JPS6146464B2 - - Google Patents

Info

Publication number
JPS6146464B2
JPS6146464B2 JP53073894A JP7389478A JPS6146464B2 JP S6146464 B2 JPS6146464 B2 JP S6146464B2 JP 53073894 A JP53073894 A JP 53073894A JP 7389478 A JP7389478 A JP 7389478A JP S6146464 B2 JPS6146464 B2 JP S6146464B2
Authority
JP
Japan
Prior art keywords
rhodium
catalyst
reaction
acetic acid
carried out
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53073894A
Other languages
Japanese (ja)
Other versions
JPS55338A (en
Inventor
Takeshi Onoda
Akihisa Oono
Junzo Haji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP7389478A priority Critical patent/JPS55338A/en
Publication of JPS55338A publication Critical patent/JPS55338A/en
Publication of JPS6146464B2 publication Critical patent/JPS6146464B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 本発明はロジウム系固体触媒の存在下に、1・
3−ブタジエンをアセトキシル化してジアセトキ
シブテンを製造する方法に関するものである。 ジアセトキシブテン、特に1・4−ジアセトキ
シブテンはテトラヒドロフランの原料としてある
いはポリブチレンテレフタレートの成分である
1・4−ブタンジオールの原料として工業的に有
用である。 1・3−ブタジエンを分子状酸素および酢酸と
反応させてジアセトキシブテンを製造する方法に
おいて、パラジウム系固体触媒を使用する方法は
よく知られている(特公昭50−23008、特公昭52
−12171)。また、上記反応の触媒としてロジウム
系固体触媒を使用する方法は、特開昭51−
108010、特開昭52−139004などにより知られてい
る。これらの方法においてはロジウムにテルルま
たはセレンを配合した固体触媒が使用され、パラ
ジウム系触媒に比べて活性および1・4−ジアセ
トキシブテンの選択率がすぐれている。しかしな
がら、上記ロジウム系固体触媒には、反応の進行
に伴ないロジウムが反応液中に溶出し、速やかに
活性の低下をきたすという欠点があり、工業化す
るためには更に改良を加えることが必要である。 本発明者らは反応液へのロジウムの溶出の少い
ロジウム系固体触媒について検討した結果、ロジ
ウム化合物ならびにアンチモン化合物、砒素化合
物およびタリウム化合物より選ばれる少くとも一
種を担体に担持させ、還元処理を施こした固体触
媒を使用して反応を行なうとロジウムの反応液へ
の溶出を微量に抑制することができることを見い
出し、本発明に到達したものである。 以下に本発明を詳細に説明する。 本発明方法において使用される触媒は、ロジウ
ム化合物とアンチモン化合物、砒素化合物および
タリウム化合物の少くとも一種を担体に担持さ
せ、還元処理を施こした固体触媒である。該固体
触媒は塩化ロジウム、硝酸ロジウム、硫酸ロジウ
ム等の無機酸塩、酢酸ロジウム等のカルボン酸
塩、水酸化ロジウム、酸化ロジウム等の無機化合
物、ヘキサクロロロジウムナトリウム、ヘキサク
ロロロジウムアンモニウム、クロロペンタアンミ
ンロジウム、クロロヘキサアンミンロジウム、ヘ
キサシアノロジウムカリウム、トリクロロトリピ
リジンロジウム等の錯化合物などをロジウム源と
して、塩化アンチモン、酸化アンチモン、硫化ア
ンチモン、金属アンチモン、酸化砒素、酸化タリ
ウム、硝酸タリウム、酢酸タリウムなどをアンチ
モン、砒素またはタリウム源として使用して調製
される。 適当な担体としては、活性炭、シリカ、シリカ
アルミナ、アルミナ、軽石、珪藻士などら挙げら
れるが、特に活性炭およびシリカが好ましく使用
される。これらの担体は市販品をそのまま使用し
てもよいが、公知の方法に従つて熱処理あるいは
弗化水素酸、硝酸等による酸処理を行なつたのち
に使用すると多くの場合、好結果が得られる。 前記の触媒成分を担体に担持するにあたり、
各々の成分を順次担持しても二以上の成分を同時
に担持してもよい。触媒成分の担体への担持は、
前記触媒成分を含む化合物を水、酸等の溶媒に溶
解し、含浸法、浸漬法、蒸発乾固法、沈澱法、カ
チオン交換法などの周知の方法に従つて行なうこ
とができる。担体上の触媒成分の担持量は広範囲
に可変であり、ロジウムは単体換算値で0.1〜20
重量%、好ましくは0.5〜5重量%、アンチモ
ン、砒素またはタリウムは単体換算値で0.05〜30
重量%、好ましくは0.1〜5重量%である。ま
た、ロジウムとアンチモン、砒素またはタリウム
との比率は、ロジウム1グラム原子に対して0.01
〜10グラム原子、好ましくは0.05〜5グラム原子
である。 本発明方法においては触媒の活性を高めるため
に、担体に触媒成分を担持したのち還元処理を行
なう。還元処理は、水素、メタノール、ホルマリ
ン、ヒドラジンなどの還元剤を使用して公知の還
元方法により行なうことができる。 本発明方法は、上記触媒を使用して、懸濁床、
流通床または固定床において気相または液相で所
定反応条件下に1・3−ブタジエンを分子状酸素
および酢酸と回分的または連続的に反応させるこ
とにより実施される。各々の反応原料は反応に不
活性な稀釈物質を含んでいてもよく、反応系には
窒素、アルゴン等の不活性ガスあるいは水が共存
していても支障はない。また、本反応を液相で行
なう場合には酢酸を過剰に使用して触媒として用
いることも飽和炭化水素、エステル等の反応に不
活性な溶媒を用いることもできる。本反応を気相
で行なう場合は、爆発範囲内のガス組成を避ける
ことが望ましい。本反応を行なうにあたつて、
1・3−ブタジエンに対する酢酸のモル比3〜
100、好ましくは5〜50であり、反応温度は、液
相で行なう場合は50〜150℃、気相で行なう場合
は100〜250℃、反応圧力は常圧〜10気圧程度の範
囲内で適宜選択される。 次に本発明を実施例により更に具体的に説明す
る。 実施例 1 4〜6メツシユのヤシガラ破砕炭500g、濃硝
酸356gおよび水830gを内容積3の還流冷却器
付フラスコに仕込み、4時間加熱還流した。一夜
放置後活性炭を別し、ロータリーエバポレータ
ーで80℃、30mmHgの条件下3時間乾燥し、活性
炭担体を調製した。 酢酸ロジウムの酢酸溶液3.9g(ロジウム単体
として3.78mg原子)および三塩化アンチモン
0.258gを6規定塩酸30mlに溶解し、前記活性炭
担体13gを添加し、30分間放置したのちロータリ
ーエバポレーターで蒸発乾固させた。次いで、窒
素気流下に100℃まで昇温し、水素気流に切り換
えて150℃まで昇温して2時間保持し、300℃に昇
温して2時間保持し、400℃に昇温して2時間保
持したのち、窒素気流下放冷して触媒の活性化を
行なつた。 上記触媒10ml(約4.7g)を内径13.9mmの耐熱
ガラス製反応器に充填し、酢酸20mlを装入して80
℃の恒温槽に浸し触媒層の下方より酢酸、ブタジ
エンおよび酸素をそれぞれ670mmole/hr、118m
mole/hrおよび78mmole/hrの割合で供給して反
応させた。所定時間経過後の反応液を採取し、ガ
スクロマトグラフイーにより生成物を定量し、原
子吸光光度法により反応液中に溶出したロジウム
を定量した。結果は表ー1に示す。 実施例 2 酸化砒素0.112gをエタノール30mlおよび30重
量%硝酸30mlの混合溶媒に溶解し、酢酸ロジウム
の酢酸溶液2.93g(ロジウム単体として2.82mg原
子)と混合して得られた均一溶液に実施例1にお
いて調製した活性炭担体13gを浸漬し、ロータリ
ーエバポレーターで蒸発乾固させた。得られた触
媒を8容量%メタノール含有窒素ガス流通下に
200℃で2時間、400℃で4時間還元処理して活性
化を行なつた。 上記触媒1.0ml(4.39g)を使用して実施例1
