JPS5934694B2 - Method for producing 1,4-diacetoxy-cis-2-butene - Google Patents

Method for producing 1,4-diacetoxy-cis-2-butene

Info

Publication number
JPS5934694B2
JPS5934694B2 JP51006923A JP692376A JPS5934694B2 JP S5934694 B2 JPS5934694 B2 JP S5934694B2 JP 51006923 A JP51006923 A JP 51006923A JP 692376 A JP692376 A JP 692376A JP S5934694 B2 JPS5934694 B2 JP S5934694B2
Authority
JP
Japan
Prior art keywords
butene
diacetoxy
catalyst
reaction
butadiene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51006923A
Other languages
Japanese (ja)
Other versions
JPS5291817A (en
Inventor
照夫 松田
国吉 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP51006923A priority Critical patent/JPS5934694B2/en
Publication of JPS5291817A publication Critical patent/JPS5291817A/en
Publication of JPS5934694B2 publication Critical patent/JPS5934694B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 本発明はブタジエンから1、4−ジアセトキシーシスー
2−ブテンを製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing 1,4-diacetoxycis-2-butene from butadiene.

有機溶剤および合成樹脂原料として近年需要が伸びてき
ている1、4−ブタンジオールを合成する方法には種々
の方法がある。現在工業化されているレツペ反応により
アセチレンを原料として製造する方法は反応工程が複雑
なうえ原材料費力塙いという欠点があつた。また、ブタ
ジエンを原料としてこれをハロゲン化し、ジハロゲン化
ブテンを合成し、これをエステル化してジアセトキシブ
テンを合成し、これを水添加水分解してブタンジオール
を合成する方法はレツペ法と同様に工程が複雑なうえ原
材料費が高いという欠点があつた。現在最も工業的に重
要視されている方法としては、ブタジエンを酢酸の存在
下で一段で酸化してジアセトキシブテンを合成し、これ
を水添加水分解してブタンジオールを合成する方法であ
る。
There are various methods for synthesizing 1,4-butanediol, which has been in increasing demand in recent years as an organic solvent and raw material for synthetic resins. The currently industrialized method of producing acetylene using Retuppe reaction as a raw material has the drawbacks of a complicated reaction process and high raw material costs. In addition, the method of halogenating butadiene as a raw material to synthesize dihalogenated butene, esterifying it to synthesize diacetoxybutene, and hydrolyzing it with water to synthesize butanediol is the same as the Retzpe method. The disadvantages were that the process was complex and the cost of raw materials was high. The method that is currently considered most important industrially is to oxidize butadiene in one step in the presence of acetic acid to synthesize diacetoxybutene, which is then hydrolyzed with water to synthesize butanediol.

