 5.02 ml of activated carbon containing 0.95% sulfur (prepared from this sweet charcoal) was added.
It was slowly evaporated to dryness on a time-soaked rewarming bath.

次にこの触媒を塩rヒバラジウム0.44 y(2,5
mmol )と酢酸鉛0.075 ’;’ (Q、2 
mmol )とを含む5N−塩酸溶液20m1に入れ、
湯浴上で徐々に蒸発乾固させた。
This catalyst was then mixed with the salt rHybaradium0.44y(2,5
mmol) and lead acetate 0.075 ';' (Q, 2
mmol) in 20 ml of 5N-hydrochloric acid solution containing
It was gradually evaporated to dryness on a water bath.

その後この触媒を焼成管につめ、窒素気流中150℃で
3時間乾燥させたのち、室温で飽和させtこメタノール
窒素混合がスにて200℃で2時間還元させたのち、更
に400℃で1時間還元させrこ。
Thereafter, this catalyst was packed in a calcining tube, dried at 150°C for 3 hours in a nitrogen stream, saturated at room temperature, reduced at 200°C for 2 hours in a methanol/nitrogen mixture, and further heated to 400°C for 1 hour. Let me give you time back.

この触媒0.11を内容積25m1のガラス封管に入れ
、その上に酢酸4,2r(70mmo l )を入れた
のち、このがラス封管を一70℃のドライアイスメタノ
ール浴で冷却し、ブタジェン0.108 f (2皿o
1 )を入れ、次にガラス封管の気相部を純酸素で置換
させたのち、バーナーで管を封じた。
0.11 of this catalyst was placed in a glass sealed tube with an internal volume of 25 ml, and acetic acid 4,2r (70 mmol) was placed on top of it, and the glass sealed tube was cooled in a dry ice methanol bath at -70°C. Butadiene 0.108 f (2 dishes o
1), and then the gas phase of the glass sealed tube was replaced with pure oxygen, and then the tube was sealed with a burner.

この反応管を85℃の湯浴中で回転させながら2時間反
応させた。
The reaction tube was allowed to react for 2 hours while rotating in a water bath at 85°C.

生成液はガスクロマトグラフで分析したところブタジェ
ンの転化率は85.0%、ジアセトキシブテン類の収率
77.0%、ジアセト千シブテン類への選択率90.6
%であった。
The product liquid was analyzed by gas chromatography, and the conversion rate of butadiene was 85.0%, the yield of diacetoxybutenes was 77.0%, and the selectivity to diacetoxybutenes was 90.6.
%Met.

実施例2 塩化イオウ0.67 t (5mmol)を20.ml
の二硫化炭素にとかし、この中にれきせい炭から調製し
tこイオウを0.95重量%含む活性炭5.09を入れ
1時間浸漬さぜrこのち、湯浴上て徐々に蒸発乾固させ
た。
Example 2 20.67 t (5 mmol) of sulfur chloride was added. ml
Dissolved in carbon disulfide, and put activated carbon 5.09 prepared from charcoal and containing 0.95% by weight of sulfur into this and soaked for 1 hour.Afterwards, gradually evaporated to dryness in a hot water bath. I let it happen.

次にこの触媒を塩化パラジウム0゜442(245me
no l )を含む5N−塩酸溶液20m1こ入れ、湯
浴上で徐々(こ蒸発乾固させた。
Next, this catalyst was mixed with palladium chloride 0°442 (245me
20 ml of a 5N hydrochloric acid solution containing 100 ml of water was added to the mixture, and the mixture was gradually evaporated to dryness on a hot water bath.

その後更に塩化第一スW O,044? (0,2mm
ol)を含むエタノール溶液20m1中に浸漬させtコ
のち湯浴上で徐々に歳発乾固させjこ 。
After that, stans chloride WO,044? (0.2mm
After soaking in 20 ml of ethanol solution containing 100 ml of ethanol, the mixture was gradually dried on a hot water bath.