と同様に反応を行なつた。結果は表−1に示す。 実施例 3 酸化砒素の代わりに酸化タリウム0.259gを使
用し、酢酸ロジウムの酢酸溶液の使用量を3.9g
(ロジウム単体として3.78mg原子)に変更したこ
と以外は実施例2と同様に触媒の調製および活性
化を行なつた。 得られた触媒10ml(4.67g)を使用して実施例
1と同様に反応を行なつた。結果は表−1に示
す。 比較例 1 酢酸ロジウムの酢酸溶液7.8g(ロジウム単体
として7.55mg原子)および二酸化テルル0.603g
を6規定塩酸50mlに溶解し、実施例1で調製した
活性炭担体50ml(25.9g)を添加し、ロータリー
エバポレーターで蒸発乾固させた。得られた触媒
を水素気流下150℃で2時間、400℃で2時間、さ
らに500℃で2時間還元処理して活性化を行なつ
た。 上記触媒10ml(4.46g)を使用して実施例1と
同様に反応を行なつた。結果は表−1に示す。 比較例 2 二酸化テルル0.294gを6規定塩酸50mlに溶解
し、酢酸ロジウムの酢酸溶液6.36g(ロジウム単
体として6.15mg原子)と混合して均一な溶液とし
た。この溶液にシリカ粒(フジ・ダビソン社製、
iD−8)50ml(21.1g)を浸漬し、ロータリーエ
バポレーターにより蒸発乾固させた。得られた触
媒の20mlを水蒸気流下150℃で1時間、300℃で2
時間還元処理して活性化を行なつた。 上記触媒4.39g(約10ml)を使用して実施例1
と同様に反応を行なつた。結果は表−1に示す。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention provides the following method: 1.
The present invention relates to a method for producing diacetoxybutene by acetoxylating 3-butadiene. Diacetoxybutene, particularly 1,4-diacetoxybutene, is industrially useful as a raw material for tetrahydrofuran or for 1,4-butanediol, which is a component of polybutylene terephthalate. The method of using a palladium-based solid catalyst in the production of diacetoxybutene by reacting 1,3-butadiene with molecular oxygen and acetic acid is well known (Japanese Patent Publication No. 50-23008, Japanese Patent Publication No. 52
−12171). In addition, a method of using a rhodium-based solid catalyst as a catalyst for the above reaction is disclosed in JP-A-51-
108010, JP-A-52-139004, etc. In these methods, solid catalysts containing rhodium and tellurium or selenium are used, which have superior activity and selectivity to 1,4-diacetoxybutene compared to palladium-based catalysts. However, the above-mentioned rhodium-based solid catalyst has the disadvantage that rhodium is eluted into the reaction solution as the reaction progresses, causing a rapid decrease in activity, and further improvements are required in order to commercialize it. be. The present inventors investigated rhodium-based solid catalysts that cause less elution of rhodium into the reaction solution, and found that at least one selected from rhodium compounds, antimony compounds, arsenic compounds, and thallium compounds was supported on a carrier, and reduction treatment was performed. The inventors have discovered that when the reaction is carried out using the prepared solid catalyst, the elution of rhodium into the reaction solution can be suppressed to a very small amount, leading to the present invention. The present invention will be explained in detail below. The catalyst used in the method of the present invention is a solid catalyst in which at least one of a rhodium compound, an antimony compound, an arsenic compound, and a thallium compound is supported on a carrier and subjected to a reduction treatment. The solid catalyst includes inorganic acid salts such as rhodium chloride, rhodium nitrate, rhodium sulfate, carboxylic acid salts such as rhodium acetate, inorganic compounds such as rhodium hydroxide and rhodium oxide, sodium hexachlororhodium, ammonium hexachlororhodium, rhodium chloropentaammine, Complex compounds such as chlorohexaammine rhodium, potassium hexacyano rhodium, and trichlorotripyridine rhodium are used as rhodium sources, and antimony chloride, antimony oxide, antimony sulfide, antimony metal, arsenic oxide, thallium oxide, thallium nitrate, thallium acetate, etc. are used as rhodium sources. Prepared for use as a source of arsenic or thallium. Suitable carriers include activated carbon, silica, silica alumina, alumina, pumice, diatom, etc., and activated carbon and silica are particularly preferably used. These carriers may be used as commercially available products, but good results are often obtained when used after heat treatment or acid treatment with hydrofluoric acid, nitric acid, etc. according to known methods. . In supporting the catalyst component on the carrier,
