JPS6054465A - Three-dimensional integrated circuit device - Google Patents

Three-dimensional integrated circuit device

Info

Publication number
JPS6054465A
JPS6054465A JP16392083A JP16392083A JPS6054465A JP S6054465 A JPS6054465 A JP S6054465A JP 16392083 A JP16392083 A JP 16392083A JP 16392083 A JP16392083 A JP 16392083A JP S6054465 A JPS6054465 A JP S6054465A
Authority
JP
Japan
Prior art keywords
layers
dimensional
equation
yield
lsi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16392083A
Other languages
Japanese (ja)
Other versions
JPH0518258B2 (en
Inventor
Junji Sakurai
桜井 潤治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP16392083A priority Critical patent/JPS6054465A/en
Publication of JPS6054465A publication Critical patent/JPS6054465A/en
Publication of JPH0518258B2 publication Critical patent/JPH0518258B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0688Integrated circuits having a three-dimensional layout

Abstract

PURPOSE:To reduce the manufacturing cost by specifying the number of layers when forming an active element of three-dimensional LSI, thereby obtaining the optimum number of the layers. CONSTITUTION:When forming active layers of three-dimensional LSI, the number of the layers is determined to the number designated by an equation. That is, when M represents integer number which satisfies M0>=1, n is the number of the steps of the single layer, a is a constant of proportion relating to the circuit density, D is a mean defect density, K is the number of active elements per chip, and y0 is the mean step yield, YC is the desired yield, and log is natural logarithm, M0 supported by an equation of (2n.a.D.K2/-log YC)<=M0<=(logYC/ 2n.logY0) is determined as the number of the layers. Thus, a three-dimensional LSI can be formed to match the cost, and largely contributes to the development of the LSI.

Description

【発明の詳細な説明】 +al 発明の技術分野 本発明は三次元集積回路装置(三次元LS I)に係か
り、特に設計時、所望の歩留Yc以上で製造するための
能動素子形成層の積層数M。を有する三次元LSIに関
する。
DETAILED DESCRIPTION OF THE INVENTION +al Technical Field of the Invention The present invention relates to a three-dimensional integrated circuit device (three-dimensional LSI), and in particular, it is related to a three-dimensional integrated circuit device (three-dimensional LSI). Number of layers M. The present invention relates to a three-dimensional LSI having a three-dimensional LSI.

(bl 技術の背景 周知のように、半導体集積回路(IC)は■、Sl、V
LSIと二次元(平面)領域で微細化、高築積化されて
きたが、それは高度に集積化すれば高速動作等、極めて
利点が多いからである。しかしながら、微細化にも限度
があり、例えばMOSFETのゲート長が1μmあるい
はそれ以下ではホットエレクトロン効果が顕著に現れる
というような微細化に伴う物理的限界が見えてきた。
(bl Technology Background As is well known, semiconductor integrated circuits (IC) are
LSIs and two-dimensional (planar) areas have been miniaturized and built up in large scale because highly integrated devices have many advantages, such as high-speed operation. However, there is a limit to miniaturization, and physical limits associated with miniaturization have become apparent, for example, when the gate length of a MOSFET is 1 μm or less, the hot electron effect becomes noticeable.

一方、絶縁基板上に半導体層を被着し、ビーム・アニー
ルして結晶基板として、その半導体結晶基板に素子を形
成し、更にその上に配線層を設けて、これを多層に積み
上げる構造が開発されており、これにより三次元LSI
が太き(クローズアンプしてきた。
On the other hand, a structure has been developed in which a semiconductor layer is deposited on an insulating substrate, beam annealed to form a crystal substrate, an element is formed on the semiconductor crystal substrate, a wiring layer is further provided on top of the semiconductor layer, and these are stacked in multiple layers. This allows three-dimensional LSI
It's thick (close amp).

上記のような微細化の限界を考え合わせると、立体的な
三次元LSIは今後にICが発展するための最大課題で
あると思われる。
Considering the limitations of miniaturization as described above, three-dimensional three-dimensional LSIs are considered to be the biggest challenge for the future development of ICs.