その後実施例1と同じ方法で処理したのち反応を行なっ
たところ、ブタジェン転化率90. c%、ジアセトキ
シブテン類の収率81.5%、ジアセトキシブテン類へ
の選択率90.5%であった。
Thereafter, the reaction was carried out in the same manner as in Example 1, and the butadiene conversion rate was 90. c%, the yield of diacetoxybutenes was 81.5%, and the selectivity to diacetoxybutenes was 90.5%.

実施例 酢酸鉛の代り番こ、以下の金属塩を用いた以外は実施例
1と全く同一の方法で触媒の調製および反応を行なった
。結果は下表の通りであった。
Example A catalyst was prepared and the reaction was carried out in exactly the same manner as in Example 1, except that the following metal salts were used in place of lead acetate. The results were as shown in the table below.

ただし実施例3は三塩化アンチモン0.0441 (0
,2m+nol )、実施例4は二酸化テルル0.08
2 ? (0,2m+no l )、実施例5は三塩化
ルテニウム0.044 F (0,2r血o1) 、実
施例6は硝酸ウラン0.10 ? (0,2m+no 
l )、実施例7は塩化金酸0.0841 (02m+
no l )、実施例8は塩化マンがン0.04 ! 
CO,2画o1)、実施例9は硝酸第−セリウム0.0
88 f (0,2皿o1)、実施例10は五塩化ニオ
ブ0.054 f (0,2m+nol )を用いた。
However, in Example 3, antimony trichloride 0.0441 (0
,2m+nol), Example 4 is tellurium dioxide 0.08
2? (0,2m+no l), Example 5 is ruthenium trichloride 0.044 F (0,2r blood o1), and Example 6 is uranium nitrate 0.10? (0,2m+no
l), Example 7 is chloroauric acid 0.0841 (02m+
no l ), Example 8 had manganese chloride of 0.04!
CO, 2 strokes o1), Example 9 is cerium nitrate 0.0
88 f (0.2 plates o1), and Example 10 used niobium pentachloride 0.054 f (0.2 m+nol).

\ 実施例11 塩rヒイオウ0.671 (5mmol)を20m1の
アセトンにとかし、この中にれき甘い炭から1裂したイ
オウを0.95重量%含む活性炭5.0′?を入れ1時
間浸漬させたのち、湯浴上で徐々に蒸発乾固させた。
\ Example 11 Dissolve 0.671 (5 mmol) of salt r sulfur in 20 ml of acetone, and add 5.0' activated carbon containing 0.95% by weight of sulfur split from clear sweet charcoal. After soaking for 1 hour, the mixture was gradually evaporated to dryness on a hot water bath.

次Eここの触媒を水2OCC中に入れ約30分放置し吸
着した塩化イオウを加水分解させたのち、湯浴上で蒸発
乾固させた。
Next E The catalyst was placed in 2 Occ of water and left to stand for about 30 minutes to hydrolyze the adsorbed sulfur chloride, and then evaporated to dryness on a hot water bath.

次ニコの触媒を五塩化タンタル0.0721(0,2m
mo l )含むエチルアルコール溶液20m1に入れ
湯浴上で徐々に蒸発乾固させた。
Next Nico's catalyst is tantalum pentachloride 0.0721 (0.2m
The mixture was poured into 20 ml of an ethyl alcohol solution containing mol) and gradually evaporated to dryness on a hot water bath.

その後更にこの触媒を塩化パラジウム 0、449 (2,5mmol )を含む5N−塩酸溶
液20 mlに入れ、湯浴上で徐々に蒸発乾固させた。
Thereafter, this catalyst was added to 20 ml of a 5N hydrochloric acid solution containing 0.449 (2.5 mmol) of palladium chloride, and gradually evaporated to dryness on a hot water bath.

その後実施例1と同じ方法で処理したのち反応を行なっ
たところブタジェンの転化率85.5%、ジアセトキシ
ブテン類の収率79.9%、ジアセトキシブテン類への
選択、料93.5%であった。
Thereafter, the reaction was carried out in the same manner as in Example 1. The conversion rate of butadiene was 85.5%, the yield of diacetoxybutenes was 79.9%, and the selection rate for diacetoxybutenes was 93.5%. Met.