Each component may be supported sequentially or two or more components may be supported simultaneously. The catalyst components are supported on the carrier.
The reaction can be carried out by dissolving a compound containing the catalyst component in a solvent such as water or an acid, and using a well-known method such as an impregnation method, a dipping method, an evaporation method, a precipitation method, or a cation exchange method. The amount of catalyst components supported on the carrier can be varied over a wide range, with rhodium ranging from 0.1 to 20
Weight %, preferably 0.5 to 5 weight %, antimony, arsenic or thallium 0.05 to 30 as a single unit
% by weight, preferably 0.1-5% by weight. Also, the ratio of rhodium to antimony, arsenic or thallium is 0.01 per gram atom of rhodium.
~10 gram atoms, preferably 0.05-5 gram atoms. In the method of the present invention, in order to increase the activity of the catalyst, a reduction treatment is performed after supporting the catalyst component on a carrier. The reduction treatment can be carried out by a known reduction method using a reducing agent such as hydrogen, methanol, formalin, or hydrazine. The method of the present invention uses the above catalyst to create a suspended bed,
It is carried out by reacting 1,3-butadiene with molecular oxygen and acetic acid batchwise or continuously under defined reaction conditions in a gas or liquid phase in a flowing or fixed bed. Each reaction raw material may contain a diluent that is inert to the reaction, and there is no problem even if an inert gas such as nitrogen or argon or water coexists in the reaction system. Furthermore, when this reaction is carried out in a liquid phase, acetic acid may be used in excess as a catalyst, or a solvent inert to the reaction such as a saturated hydrocarbon or ester may be used. When carrying out this reaction in the gas phase, it is desirable to avoid gas compositions within the explosive range. In carrying out this reaction,
Molar ratio of acetic acid to 1,3-butadiene 3~
100, preferably 5 to 50, the reaction temperature is 50 to 150°C when carried out in a liquid phase, 100 to 250°C when carried out in a gas phase, and the reaction pressure is appropriately within the range of normal pressure to about 10 atm. selected. Next, the present invention will be explained in more detail with reference to Examples. Example 1 500 g of crushed coconut shell charcoal of 4 to 6 meshes, 356 g of concentrated nitric acid, and 830 g of water were charged into a flask with an internal volume of 3 and equipped with a reflux condenser, and heated under reflux for 4 hours. After standing overnight, the activated carbon was separated and dried in a rotary evaporator at 80° C. and 30 mmHg for 3 hours to prepare an activated carbon carrier. 3.9 g of an acetic acid solution of rhodium acetate (3.78 mg atoms of rhodium alone) and antimony trichloride
0.258 g was dissolved in 30 ml of 6N hydrochloric acid, 13 g of the activated carbon carrier was added thereto, the mixture was left to stand for 30 minutes, and then evaporated to dryness using a rotary evaporator. Next, the temperature was raised to 100°C under a nitrogen flow, then switched to a hydrogen flow, raised to 150°C and held for 2 hours, raised to 300°C and held for 2 hours, and raised to 400°C for 2 hours. After holding for a period of time, the catalyst was activated by cooling under a nitrogen stream. 10 ml (approximately 4.7 g) of the above catalyst was packed into a heat-resistant glass reactor with an inner diameter of 13.9 mm, and 20 ml of acetic acid was charged.
Acetic acid, butadiene and oxygen were immersed in a constant temperature bath at 670 mmole/hr and 118 m from below the catalyst layer, respectively.