ジアセトキシブテンの一段合成法としては、気相法、液
相法が提案されているが、気相法の場合、副生物が多く
生成することおよび触媒の寿命等の問題があつた。液相
法でジアセトキシブテンを合成する方法の中にも触媒が
反応液中に均一にとけている場合と不均一一触媒を用い
る場合とがある。前者は触媒の分離、回収工程がきわめ
て複雑になるので工業的には不利であり、後者の方が有
利である。しかし、後者の不均一一固体触媒を用いる液
相反応においては、生成してくる1、4−ジアセトキシ
ブテンの選択率は約85%であり、副生物の生成が若干
あり、また生成した1、4−ジアセトキシブテンはシス
体とトランス体の混合物であり、次工程の水添反応にお
いて不利であるトランス体の生成量が多いという欠点が
あった。本発明者らはこれら従来法の欠点を克服するた
め鋭意検討を重ねた結果、一般組成が〔Rh’)xCP
OyCPd)z〔Te)w(ただしx■1、2≦z(z
+y)≦3、0.2≦w/(x+y+z)≦2.0)で
示される金属を含む固体触媒(上記金属成分を含む化合
物を還元したもの)の共存下にブタジエンと酢酸と酸素
含有ガスとを液相下に反応させることにより1、4−ジ
アセトキシーシスー2−ブテンが1断選択率で得られる
ことを知り本発明に到達した。本発明に使用する触媒の
担体としては、アルミナ、シリカアルミナ、軽石、シリ
カゲル、合成ゼオライト、活性炭等が使用できるが、中
でもシリカゲル、活性炭が特にすぐれている。触媒成分
として用いられるロジウム、白金、パラジウムおよびテ
ルル比合物は、例,えば塩化ロジウム、硝酸ロジウム、
硫酸ロジウム、塩化白金酸、塩化白金(入塩化白金QV
)、塩化白金カリウム(入塩化白金カリウム(5)入塩
化白金酸ナトリウム、塩化パラジウム、硝酸パラジ1ク
ム、塩化パラジウムナトリウム、塩化パラジウムアンモ
ニウムおよび塩化テノ防レ(5)入二酸化テノVL/(
IV入三酸化テルル(Vl)、テノ防レ酸、オルソテル
ル酸等である。
A gas phase method and a liquid phase method have been proposed as one-step synthesis methods for diacetoxybutene, but in the case of the gas phase method, there are problems such as generation of many by-products and catalyst life. Among the liquid phase methods for synthesizing diacetoxybutene, there are cases in which the catalyst is uniformly dissolved in the reaction liquid and cases in which a heterogeneous catalyst is used. The former is industrially disadvantageous because the catalyst separation and recovery steps become extremely complicated, whereas the latter is more advantageous. However, in the latter liquid phase reaction using a heterogeneous solid catalyst, the selectivity of the 1,4-diacetoxybutene produced is about 85%, with some by-products being produced, and 1,4-diacetoxybutene is a mixture of cis and trans forms, and has the disadvantage that a large amount of trans forms are produced, which is disadvantageous in the hydrogenation reaction in the next step. The present inventors have conducted intensive studies to overcome the drawbacks of these conventional methods, and as a result, the general composition is [Rh')xCP
OyCPd)z[Te)w(However, x■1, 2≦z(z
+y)≦3, 0.2≦w/(x+y+z)≦2.0) butadiene, acetic acid, and an oxygen-containing gas in the coexistence of a solid catalyst containing a metal (reduced compound containing the above metal component). The present invention was achieved based on the discovery that 1,4-diacetoxycis-2-butene can be obtained with a one-cut selectivity by reacting the above in a liquid phase. As a carrier for the catalyst used in the present invention, alumina, silica alumina, pumice, silica gel, synthetic zeolite, activated carbon, etc. can be used, and among them, silica gel and activated carbon are particularly excellent. Rhodium, platinum, palladium and tellurium compounds used as catalyst components include, for example, rhodium chloride, rhodium nitrate,
Rhodium sulfate, chloroplatinic acid, platinum chloride (platinum chloride QV)
), potassium platinum chloride (contains platinum potassium chloride (5), sodium chloroplatinate, palladium chloride, 1 cum palladium nitrate, sodium palladium chloride, palladium ammonium chloride, and tenoprotector chloride (5), teno dioxide VL/(
These include IV-containing tellurium trioxide (Vl), tenoprotective acid, orthotelluric acid, and the like.

