JPS6053771B2 - Air fuel ratio control device - Google Patents

Air fuel ratio control device

Info

Publication number
JPS6053771B2
JPS6053771B2 JP5783578A JP5783578A JPS6053771B2 JP S6053771 B2 JPS6053771 B2 JP S6053771B2 JP 5783578 A JP5783578 A JP 5783578A JP 5783578 A JP5783578 A JP 5783578A JP S6053771 B2 JPS6053771 B2 JP S6053771B2
Authority
JP
Japan
Prior art keywords
fuel ratio
air
output
circuit
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5783578A
Other languages
Japanese (ja)
Other versions
JPS54148930A (en
Inventor
元晴 末石
克司 加藤
四郎 長沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP5783578A priority Critical patent/JPS6053771B2/en
Publication of JPS54148930A publication Critical patent/JPS54148930A/en
Publication of JPS6053771B2 publication Critical patent/JPS6053771B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】 本発明は例えばV型多気筒エンジンのように少なくと
も排気系が複数の気筒群毎に独立となつたエンジンの空
燃比制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air-fuel ratio control device for an engine, such as a V-type multi-cylinder engine, in which at least the exhaust system is independent for each of a plurality of cylinder groups.

上記の複数の気筒群よりなるエンジンとして例えばV
型8気筒エンジンの場合従来では、第1図の如くエンジ
ンは二つの気筒群よりなり排気系も二つに分れており、
二つの気筒群の各排気管3a、3bにそれぞれ三元触媒
4a、4b)空燃比センサ5a、5bを設けてあり、空
燃比制御用の帰還制御回路6a、6bを各気筒群毎に設
ける構成であつた。
For example, V
In the case of an 8-cylinder engine, conventionally the engine consists of two groups of cylinders and the exhaust system is divided into two, as shown in Figure 1.
A configuration in which a three-way catalyst 4a, 4b) and an air-fuel ratio sensor 5a, 5b are provided in each exhaust pipe 3a, 3b of the two cylinder groups, respectively, and a feedback control circuit 6a, 6b for air-fuel ratio control is provided for each cylinder group. It was hot.

なお7は電子燃料噴射制御回路である。 この第1図に
示すような従来装置では、一つのエンジンでありながら
、空燃比センサ、Ξ元触媒、並びに空燃比制御用の帰還
制御回路をいづれも複数個必要とするため、排気系及ひ
空燃比制御装置が複雑にあると共に、コスト面でもかな
り不利となる欠点がある。
Note that 7 is an electronic fuel injection control circuit. The conventional device shown in Fig. 1 requires multiple air-fuel ratio sensors, Ξ main catalysts, and feedback control circuits for air-fuel ratio control even though it is a single engine, so The air-fuel ratio control device is complicated and has the disadvantage of being quite disadvantageous in terms of cost.

この欠点をさけるため、この様なエンジンの場合に個
々の排気ガスマニホールドを一つの共通の主排気管に導
きこの主排気管の途中に1個の空燃比センサを設け、さ
らにその下流に触媒を設けることが考えられるが、これ
では直列型多気筒エンジン等のように空燃比センサを排
気孔の近辺に設けた場合と比較すると、排気孔から空燃
比センサまでの距離に大きな差が有り、空燃比帰還制御
系の応答遅れが大きく空燃比の変動幅が大きくなつてし
まう問題がある。
In order to avoid this drawback, in the case of such an engine, the individual exhaust gas manifolds are connected to one common main exhaust pipe, and one air-fuel ratio sensor is installed in the middle of this main exhaust pipe, and a catalyst is further installed downstream. However, compared to the case where the air-fuel ratio sensor is installed near the exhaust hole as in an in-line multi-cylinder engine, there is a large difference in the distance from the exhaust hole to the air-fuel ratio sensor. There is a problem in that the response delay of the fuel ratio feedback control system is large and the fluctuation range of the air-fuel ratio becomes large.