The reaction was carried out by feeding at a rate of mole/hr and 78 mmole/hr. After a predetermined period of time had elapsed, the reaction solution was collected, the product was quantified by gas chromatography, and the rhodium eluted into the reaction solution was quantified by atomic absorption spectrophotometry. The results are shown in Table 1. Example 2 A homogeneous solution obtained by dissolving 0.112 g of arsenic oxide in a mixed solvent of 30 ml of ethanol and 30 ml of 30% by weight nitric acid and mixing it with 2.93 g of an acetic acid solution of rhodium acetate (2.82 mg atoms as rhodium alone) was used. 13 g of the activated carbon carrier prepared in 1 was soaked and evaporated to dryness using a rotary evaporator. The obtained catalyst was placed under nitrogen gas flow containing 8% methanol by volume.
Activation was performed by reduction treatment at 200°C for 2 hours and at 400°C for 4 hours. Example 1 using 1.0 ml (4.39 g) of the above catalyst
The reaction was carried out in the same manner. The results are shown in Table-1. Example 3 Using 0.259 g of thallium oxide instead of arsenic oxide, the amount of rhodium acetate acetic acid solution used was 3.9 g.
A catalyst was prepared and activated in the same manner as in Example 2, except that the amount of rhodium was changed to 3.78 mg atoms as a simple substance of rhodium. A reaction was carried out in the same manner as in Example 1 using 10 ml (4.67 g) of the obtained catalyst. The results are shown in Table-1. Comparative Example 1 7.8 g of acetic acid solution of rhodium acetate (7.55 mg atoms as rhodium alone) and 0.603 g of tellurium dioxide
was dissolved in 50 ml of 6N hydrochloric acid, 50 ml (25.9 g) of the activated carbon carrier prepared in Example 1 was added, and the mixture was evaporated to dryness using a rotary evaporator. The obtained catalyst was activated by reduction treatment under a hydrogen stream at 150°C for 2 hours, at 400°C for 2 hours, and further at 500°C for 2 hours. A reaction was carried out in the same manner as in Example 1 using 10 ml (4.46 g) of the above catalyst. The results are shown in Table-1. Comparative Example 2 0.294 g of tellurium dioxide was dissolved in 50 ml of 6N hydrochloric acid and mixed with 6.36 g of an acetic acid solution of rhodium acetate (6.15 mg atoms as rhodium alone) to form a homogeneous solution. Add silica particles (manufactured by Fuji Davison Co., Ltd.) to this solution.
iD-8) 50 ml (21.1 g) was immersed and evaporated to dryness using a rotary evaporator. 20 ml of the obtained catalyst was heated at 150°C for 1 hour and at 300°C for 2 hours under a stream of steam.
Activation was performed by time reduction treatment. Example 1 using 4.39 g (about 10 ml) of the above catalyst
The reaction was carried out in the same manner. The results are shown in Table-1. 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 ロジウム化合物ならびにアンチモン化合物、
砒素化合物およびタリウム化合物より選ばれる少
くとも一種を担体に担持させ、還元処理を施こし
た固体触媒の存在下に、1・3−ブタジエンを分
子状酸素および酢酸と反応させることを特徴とす
るジアセトキシブテンの製造法。
1 Rhodium compounds and antimony compounds,
1,3-Butadiene is reacted with molecular oxygen and acetic acid in the presence of a solid catalyst which has been subjected to a reduction treatment, in which at least one selected from an arsenic compound and a thallium compound is supported on a carrier. Method for producing acetoxybutene.
JP7389478A 1978-06-19 1978-06-19 Preparation of diacetoxybutene Granted JPS55338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7389478A JPS55338A (en) 1978-06-19 1978-06-19 Preparation of diacetoxybutene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7389478A JPS55338A (en) 1978-06-19 1978-06-19 Preparation of diacetoxybutene