担体に対する貴金属成分の添加量は0.1〜30wtV
)が好ましく、最も好ましくは0.2〜20wt%であ
る。これら金属成分の添加量が0.1wt%以下に少量
の場合には反応速度が非常に遅くなり、また30wt%
以上では経済的に不利である。パラジウム又はパラジウ
ム及び白金のロジウムに対する混合比は2〜3モル比で
ある。モル比が3を越える場合はシス体の選択率が悪く
なりトランス体および3,4−ジアセトキシ−1−ブテ
ンの生成量が多くなるので好ましくなく2未満の場合は
幼果が十分でない。テルルの添加量はロジウムとパラジ
ウム(又はロジウムとパラジウムと白金)の合計に対し
て0.2〜2.0モル比である。
The amount of noble metal component added to the carrier is 0.1 to 30 wtV
) is preferred, and most preferably 0.2 to 20 wt%. If the amount of these metal components added is small, such as 0.1 wt% or less, the reaction rate becomes extremely slow;
The above is economically disadvantageous. The mixing ratio of palladium or palladium and platinum to rhodium is 2 to 3 molar ratio. If the molar ratio exceeds 3, the selectivity for the cis isomer will be poor and the amount of the trans isomer and 3,4-diacetoxy-1-butene produced will increase, which is undesirable.If the molar ratio is less than 2, there will not be enough young fruit. The amount of tellurium added is 0.2 to 2.0 molar ratio to the total of rhodium and palladium (or rhodium, palladium, and platinum).

モル比が0.2未満または2.0以−ヒの場合、反応速
度が遅くなると同時に1,4−ジアセトキシーシス一2
−ブテンの選択率が悪くなるので好ましくない。触媒の
調製方法は例えば、(1)貴金属成分化合物とテルル化
合物とを適当な溶媒にとかし、この中に担体を入れて加
熱しながらゆつくり蒸発乾固させたのち150〜300
℃で乾燥させ、その後通常の方法、即ら水素またはメタ
ノール飽和蒸気等の気流中で還元させるか、またはヒド
ラジン、NaBH4、ギ酸等の還元剤で還元させる方法
、(2)貴金属成分化合物とテルル化合物とを溶媒にと
かした後担体を加えて溶液を含浸させた後、これをとり
だし乾燥し還元する方法等があげられる。本発明に使わ
れる触媒の形状は反応器の形式により種々の状態で使用
することができる。
When the molar ratio is less than 0.2 or more than 2.0, the reaction rate slows down and at the same time 1,4-diacetoxysis
-It is not preferable because the selectivity of butene becomes poor. For example, the method for preparing the catalyst is as follows: (1) Dissolve the noble metal component compound and the tellurium compound in a suitable solvent, put the carrier therein and slowly evaporate to dryness while heating, and then
℃, and then reduced by a conventional method, that is, in a gas stream of hydrogen or methanol saturated vapor, or with a reducing agent such as hydrazine, NaBH4, formic acid, etc. (2) Noble metal component compound and tellurium compound Examples include a method in which a carrier is dissolved in a solvent, a carrier is added to impregnate the solution, and then the carrier is taken out, dried, and reduced. The catalyst used in the present invention can be used in various shapes depending on the type of reactor.

例えばスラリー方式で行なう場合には微粉状が好ましく
、固定床式の場合は粒状が好ましい。触媒の使用量は全
液量に対して0.2〜30wt%が好ましく、最も好ま
しくは0.5〜20wt%である。
For example, when using a slurry method, fine powder is preferable, and when using a fixed bed method, granular form is preferable. The amount of catalyst used is preferably 0.2 to 30 wt%, most preferably 0.5 to 20 wt%, based on the total liquid amount.