三元触媒は理論空燃比付近の非常に狭い範囲でのみ排気
ガス中のHC、、Co)N0xの三成分を同時に高浄化
率で浄化できることが知られており、このように空燃比
の変動幅が大きいと浄化率の悪化を招くという欠点をも
たらす。 ところで本発明者らの考察結果によれば、三
元触媒は均一な空燃比の混合気をエンジンに供給した場
合の排気ガス浄化率よりも、理論空燃比よりやや濃い混
合気並びにやや薄い混合気を交互にくり返し供給した場
合の方が浄化率が高く、つまりはこのように濃薄の混合
気を交互に供給することにより、三元触媒で所定の浄化
率を確保できるところの空燃比幅が拡がることが判つて
いる。
It is known that a three-way catalyst can simultaneously purify the three components of exhaust gas, HC, Co) and NOx, at a high purification rate only in a very narrow range around the stoichiometric air-fuel ratio. A large value has the disadvantage of deteriorating the purification rate. By the way, according to the results of the inventors' study, the three-way catalyst has a slightly richer mixture and a slightly leaner mixture than the stoichiometric air-fuel ratio than the exhaust gas purification rate when a mixture with a uniform air-fuel ratio is supplied to the engine. The purification rate is higher when the mixture is supplied alternately and repeatedly.In other words, by alternately supplying rich and lean mixtures in this way, the air-fuel ratio range in which the three-way catalyst can secure the specified purification rate increases. It is known that it will spread.

本発明は従来装置の欠点を解消するため、上記考察結果
に鑑み、二つの気筒群よりなるエンジンにおいて、一方
の気筒群の排気系のみに空燃比センサを設け、この気筒
群の空燃比を比較手段及び積分手段を含む帰還制御手段
で制御し、他方の気筒群はこの積分手段の出力の平均出
力と、この積分手段の積分出力とは逆位相の短形波信号
出力とを重畳した信号出力によつて空燃比を制御する構
成とすることにより、他方の気筒群は、積分手段出力の
平均出力によつて一方の気筒群の同様の割合て空燃比を
補正すると共に短形波信号出力によつて空燃比を濃薄交
互にくり返えして三元触媒による排気ガスの浄化率を向
上させ、一つの空燃比センサ並びに帰還制御手段てもつ
て二つの気筒群の排気浄化性能を満たし得る空燃比制御
を可能にしコストダウンを計ることを目的としている。
゛また本発明では、一方の気筒群の積分手段出力とは逆
位相の短形波信号で他方の気筒群の空燃比を制御するこ
とにより、両気筒群間で空燃比の濃薄を異ならせるよう
にし両気筒群間のエンジン回転変動要因を相殺させて回
転変動を小さく抑えることも目的としている。以下本発
明を第2,3図に示す一実施例につき説明する。
In order to eliminate the drawbacks of the conventional device, and in view of the above considerations, the present invention provides an air-fuel ratio sensor only in the exhaust system of one cylinder group in an engine consisting of two cylinder groups, and compares the air-fuel ratio of this cylinder group. The other cylinder group outputs a signal in which the average output of the integrating means and a rectangular wave signal output having an opposite phase to the integrated output of the integrating means are superimposed. By adopting a configuration in which the air-fuel ratio is controlled by the air-fuel ratio of the other cylinder group, the air-fuel ratio of the other cylinder group is corrected in the same proportion as that of the one cylinder group by the average output of the integrating means output, and the rectangular wave signal output is Therefore, the exhaust gas purification rate by the three-way catalyst can be improved by repeating the air-fuel ratio between rich and lean, and the exhaust gas purification performance of two cylinder groups can be satisfied with one air-fuel ratio sensor and feedback control means. The purpose is to enable air-fuel ratio control and reduce costs.
゛Also, in the present invention, by controlling the air-fuel ratio of the other cylinder group with a rectangular wave signal having a phase opposite to that of the integrating means output of one cylinder group, the richness and leanness of the air-fuel ratio can be made different between the two cylinder groups. In this way, the engine speed fluctuations between the two cylinder groups are offset, and the engine speed fluctuations are kept to a minimum. The present invention will be described below with reference to an embodiment shown in FIGS. 2 and 3.

第2図はV型8気筒エンジンに適用した場合の構成図で
あり、1はエンジン本体、2a,2bは4気筒一組の二
つの気筒群の排気マニホールド、3a,3bは各排気マ
ニホールド下流の排気管、4a,4bは各排気管に設け
た三元触媒、5は一方の気筒群の排気管3aに設けた空
燃比センサである。6は第3図の如く比較回路61、積
分回路62よりなる公知の帰還制御回路である。
Figure 2 is a configuration diagram when applied to a V-type 8-cylinder engine, where 1 is the engine body, 2a and 2b are exhaust manifolds for two cylinder groups of 4 cylinders, and 3a and 3b are downstream of each exhaust manifold. The exhaust pipes 4a and 4b are three-way catalysts provided in each exhaust pipe, and 5 is an air-fuel ratio sensor provided in the exhaust pipe 3a of one cylinder group. 6 is a known feedback control circuit comprising a comparison circuit 61 and an integration circuit 62 as shown in FIG.