(I〕)従来1に術と問題点 ごの11、・うな三次元T、STにおいて、どのような
1−1漬の三次元1.3Iを形成するかは設計上極めて
重要な問題である。今後、例えば論理回路LSIにおい
て50万ゲートの二次元LSIを2層に積層するか、ま
たIn万ゲ−1−の二次元L S Iを101Mに積層
するかの選IRを迫られることが当然予想される。
(I) Conventional techniques and problems in 1. 11. What kind of 1-1 dipping three-dimensional 1.3I should be formed in the three-dimensional T and ST is an extremely important design issue. . In the future, for example, in logic circuit LSIs, it is natural that IRs will have to choose between stacking 500,000 gates of two-dimensional LSIs in two layers, or stacking 101 million gates of two-dimensional LSIs of 101M. is expected.

通常、二次元LSIのプロセスおよび設計は性能、−1
ス1.納明の3つを考慮して決定されるが、:IストL
:1Ii4! < 71F留(vicld )に左右さ
れる。三次元1.slにとってb 1aも重要なことは
採算に合うかどうかのご1スト問題である。
Usually, the process and design of two-dimensional LSI has a performance of -1
S1. It is determined by taking into account three factors: I St. L
:1Ii4! <71F (vicld). Three dimensions 1. For SL, the important thing about B1A is the question of whether it is profitable or not.

((1)発明の目的 本発明は11″l−1!スおよび設計の定数が与えられ
ている場合に、′f−>i4価格1以下のコストで製作
するだめの11シ動素子形成層の積層数を有する三次元
LS1を1!I!案するものである。
((1) Purpose of the Invention The present invention provides an 11-shift element forming layer that can be manufactured at a cost of 1 or less when 11''l-1! space and design constants are given. A three-dimensional LS1 having the number of laminated layers of 1!I! is proposed.

(+り発明の構成 その目的は、三次元LSIにおける能動素子形但し、M
oはM。≧1を満足する整数 n;単層の工程数 a;回路密度に関する比例定数 D;平均欠陥密度 に;チップ当たりの能動素子数 yo ;平均工程歩留 Yc H所望の歩留 log ;自然対数 からなる式で与えられる積層数MOを有する三次元集積
回路装置によって達成される。
(Constitution of the invention The purpose is to form an active element in a three-dimensional LSI.
o is M. Integer n that satisfies ≧1; number of single-layer processes a; proportionality constant D related to circuit density; average defect density; number of active elements per chip yo; average process yield Yc H desired yield log; from natural logarithm This is achieved by a three-dimensional integrated circuit device having the number of stacked layers MO given by the following equation.

(fl 発明の実施例 以下、詳細に説明すると、本発明にかかる積層数決定方
法は二次元LSIの歩留計算法を基礎にしているため、
まず二次元LSIの歩留計算法の概要を説明する。
(fl Embodiments of the Invention To explain in detail below, the method for determining the number of laminated layers according to the present invention is based on the yield calculation method of two-dimensional LSI,
First, an overview of the yield calculation method for two-dimensional LSI will be explained.

欠陥密度はポアソン分布に依存すると仮定する。It is assumed that the defect density depends on the Poisson distribution.

そうすると、工程数nによって完成される半導体ウェハ
ーのウコーハ 歩留Yは次式で表わされる。
Then, the yield Y of semiconductor wafers completed by the number of steps n is expressed by the following equation.

、二こに、y、、 1111.、I’1μ、1−それぞ
れ1番目工程の工程ル留、欠陥に関連ある面積、欠陥密
度で、本式におしする一/i’Ylのn y y、(る
因子は各工程歩留の積、指数関数因子は欠陥密度と面積
に依存する歩留を表すものである。
, Nikoni, y,, 1111. , I'1μ, 1 - the process yield of the first process, the area related to defects, and the defect density, which are expressed in this formula as 1/i'Yl, (the factor is the yield of each process. The product of , an exponential factor, represents the yield depending on defect density and area.