比較例1 部・酸鉛を添加しない以外は実施例1と全く同一の方法
で触媒の調製および反応を行なったところブタジェンの
転化率60.0%、ジアセトキシブテン類の収率52,
8%、ジアセトキシブテン類への選択率88.0%であ
っt二。
Comparative Example 1 A catalyst was prepared and the reaction was carried out in exactly the same manner as in Example 1 except that lead acid was not added. The conversion rate of butadiene was 60.0%, and the yield of diacetoxybutenes was 52%.
8%, and the selectivity to diacetoxybutenes was 88.0%.

比較例2 イオウを殆んど含まず、硝酸処理を行なっていないヤシ
がう炭51を塩化パラジウム0.44 ? (2,5m
mol)オヨ(j 二酸化テルル0.063 Y (0
,175mmo l )を含む5N−塩酸溶液20gt
中に入れ約1時間浸漬させたのち、湯浴上で徐々に蒸発
乾固させtこ。その後実施例1の方法で処理したのち同
条件で反応を行なったところブタジェンの転(ヒ率30
.7%、ジアセトキシブテン類の収率26.1 %。
Comparative Example 2 Coconut charcoal 51 containing almost no sulfur and not treated with nitric acid was mixed with palladium chloride 0.44? (2.5m
mol) Oyo(j Tellurium dioxide 0.063 Y (0
, 175 mmol) in a 5N-hydrochloric acid solution containing 20 gt
After soaking in the water for about 1 hour, it was gradually evaporated to dryness on a hot water bath. After that, the treatment was carried out in the same manner as in Example 1, and the reaction was carried out under the same conditions.
.. 7%, yield of diacetoxybutenes 26.1%.

ジアセトキンブテンへの選択率85.0%であった。The selectivity to diacetquin butene was 85.0%.

比較例3 15t4:%硝酸水溶液で、6時間加熱還流処理を行な
ったヤシがう炭を用いTこ他は比較例2と同一の方法で
行なったところ、ブタジェンの転化率52.0%、ジア
セトキシブテン類の収率45.5%、ジアセトキシブテ
ン類への選択率87.5%であった。
Comparative Example 3 Coconut charcoal that had been heated and refluxed in a 15t4:% nitric acid aqueous solution for 6 hours was used and the same method as in Comparative Example 2 was performed, except for T. The conversion rate of butadiene was 52.0%, and the The yield of acetoxybutenes was 45.5%, and the selectivity to diacetoxybutenes was 87.5%.

比較例4 二酸化テルルの代りに三塩化アンチモン0、0859 
(0,375mtmO1)を用いtコ以外は比較例2と
同一の方法で行な−)tこところ、ブタジェンの転化率
28,5%、ジアセトキシブテンの収率12.0%、ジ
アセトキシブテンへの選択率42.1%でありた。
Comparative Example 4 Antimony trichloride 0,0859 instead of tellurium dioxide
(0,375 mtmO1) was used in the same manner as in Comparative Example 2, except for the following: -) The conversion of butadiene was 28.5%, the yield of diacetoxybutene was 12.0%, and the yield of diacetoxybutene was 12.0%. The selectivity rate was 42.1%.

Claims (1)