7は電子燃料噴射制御回路で、エンジン吸入空気量に応
じてエンジン単位回転当りの燃料噴射量を計算する主演
算回路8と、この主演算回路8の信号をエンジン冷却水
温度の信号等に基き補正計算する補正回路7a,7bか
らなる。
Reference numeral 7 designates an electronic fuel injection control circuit, which includes a main calculation circuit 8 that calculates the fuel injection amount per unit engine revolution according to the engine intake air amount, and a main calculation circuit 8 that calculates the fuel injection amount per unit rotation of the engine according to the engine intake air amount. It consists of correction circuits 7a and 7b that perform correction calculations.

これら主演算回路8、補正回路7a,7bは公知の構成
よりなるもので、この実施例では補正回路7a,7bは
補正計算を行なうとともに図示しないが燃料噴射弁を駆
動する機能も含むものてある。なお一方の補正回路7a
は一方の気筒群の補正計算を行ない、他方の補正回路7
bは他方の気筒群の補正計算を行なう。9は補正制御回
路で帰還制御回路6の信号が入力され、積分回路62の
積分出力が増加するときは低レベル、減少するとき高レ
ベルとなるつまり積分出力とは逆位相の短形波信力出力
と積分回路62の平均出力とを重畳した信号を他方の補
正回路7bに出力するものである。
The main calculation circuit 8 and the correction circuits 7a and 7b have a known configuration, and in this embodiment, the correction circuits 7a and 7b not only perform correction calculations but also have a function of driving a fuel injection valve (not shown). . Note that one correction circuit 7a
performs correction calculations for one cylinder group, and performs correction calculations for the other cylinder group.
b performs correction calculations for the other cylinder group. 9 is a correction control circuit to which the signal from the feedback control circuit 6 is input; when the integrated output of the integrating circuit 62 increases, it becomes a low level; when it decreases, it becomes a high level; that is, it has a rectangular wave signal that is in opposite phase to the integrated output. A signal obtained by superimposing the output and the average output of the integrating circuit 62 is output to the other correction circuit 7b.

第3図は帰還制御回路6の比較回路61、積分・回路6
2と補正制御回路9との詳細電気回路を示すものである
。比較回路61は抵抗611,612,613、比較器
614からなり、積分回路62は抵抗621,623,
624,626,628と、積分器をなすコンデンサ6
25、演算増幅器622とダイオード629とからなる
。補正制御回路9は抵抗901,903,905、コン
デンサ902、ダイオード904,906からなる。な
おVccは定電圧源からの定電位を表すものである。次
に上記構成装置の作動を第4図の波形図を用いて説明す
ると、空燃比センサ5からは第4図Aに示すように所定
(理論)空燃比より小さい(濃い:リツチ)か大きい(
薄い:リーン)かによつてレベルの切換る信号Aが出力
され、この信号Aが帰還制御回路6の比較回路61にて
抵抗612,613で決まる所定空燃比に対応する比較
レベルV1と比較され第4図Bに示す46F′レベル、
6601レベル信号Bに変換される。
FIG. 3 shows the comparison circuit 61 and the integration circuit 6 of the feedback control circuit 6.
2 shows a detailed electric circuit of the correction control circuit 9. The comparison circuit 61 consists of resistors 611, 612, 613 and a comparator 614, and the integration circuit 62 consists of resistors 621, 623,
624, 626, 628, and capacitor 6 forming an integrator
25, consists of an operational amplifier 622 and a diode 629. The correction control circuit 9 includes resistors 901, 903, 905, a capacitor 902, and diodes 904, 906. Note that Vcc represents a constant potential from a constant voltage source. Next, the operation of the above-mentioned constituent devices will be explained using the waveform diagram shown in FIG. 4. As shown in FIG.
A signal A whose level changes depending on whether the fuel is thin or lean is output, and this signal A is compared with a comparison level V1 corresponding to a predetermined air-fuel ratio determined by resistors 612 and 613 in a comparison circuit 61 of the feedback control circuit 6. 46F' level shown in Figure 4B,
6601 level signal B.