欠陥密度り、・とこ1結晶欠陥のみならずゴミの付着な
ど、電気的特性に及ぼず色々の欠陥を意味しており、欠
陥に関連ンを)る面積Ajとはそれの起こり易い6f1
賎の面積、rl’! I’l’Jにはチソプ−ヒの能動
素子領域の占める面積を意味している。
Defect density refers to not only crystal defects but also various defects that do not affect electrical characteristics, such as adhesion of dust, and the area Aj related to defects is the area 6f1 where it is likely to occur.
Area of sieve, rl'! I'l'J means the area occupied by the active element region of the chip.

(+ l JCII油illであるから、これを簡単し
て、Y −Y ++ 01111 (−n、A、D) 
−−−−−−(2)と11シ定する。こごに、yoは全
工程数nの平均工程歩留、Aはチップ面積、Dはチップ
面積の欠陥密度とする。
(+l Since it is JCII oil ill, this can be simplified as Y -Y ++ 01111 (-n, A, D)
-------- (2) and 11 are determined. Here, yo is the average process yield of the total number of processes n, A is the chip area, and D is the defect density of the chip area.

また、チップ面積へとチップ当たり素子数K(I−クン
ジスタ、ゲー 1などの能動素子を素子と略称する)と
の関係番、1、 A(K)=a−に2 −−−−−−−−−−−−−−−
−−−−−+31と仮定する。A(K )は素子数Kを
有するチップ面積を表わし、aは回路密度に関する比例
定数である。このように素子数の2乗にチップ面積が比
例するわけは、素子が増えると配線数が増加するからで
あり、理論的証明もなされており、且つ(3)式はCM
OSゲートアレイの実際の製品の値と良い一致を示す。
In addition, the relationship between the chip area and the number of elements per chip, K (active elements such as I-Kunjista and Ge1 are abbreviated as elements), is 1, A(K) = a- and 2. −−−−−−−−−
−−−−−+31. A(K) represents the chip area with the number of elements K, and a is a proportionality constant regarding circuit density. The reason why the chip area is proportional to the square of the number of elements is that the number of wires increases as the number of elements increases, and this has been theoretically proven, and equation (3) is
It shows good agreement with the actual product value of OS gate array.

(3)式を(2)式に入れると、次式が得られる。When formula (3) is inserted into formula (2), the following formula is obtained.

YK) = )Fo exp (−n・a−1)K2)
 −−・−+41この(4)式は歩留Y(K )が素子
数Kに依存することを示しているものである。
YK) = )Fo exp (-n・a-1)K2)
--.-+41 This equation (4) shows that the yield Y(K) depends on the number K of elements.

以上に説明した二次元LSIの式を基礎にして、三次元
LSIにおける同様の式を計算する。この場合、素子を
形成した層の積層数をMとすれば、上記工程数nt−M
倍繰り返して形成すると考えてよいから、二次元式のn
は三次元式ではM X nと置き換えられる。
Based on the formula for the two-dimensional LSI explained above, a similar formula for the three-dimensional LSI is calculated. In this case, if the number of laminated layers forming the element is M, then the number of steps nt-M
Since it can be considered that it is formed by repeating twice, the two-dimensional formula n
is replaced with M X n in the three-dimensional formula.

また、三次元における見掛は上のチップ面積はA(K)
=a・(K/M) 2−−−−−−−(5)となり、−
次元におりる(3)式は三次元では(5)式に代わる。
Also, the apparent area of the upper chip in three dimensions is A(K)
=a・(K/M) 2−−−−−−(5), −
Equation (3) in three dimensions is replaced by equation (5) in three dimensions.

これら2つの条件を(2)式に入れると、(4)式に代
わって次式かえられる。
When these two conditions are put into equation (2), equation (4) is replaced by the following equation.