触媒量が0.2wt%以下の場合、反応速度が非常にお
そくなり、触媒量が30wt%以上の場合は副生物が多
くなるので好ましくない。酢酸の使用量は原料ブタジエ
ンに対して3〜100モル倍が好ましく、最も好ましく
は、5〜50モル倍である。モル比が3以下の場合、反
応速度がおそくなると同時に選択率の低下が著しくなる
。モル比が100モル倍以上の場合、反応後目的物の分
離が不経済となり工業的に不利である。本発明に使用さ
れる酸素含有ガスは純酸素または不活性ガスで希釈され
た酸素例えば空気等を使用することができる。酸素の使
用量は化学量論量、即ち反応したブタジエンに対して0
.5モル倍以−E存在すればよい。酸素濃度は特に限定
されないが、気相部において爆発範囲に入らない範囲で
あればよい。反応温度は30〜200℃が好ましく、最
も好ましくは50〜150℃である。
When the amount of catalyst is less than 0.2 wt%, the reaction rate becomes very slow, and when the amount of catalyst is more than 30 wt%, by-products increase, which is not preferable. The amount of acetic acid used is preferably 3 to 100 moles, most preferably 5 to 50 moles, relative to the raw material butadiene. When the molar ratio is 3 or less, the reaction rate becomes slow and at the same time the selectivity decreases significantly. If the molar ratio is 100 times or more, separation of the target product after the reaction becomes uneconomical, which is industrially disadvantageous. The oxygen-containing gas used in the present invention may be pure oxygen or oxygen diluted with an inert gas, such as air. The amount of oxygen used is stoichiometric, i.e. 0 relative to the reacted butadiene.
.. It is sufficient that -E is present in an amount of 5 moles or more. The oxygen concentration is not particularly limited, but may be within a range that does not fall within the explosive range in the gas phase. The reaction temperature is preferably 30-200°C, most preferably 50-150°C.

反応温度が30℃以下の場合、反応速度が非常に遅くな
るので経済的でなくなる。反応温度が200℃以上では
1,4−ジアセトキシーシス一2ブテンの選択率が非常
に悪くなるので好ましくない。反応圧力は常圧ないし1
00気圧が好ましく、最も好ましくは常圧ないし50気
圧である。
If the reaction temperature is 30° C. or lower, the reaction rate will be very slow, making it uneconomical. A reaction temperature of 200° C. or higher is not preferable because the selectivity of 1,4-diacetoxy-12-butene becomes extremely poor. The reaction pressure is normal pressure to 1
00 atmospheres is preferred, and most preferably normal pressure to 50 atmospheres.

圧力が100気圧以上の場合、安全性および装置の経済
件の点で好ましくない。以上述べたごとく、本発明の方
法によつて、ブタジエンと酢酸と酸素含有ガスとを触媒
の存在下で反応させることにより、1,4−ジアセトキ
シーシス一2−ブテンを選択的に得ることができるので
工業的に非常に有用である。
If the pressure is 100 atmospheres or more, it is unfavorable from the viewpoint of safety and economical aspects of the device. As described above, by the method of the present invention, 1,4-diacetoxysis-2-butene can be selectively obtained by reacting butadiene, acetic acid, and an oxygen-containing gas in the presence of a catalyst. It is very useful industrially.

以下に実施例をあげて本発明を更に具体的に説明するが
、本発明はこれら実施例によつて限定されるものではな
い。尚、実施例中の転化率はモル%、収率はブタジエン
に対するモル%を示す。実施例 1 塩化ロジウム0.15f7(0.62mm01)、塩化
パラジウム0.319V(1.79mm01)、および
二酸化テルル0.076t(0.48mm01)を5N
塩酸20m1に溶解させ、この中に予め硝酸処理した活
性炭5t(16〜32メツシユ)を入れ、湯浴上で徐々
に蒸発乾固させた。
The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited to these Examples. In the Examples, the conversion rate is mol %, and the yield is mol % based on butadiene. Example 1 Rhodium chloride 0.15f7 (0.62mm01), palladium chloride 0.319V (1.79mm01), and tellurium dioxide 0.076t (0.48mm01) in 5N
The mixture was dissolved in 20 ml of hydrochloric acid, and 5 tons (16 to 32 mesh) of activated carbon that had been previously treated with nitric acid was placed therein and gradually evaporated to dryness on a hot water bath.