Publications (2)

Publication Number Publication Date
JPS55338A JPS55338A (en) 1980-01-05
JPS6146464B2 true JPS6146464B2 (en) 1986-10-14

Family

ID=13531357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7389478A Granted JPS55338A (en) 1978-06-19 1978-06-19 Preparation of diacetoxybutene

Country Status (1)

Country Link
JP (1) JPS55338A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2887278B2 (en) * 1990-05-31 1999-04-26 ダイキン工業株式会社 Method for producing 1-chloro-1,2,2-trifluoroethylene and 1,2,2-trifluoroethylene

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52125106A (en) * 1976-04-13 1977-10-20 Asahi Chem Ind Co Ltd Production of diacyloxybutenes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52125106A (en) * 1976-04-13 1977-10-20 Asahi Chem Ind Co Ltd Production of diacyloxybutenes

Also Published As

Publication number Publication date
JPS55338A (en) 1980-01-05

Similar Documents

Publication Publication Date Title
JPH0513704B2 (en)
JPS6146464B2 (en)
JPS6130659B2 (en)
JPH03173840A (en) Production of chlorotrifluoroethylene
JPS63277643A (en) Production of unsaturated glycol diester
JPH0125731B2 (en)
JPS6362525B2 (en)
JPH05995A (en) Production of acetic acid
JPS5926611B2 (en) Method for producing acetic anhydride
JP2887278B2 (en) Method for producing 1-chloro-1,2,2-trifluoroethylene and 1,2,2-trifluoroethylene
JPS6039653B2 (en) Method for producing oxygen-containing hydrocarbon compound
JP2870738B2 (en) Method for producing carbonic acid diester
JPS5867636A (en) Production of plyhydric phenol
JPS5980630A (en) Preparation of oxalic acid diester
US4038307A (en) Manufacture of butenediol diacetates
JPS6147818B2 (en)
JPH03279349A (en) Production of unsaturated diester
JP4232266B2 (en) Phenyl ester production method
JPS5848534B2 (en) Method for producing carboxylic acid alkenyl ester
JPS6233215B2 (en)
JPS5951850B2 (en) Catalyst for diacyloxylation of conjugated dienes
JPS5825654B2 (en) Production method of di(acyloxy)alkene
JPS6340177B2 (en)
JPH0692910A (en) Production of carbonic acid diester
JPS6055050B2 (en) Method for producing diacetoxybutene