つまりこの信号Bは空燃比が所定空燃比より小さい(リ
ッチ)ときぱ゜1゛レベル、大きい(リーン)ときは“
゜0゛レベルとなる。この信号Bは積分回路62に入力
されれて積分され、この積分回路62の積分出力Cは第
4図Cの如く、信号Bが゜゜0゛レベルのときつまりリ
ーンのときは増加して空燃比をリッチにさせていき、信
号Bが“゜1゛レベルのときつまりリッチのときは減少
して空燃比をりーンにさせていくようになつてる。電子
燃料噴射制御回路7の補正回路7aはこの積分出力Cに
基き燃料噴射量を補正し一方の気筒群の空燃比を所定空
燃比となるようにする。また積分回路62の積分出力C
は補正制御回路9にも供給され第4図Dの如く抵抗90
1、コンデンサ902で平均化された信号Dに変換され
る。補正制御回路9は更に比較回路61の出力信号Bを
抵抗626,627で分圧した信号が供給され、この信
号と上記平均化された信号Dとを抵抗903,905、
ダイオード904,906にて加算した第4図Eに示す
信号Eを出力する。すなわち補正制御回路9のこの出力
信号Eは積分回路62の積分出力Cが増加するときは低
レベル、減少するときは高レベルなつまり積分出力Cと
は逆位相の短形波信号と積分出力Cの平均出力Dとを重
畳したものであり、電子燃料噴射制御回路7の他方の補
正回路7bに供給される。この他方の補正回路7bは積
分出力Cの平均出力Dによつて一方の補正回路7aと平
均的に同様の割合で空燃比を補正すると共に、短形波信
号によつて所定空燃比を境にして空燃比のリッチ、リー
ンを交互にくり返えし行なわせるため他の気筒群の三元
触媒4bの浄化郊率が向上する。しかもこの短形波信号
は積分出力Cとは逆位相であるため、例えば一方の気筒
群の空燃比を積分出力Cが増加によつてリッチにしてい
く場合、他方の気筒群の空燃比は必らずリーンとなるた
め、両方の気筒群が、同時にくり返しリッチ、リーンの
状態となることがなく、エンジンの回転変動要因を相殺
させ回動変動を抑えることができ、例えばエンジンアイ
ドル時の回転を安定させることが可能となる。なお、以
上述べた実施例では空燃比制御用の帰還制御回路6とし
ては、比較回路61、積分回路62よりなるものを示し
たが、他に比較回路61と積分回路62との間に公知の
遅延回路を設けたものでもよく、更には比較回路61の
比較レベルを公知の如く可変とするもの、積分回路62
の積分出力に公知のステップ的変化分を加算したもの或
いは積分回路62の積分出力をエンジンの特定運転時に
公知の如く所定値に保持する回路を追加したもの等種々
のものが用いることができる。
In other words, this signal B is at the level 1 when the air-fuel ratio is smaller than the predetermined air-fuel ratio (rich), and at the level 1 when it is larger than the predetermined air-fuel ratio (lean)
It becomes ゜0゛ level. This signal B is input to an integrating circuit 62 and integrated, and the integrated output C of this integrating circuit 62 increases as shown in FIG. When the signal B is at the "゜1゛ level, that is, when it is rich, it decreases to make the air-fuel ratio lean.The correction circuit 7a of the electronic fuel injection control circuit 7 Based on this integral output C, the fuel injection amount is corrected so that the air-fuel ratio of one cylinder group becomes a predetermined air-fuel ratio.In addition, the integral output C of the integral circuit 62
is also supplied to the correction control circuit 9, and is connected to a resistor 90 as shown in FIG. 4D.
1. It is converted into an averaged signal D by a capacitor 902. The correction control circuit 9 is further supplied with a signal obtained by dividing the output signal B of the comparator circuit 61 by resistors 626 and 627, and divides this signal and the averaged signal D by resistors 903 and 905,
A signal E shown in FIG. 4E, which is added by diodes 904 and 906, is output. That is, the output signal E of the correction control circuit 9 is at a low level when the integral output C of the integrating circuit 62 increases, and is at a high level when it decreases. , and is supplied to the other correction circuit 7b of the electronic fuel injection control circuit 7. The other correction circuit 7b uses the average output D of the integral output C to correct the air-fuel ratio at the same average rate as the one correction circuit 7a, and uses the rectangular wave signal to correct the air-fuel ratio at a predetermined air-fuel ratio. Since the air-fuel ratio is alternately rich and lean, the purification rate of the three-way catalyst 4b of the other cylinder groups is improved. Furthermore, since this rectangular wave signal is in opposite phase to the integral output C, for example, when the air-fuel ratio of one cylinder group is made richer by increasing the integral output C, the air-fuel ratio of the other cylinder group must be increased. Since both cylinder groups are not repeatedly rich and lean at the same time, engine rotation fluctuation factors can be canceled out and rotation fluctuations can be suppressed. It is possible to stabilize it. In the embodiments described above, the feedback control circuit 6 for air-fuel ratio control has been shown to be composed of a comparator circuit 61 and an integrator circuit 62. A delay circuit may be provided, and furthermore, the comparison level of the comparison circuit 61 may be made variable as is known, and the integration circuit 62 may be provided.
Various methods can be used, such as one in which a known step change is added to the integral output of the integrating circuit 62, or a circuit in which a known circuit is added to hold the integral output of the integrating circuit 62 at a predetermined value during a specific operation of the engine.