その後この触媒を焼成管につめ窒素気流中150℃で1
時間乾燥させたのち次に室温で飽和させたメタノール一
窒素混合ガスにて200℃で2時間還元させたのち、更
に400℃で1時間還元させた。この触媒0,10fを
内容積25TI11,のガラス封管に入れ、その上に酢
酸4.27(70mm01)を入れたのち、このガラス
封管をドライアイス−メタノール温度に冷却し、ブタジ
エン108ワ(2mm01)を入れ、ガラス封管の気相
部を純酸素で置換させたのち、バーナーで管を封じた。
After that, this catalyst was packed in a calcining tube and heated at 150°C in a nitrogen stream for 1 hour.
After drying for an hour, the mixture was reduced at 200° C. for 2 hours using a methanol-nitrogen mixed gas saturated at room temperature, and then further reduced at 400° C. for 1 hour. This catalyst 0.10f was placed in a glass sealed tube with an internal volume of 25TI11, and 4.27 (70mm01) of acetic acid was placed on top of it.The glass sealed tube was cooled to the dry ice-methanol temperature, and the butadiene 108W ( After replacing the gas phase of the glass sealed tube with pure oxygen, the tube was sealed with a burner.

この反応管を80℃の湯浴中で回転させながら2時間反
応させた。
The reaction tube was allowed to react for 2 hours while rotating in a water bath at 80°C.

生成液をガスクロにより分析したところブタジエンの転
化率は56%であり、1,4−ジアセトキシーシス一2
−ブテンの収率は39.1%、1,4−ジアセトキシ−
トランス−2−ブテンの収率は10.591)、3,4
−ジアセトキシ−1−ブテンの収率は4.9%であつた
Analysis of the produced liquid by gas chromatography revealed that the conversion rate of butadiene was 56%, indicating that 1,4-diacetoxysis-2
-Yield of butene was 39.1%, 1,4-diacetoxy-
The yield of trans-2-butene is 10.591), 3,4
The yield of -diacetoxy-1-butene was 4.9%.

実施例 2 塩化ロジウム0.15f(0.62mm01)、塩化白
金酸0.25t(0.49mm01)、塩化パラジウム
0.15y(0.84mm01)および二酸化テルル0
.0761(0.48mm01)を5N一塩酸20me
に溶解させ、この中に予め硝酸処理した活性炭5t(1
6〜32メツシユ)を入れ、湯浴上で徐々に蒸発乾固さ
せた。
Example 2 Rhodium chloride 0.15f (0.62mm01), chloroplatinic acid 0.25t (0.49mm01), palladium chloride 0.15y (0.84mm01) and tellurium dioxide 0
.. 0761 (0.48mm01) in 5N monohydrochloric acid 20me
5 tons (1 ton) of activated carbon that had been previously treated with nitric acid was
6 to 32 meshes) were added and gradually evaporated to dryness on a hot water bath.

その後、この触媒を焼成管につめ窒素気流中150℃で
1時間乾燥させたのち、次に室温で飽和させたメタノー
ル一窒素混合ガスにて200℃で2時間還元させたのち
更に400℃で1時間還元させた。この触媒0.10V
を用い実施例1と同様の方法で反応を行つた。
Thereafter, this catalyst was packed in a calcining tube and dried at 150°C in a nitrogen stream for 1 hour, then reduced at 200°C for 2 hours with a methanol-nitrogen mixture saturated at room temperature, and then further heated at 400°C for 1 hour. I got my time back. This catalyst 0.10V
The reaction was carried out in the same manner as in Example 1 using .

生成液をガスクロにより分析したところブタジエンの転
化率は62%であり、1,4−ジアセトキシーシス一2
−ブテンの収率は43.5%、1,4−ジアセトキシ−
トランス−2−ブテンの収率は10.9%、3,4−ジ
アセトキシ−1−ブテンの収率は5.1%であづた。
Analysis of the produced liquid by gas chromatography revealed that the conversion rate of butadiene was 62%, indicating that 1,4-diacetoxysis-2
-Yield of butene was 43.5%, 1,4-diacetoxy-
The yield of trans-2-butene was 10.9%, and the yield of 3,4-diacetoxy-1-butene was 5.1%.