Y(K、M) −Y o exp (−naDK2/M
)−(6)この式の有頂のy。は工程に関連する歩留で
あり、後項は欠陥に関連する歩留、例えば作業間違いや
’jel Wi装置の/&障などが関係する歩留である
。(6)式11、M=1とずれば、(41Jyがえられ
るから二次元LSIを含む弐^なる。
Y (K, M) -Y o exp (-naDK2/M
)-(6) the eclipsed y of this equation. is the yield related to the process, and the latter term is the yield related to defects, such as work errors and/& failures of the 'jel Wi equipment. (6) Equation 11, if M=1, then (41Jy is obtained, so it becomes 2, which includes a two-dimensional LSI.

この(fi1式において、歩留Y (KM)がMに関し
極大値をもら、その時のM=MOが最適の素子形成It
4の積IH数と11′る。7Eた、(6)式をMで偏微
分する()Y/21M・−0)と、 MO−Kb昂ラフ1777了−−−一−+71なる式か
えられる。この式でM、≧2とするにはY +I≧ex
p (−a、D、に2/ 4 ) −−−−−一ζ8)
の条1!1が必要になる。
In this formula (fi1), the yield Y (KM) takes a maximum value with respect to M, and then M=MO is the optimal element formation It
The product of 4 is IH number and 11'. 7E, by partially differentiating the equation (6) with respect to M ()Y/21M・-0), the equation becomes MO-KbRough1777R---1-+71. In this formula, to make M≧2, Y +I≧ex
p (-a, D, 2/4) ------1ζ8)
Article 1!1 is required.

ここにえられた(7)式のM。で(6)式のMを置換し
れて計算すると、次の(9)式かえられる。
M in equation (7) obtained here. When calculating by replacing M in equation (6), the following equation (9) can be obtained.

Y(K) −exp (−2na−D−に2/ M(1
)−+91この式はMOを一定値とした場合に、歩留W
K ”)と素子数にとの関係を示す式となる。
Y(K) -exp (-2na-D- to 2/M(1
)-+91 This formula shows that when MO is a constant value, the yield W
The equation shows the relationship between K'') and the number of elements.

ところで、三次元LSIを採算に合うように生産するに
は、所望の歩留Yc以上(例えば0.5以上)で製造し
なければならない。それには(9)式においてY≧Yc
として、次式がめられる。
By the way, in order to produce a three-dimensional LSI profitably, it must be manufactured at a desired yield Yc or higher (for example, 0.5 or higher). For this, in equation (9), Y≧Yc
The following formula can be obtained.

この01式に示されるMOが所望の歩留Yc以上で生産
できる積層数になり、これを素子形成層の積層数として
設計すれば採算に合った生産が可能になる。
The MO shown in equation 01 is the number of laminated layers that can be produced with a desired yield Yc or more, and if this is designed as the number of laminated layers of the element forming layer, profitable production becomes possible.

一例として、この01式に一定条件を与えて積層数Mo
と素子数にとの関係を図に示す。条件はn=20工程 a=2M10d/(素子)2 n=0.05/cd yo=0.99 としたもので、実線■はYc−0,5のとき、実線■は
Yc=0.7のとき、実線■はYc=0.9のときの境
!I%!線を>7< シ、これらの実線の内側の任意の
点を選IJi! シて素子数Kに対する積層数MOを選
べば、所望の歩留Y c、以上で製造することができる
As an example, by giving a certain condition to this formula 01, the number of laminated layers Mo
The relationship between and the number of elements is shown in the figure. The conditions are n=20 process a=2M10d/(element)2 n=0.05/cd yo=0.99, solid line ■ indicates Yc-0,5, solid line ■ indicates Yc=0.7 When , the solid line ■ is the boundary when Yc=0.9! I%! Line >7< shi, select any point inside these solid lines IJi! By selecting the number MO of stacked layers relative to the number K of elements, it is possible to manufacture with a desired yield Y c or more.