【特許請求の範囲】 l) −般  式 %式%(1) (2) () (tコだしXは周期律表の第1族、第4族、第5族、第
6族、第7族、第8族、ランタニド族およびアクチニド
族の元素の中の少なくとも1成分、以下X成分という)
で示される組成〆を含有する固体触媒の存在下にブタジ
ェンと酢酸と酸素含有がスとを液相下で反応させること
を特徴とするジアセトキシブテンの製造方法。 2)反応i’f+u度が30〜200℃好ましくは50
〜150℃である特許請求の範囲第1項記載の方法。 3)反応圧力が常圧〜200気圧好ましくは常圧〜10
0気圧である特許請求の範囲第1項記載の方法。 4)酢酸とブタジェンがモル比で2〜100:1好まし
くは5〜50:1の割合で反応が行なわれる特許請求の
範囲第1項記載の方法。 5)担体に対する担持量がパラジウム、白金およびロジ
ウムの中の少なくとも1種は001〜30重量%、好ま
しくは0.2〜20重量%、イオウは0.05〜100
重量翅、好ましくは0.1〜50重量%、X成分は0,
05〜50重量%、好ましくは0.1〜30重遣%であ
る特許請求の範囲第1項に記載の方法。
[Claims] l) - General formula % Formula % (1) (2) () (hereinafter referred to as X component)
A method for producing diacetoxybutene, which comprises reacting butadiene, acetic acid, and oxygen-containing gas in a liquid phase in the presence of a solid catalyst having the composition shown below. 2) Reaction i'f+u degree is 30-200℃, preferably 50
15. The method of claim 1, wherein the temperature is 150<0>C. 3) Reaction pressure is normal pressure to 200 atm, preferably normal pressure to 10 atm.
2. The method according to claim 1, wherein the pressure is 0 atmospheric pressure. 4) The method according to claim 1, wherein the reaction is carried out in a molar ratio of acetic acid and butadiene of 2 to 100:1, preferably 5 to 50:1. 5) The amount of at least one of palladium, platinum and rhodium supported on the carrier is 0.001 to 30% by weight, preferably 0.2 to 20% by weight, and sulfur is 0.05 to 100% by weight.
Weight wing, preferably 0.1 to 50% by weight, X component is 0,
2. A method according to claim 1, wherein the weight is between 0.05 and 50% by weight, preferably between 0.1 and 30% by weight.
JP59002331A 1984-01-09 1984-01-09 Method for producing diacetoxybutene Expired JPS6055050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59002331A JPS6055050B2 (en) 1984-01-09 1984-01-09 Method for producing diacetoxybutene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59002331A JPS6055050B2 (en) 1984-01-09 1984-01-09 Method for producing diacetoxybutene

Publications (2)

Publication Number Publication Date
JPS59176233A true JPS59176233A (en) 1984-10-05
JPS6055050B2 JPS6055050B2 (en) 1985-12-03

Family

ID=11526327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59002331A Expired JPS6055050B2 (en) 1984-01-09 1984-01-09 Method for producing diacetoxybutene

Country Status (1)

Country Link
JP (1) JPS6055050B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107867972B (en) * 2016-09-26 2019-10-11 中国石油化工股份有限公司 The production method of 1,4-butanediol

Also Published As

Publication number Publication date
JPS6055050B2 (en) 1985-12-03

Similar Documents

Publication Publication Date Title
US4083809A (en) Hydrogenation catalyst and method of producing same
JPS6159612B2 (en)
US20080097112A1 (en) Selective preparation of tetrahydrofuran by hydrogenation of maleic anhydride
JPS646183B2 (en)
JP3616642B2 (en) Method for producing 1,4-butanediol
EP0459463A1 (en) Process for preparing 1-chloro-1,2,2-trifluoroethylene or 1,2,2-trifluoroethylene
JPS59176233A (en) Production of diacetoxybutene
JPH0499738A (en) Production of trifluoroethylene
JP3803372B2 (en) Method for producing 1,4-butanediol
US4236024A (en) Process for producing diacetoxybutene
US6476258B1 (en) Process for producing aryloxyacetic acids
JP2874016B2 (en) Production method of γ-butyrolactone
JP2874017B2 (en) Method for producing gamma-butyrolactone
JPH0543517A (en) Production of carbonic acid diester
JPS6362525B2 (en)
JPS6256788B2 (en)
JP2882561B2 (en) Method for producing carbonic acid diester
WO1994011335A1 (en) Process for producing carbonic diester
US4188498A (en) Process for producing linalool
JPH09136884A (en) Production of unsaturated cyclic ether, and cobalt-containing supported catalyst
JPH02174742A (en) Preparation of glycolaldehyde
JP4412451B2 (en) Method for producing lactone
JP4095724B2 (en) Method for activating copper-containing catalyst and method for producing tetrahydro-2H-pyran-2-one and / or 3,4-dihydro-2H-pyran
JPH08301815A (en) Production of glyoxylic acid ester
JPH0514694B2 (en)