比較例 1 塩化パラジウム0.447(2.47mm01)および
二酸化テルル0.0767(0.48mm01)を5N
一塩酸20meに溶解させ、この中に予め硝酸処理した
活性炭5t(16〜32メツシユ)を入れ湯浴上で蒸発
乾固させた。
Comparative Example 1 5N of palladium chloride 0.447 (2.47 mm01) and tellurium dioxide 0.0767 (0.48 mm01)
It was dissolved in 20 me of monohydrochloric acid, and 5 tons (16 to 32 mesh) of activated carbon that had been previously treated with nitric acid was placed therein and evaporated to dryness on a hot water bath.

その後、この触媒を焼成管につめ窒素気流中150℃で
1時間乾燥させたのち、次に室温で飽和させたメタノー
ル一窒素混合ガスにて200℃で2時間還元させたのち
、更に400℃で1時間還元させた。この触媒0.10
7を用い、実施例1と同様の方法で反応を行つた。
Thereafter, the catalyst was packed in a calcining tube and dried at 150°C for 1 hour in a nitrogen stream, then reduced at 200°C for 2 hours with a methanol-nitrogen mixture saturated at room temperature, and then further heated at 400°C. It was allowed to recover for 1 hour. This catalyst 0.10
The reaction was carried out in the same manner as in Example 1 using 7.

生成液をガスクロにより分析したところブタジエンの転
化率は49(fl)であり、1,4−ジアセトキシーシ
ス一2−ブテンの収率は15.9%、1,4−ジアセト
キシ−トランス−2−ブテンの収率は27.3%、3,
4−ジアセトキシ−1−ブテンの収率は2.8%であつ
た。
Analysis of the product liquid by gas chromatography showed that the conversion rate of butadiene was 49 (fl), the yield of 1,4-diacetoxy-trans-2-butene was 15.9%, and the yield of 1,4-diacetoxy-trans-2 -butene yield is 27.3%, 3,
The yield of 4-diacetoxy-1-butene was 2.8%.

比較例 2 塩化白金酸0.65V(1.27皿01)および二酸化
テルル0.076ft(0.48mm01)を5N−塩
酸20dに溶解させ、この中に予め硝酸処理した活性炭
5V(16〜32メツシユ)を入れ、湯浴上で徐々に蒸
発乾固させた。
Comparative Example 2 Chloroplatinic acid 0.65V (1.27 dishes 01) and tellurium dioxide 0.076ft (0.48mm 01) were dissolved in 5N-hydrochloric acid 20d, and activated carbon 5V (16 to 32 dishes) which had been previously treated with nitric acid was dissolved in this solution. ) and was gradually evaporated to dryness on a hot water bath.

その後、この触媒を焼成管につめ窒素気流中150℃で
1時間乾燥させたのち、次に室温で飽和させたメタノー
ル一窒素混合ガスにて200℃で2時間還元させたのち
更に400℃で1時間還元させた。この触媒0.10V
を用い実施例1と同様の方法で反応を行つた生成液をガ
スクロにより分析したところブタジエンの転化率は65
%であり、1,4−ジアセトキシーシス一2−ブテンの
収率は10.1%、1,4−ジアセトキシ−トランス−
2−ブテンの収率は42.1%、3,4−ジアセトキシ
−1−ブテンの収率は11.0%であつた。
Thereafter, this catalyst was packed in a calcining tube and dried at 150°C in a nitrogen stream for 1 hour, then reduced at 200°C for 2 hours with a methanol-nitrogen mixture saturated at room temperature, and then further heated at 400°C for 1 hour. I got my time back. This catalyst 0.10V
The reaction was carried out in the same manner as in Example 1, and the resulting solution was analyzed by gas chromatography, and the conversion rate of butadiene was 65.
%, the yield of 1,4-diacetoxy-trans-2-butene was 10.1%, and the yield of 1,4-diacetoxy-trans-
The yield of 2-butene was 42.1%, and the yield of 3,4-diacetoxy-1-butene was 11.0%.