(ITI 発明の効果 以りの説明から判るように、本発明によれば採算に合わ
−1!て製造した三次元LSIが得られるため、三次元
1.、 S Iの発屏に著しく役立つものである。
(ITI) As can be seen from the explanation given below, the present invention allows for the production of a three-dimensional LSI that is economically produced. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明により得られる所望歩留Ycに対する積層数
M(、と素子数にとの関係図表の例である。 Logに
The figure is an example of a graph showing the relationship between the desired yield Yc obtained by the present invention and the number of laminated layers M (,) and the number of elements.

Claims (1)

【特許請求の範囲】 三次元LSIにおける能動素子形成層の積層数但し、M
oはMO≧1を満足する整数 n;単層の工程数 a;回路密度に関する比例定数 D;平均欠陥密度 に;チップ当たりの能動素子数 yo ;平均工程歩留 Yc ;所望の歩留 10g;自然対数 からなる式で与えられる積層数MOを有することを特徴
とする三次元集積回路装置。
[Claims] The number of laminated active element forming layers in a three-dimensional LSI, provided that M
o is an integer n that satisfies MO≧1; number of single layer processes a; proportionality constant D related to circuit density; average defect density; number of active elements per chip yo; average process yield Yc; desired yield 10g; A three-dimensional integrated circuit device having a number of stacked layers MO given by a formula consisting of natural logarithms.
JP16392083A 1983-09-05 1983-09-05 Three-dimensional integrated circuit device Granted JPS6054465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16392083A JPS6054465A (en) 1983-09-05 1983-09-05 Three-dimensional integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16392083A JPS6054465A (en) 1983-09-05 1983-09-05 Three-dimensional integrated circuit device

Publications (2)

Publication Number Publication Date
JPS6054465A true JPS6054465A (en) 1985-03-28
JPH0518258B2 JPH0518258B2 (en) 1993-03-11

Family

ID=15783332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16392083A Granted JPS6054465A (en) 1983-09-05 1983-09-05 Three-dimensional integrated circuit device

Country Status (1)

Country Link
JP (1) JPS6054465A (en)

Also Published As

Publication number Publication date
JPH0518258B2 (en) 1993-03-11

Similar Documents

Publication Publication Date Title
JP2008535239A5 (en)
JP2002299457A (en) Method for wiring semiconductor integrated circuit and structure thereof
US6205570B1 (en) Method for designing LSI circuit pattern
US6305004B1 (en) Method for improving wiring related yield and capacitance properties of integrated circuits by maze-routing
CN106407496A (en) Methods of designing a layout of a semiconductor device and methods of manufacturing a semiconductor device using the same
JP3917683B2 (en) Semiconductor integrated circuit device
US20080074929A1 (en) Application specific semiconductor integrated circuit and its manufacturing method thereof
JP2002110801A (en) Wiring resistance compensation method
US9231046B2 (en) Capacitor using barrier layer metallurgy
JPS6054465A (en) Three-dimensional integrated circuit device
Raghavan et al. Artificial Intelligence (AI) based methodology to minimize asymmetric bare substrate warpage
JP3247600B2 (en) Pattern generation method
CN106716626A (en) Devices and methods to reduce stress in an electronic device
KR100676606B1 (en) Method for forming dummy pattern for cmp process
JP3117686B2 (en) LSI circuit pattern design method
US10593631B2 (en) Warping reduction in silicon wafers
CN103116663B (en) Fill method and the redundancy metal fill pattern look-up table method for building up of redundancy metal
US7763968B2 (en) Semiconductor device featuring large reinforcing elements in pad area
JPH06138643A (en) Glass mask for semiconductor device and its production
JP2001230322A (en) Semiconductor integrated-circuit device and semiconductor integrated-circuit wiring apparatus
CN105140217B (en) A kind of preparation method of three-dimensional integrated device
CN105097768A (en) Capacitor structure and manufacturing method thereof
Raman et al. Utilizing Thermo-Mechanical CPI Simulation to Define a 7nm Package Envelope
CN112349679B (en) Connection network of integrated circuit, chip and electronic equipment
US8492267B1 (en) Pillar interconnect chip to package and global wiring structure