Claims (1)

【特許請求の範囲】 1 一般組成がモル比で〔Rh〕x〔Pt〕y〔Pd〕
z〔Te〕w(ただしx=1、2≦z(またはz+y)
≦3、0.2≦w/(x+y+z)≦2.0)で示され
る金属を含む固体触媒(上記金属成分を含む化合物を還
元したもの)の存在下に温度30〜200℃においてブ
タジエンと酢酸と酸素含有ガスとを液相下で反応させる
ことを特徴する1,4−ジアセトキシ−シス−2−ブテ
ンの製造方法。
[Claims] 1. General composition is [Rh]x[Pt]y[Pd] in molar ratio
z[Te]w (where x=1, 2≦z (or z+y)
≦3, 0.2≦w/(x+y+z)≦2.0) Butadiene and acetic acid at a temperature of 30 to 200°C in the presence of a solid catalyst (reduced compound containing the above metal component) containing a metal. 1. A method for producing 1,4-diacetoxy-cis-2-butene, which comprises reacting 1,4-diacetoxy-cis-2-butene with an oxygen-containing gas in a liquid phase.
JP51006923A 1976-01-23 1976-01-23 Method for producing 1,4-diacetoxy-cis-2-butene Expired JPS5934694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51006923A JPS5934694B2 (en) 1976-01-23 1976-01-23 Method for producing 1,4-diacetoxy-cis-2-butene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51006923A JPS5934694B2 (en) 1976-01-23 1976-01-23 Method for producing 1,4-diacetoxy-cis-2-butene

Publications (2)

Publication Number Publication Date
JPS5291817A JPS5291817A (en) 1977-08-02
JPS5934694B2 true JPS5934694B2 (en) 1984-08-24

Family

ID=11651753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51006923A Expired JPS5934694B2 (en) 1976-01-23 1976-01-23 Method for producing 1,4-diacetoxy-cis-2-butene

Country Status (1)

Country Link
JP (1) JPS5934694B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6111134A (en) * 1997-09-25 2000-08-29 Mitsubishi Chemical Corporation Process for producing unsaturated glycol diester using tellurium and rhodium catalyst

Also Published As

Publication number Publication date
JPS5291817A (en) 1977-08-02

Similar Documents

Publication Publication Date Title
EP0147219A2 (en) Pd/Re Hydrogenation catalyst and process for making tetrahydrofuran and 1,4-butanediol
JPH05221894A (en) Preparation of 1,1,1,2,3,3,3-heptafluoro- propane (r227)
JPS5934694B2 (en) Method for producing 1,4-diacetoxy-cis-2-butene
US3965156A (en) Process for preparing vinyl esters of carboxylic acids
JPS6113689B2 (en)
JPS5926611B2 (en) Method for producing acetic anhydride
CA1055519A (en) Manufacture of butenediol diacetates
JPS6210985B2 (en)
JPS6055050B2 (en) Method for producing diacetoxybutene
JPH02256651A (en) Production of carbonic ester
JPH0227349B2 (en)
JPS6210984B2 (en)
JP2001079415A (en) Catalyst for synthesis of methyl acetate and acetic acid and method for the synthesis
JPH0455409B2 (en)
JPS5833850B2 (en) Production method of allyl acetate
SU791222A3 (en) Method of producing carboxylic acid unsaturated esters
JPS6210986B2 (en)
JPS6210504B2 (en)
JPS6340177B2 (en)
JPS6150944B2 (en)
JPS6210983B2 (en)
JPH06501014A (en) Method for producing naphthalene and 2-monoiodonaphthalene enriched product streams
JPH0227351B2 (en)
JPH01301645A (en) Production of carboxylic acid aryl esters and catalyst used in said production process
JPS6240340B2 (en)