以上述べたように本発明装置は、二つの気筒群よりなる
エンジンの一方の気筒群の排気系に設けた空燃比センサ
と、この空燃比センサの信号に基いて増減方向が切換る
積分出力を出力する積分手段を有しこの積分出力によソ
ー方の気筒群の空燃比を所定空燃比に制御する帰還制御
手段と、この帰還制御手段の積分出力の平均出力とこの
積分出力とは逆位相の短形波信号とを重畳した信号を出
力しこの信号によつて前記二つの気筒群のうちの他方の
気筒群の空燃比を制御する補正制御手段とを備えたこと
を特徴としており、他方の気筒群は積分手段の積分出力
の平均出力によつて一方の気筒群と同様の割合で空燃比
の補正ができると共に、短形波信号出力によつて空燃比
を濃薄交互にくり返して制御するため三元触媒による排
気ガスの浄化率を向上させることが可能となり、一つの
空燃比センサ、一つの帰還制御手段でもつて二つの気筒
群の排気ガス浄化を達成する空燃比制御ができるという
優れた効果を持つている。また同時に二つの気筒群間の
エンジン回転変動要因を相殺させてエンジン回転変動を
抑えると(可能である。
As described above, the device of the present invention uses an air-fuel ratio sensor provided in the exhaust system of one cylinder group of an engine consisting of two cylinder groups, and an integral output whose increase/decrease direction is switched based on the signal of this air-fuel ratio sensor. Feedback control means has an integral output and controls the air-fuel ratio of the cylinder group on the saw side to a predetermined air-fuel ratio using this integral output, and the average output of the integral output of this feedback control means and this integral output are in opposite phase. and a correction control means for outputting a signal superimposed with a rectangular wave signal and controlling the air-fuel ratio of the other cylinder group of the two cylinder groups using this signal. In the cylinder group, the air-fuel ratio can be corrected at the same rate as one cylinder group by the average output of the integral output of the integrating means, and the air-fuel ratio can be controlled by alternating rich and lean by rectangular wave signal output. This makes it possible to improve the purification rate of exhaust gas using a three-way catalyst, and the advantage is that it is possible to control the air-fuel ratio to purify the exhaust gas of two cylinder groups with one air-fuel ratio sensor and one feedback control means. It has a certain effect. It is also possible to suppress engine rotational fluctuations by canceling out the engine rotational fluctuation factors between the two cylinder groups at the same time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来装置の構成図、第2図は本発明の一実施例
を示す構成図、第3図は第2図に示す要部の電気回路図
、第4図は第3図各部の出力波形図である。 3a・・・・・・一方の気筒群の排気管、5・・・・・
・空燃比センサ、6・・・・・・帰還制御回路、62・
・・・・・積分回路、9・・・・・・補正制御回路。
Fig. 1 is a block diagram of a conventional device, Fig. 2 is a block diagram showing an embodiment of the present invention, Fig. 3 is an electric circuit diagram of the main parts shown in Fig. 2, and Fig. 4 is a block diagram of each part shown in Fig. 3. It is an output waveform diagram. 3a... Exhaust pipe of one cylinder group, 5...
・Air-fuel ratio sensor, 6... Feedback control circuit, 62.
...Integrator circuit, 9...Correction control circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 二つの気筒群よりなるエンジンの一方の気筒群の排
気系に設けた空燃比センサと、この空燃比センサの信号
に基いて増減方向が切換る積分出力を出力する積分手段
を有しこの積分出力により一方の気筒群の空燃比を所定
空燃比に制御する帰還制御手段と、この帰還制御手段の
積分出力の平均出力とこの積分出力とは逆位相の短形波
信号とを重畳した信号を出力しこの信号によつて前記二
つの気筒群のうちの他方の気筒群の空燃比を制御する補
正制御手段とを備えたことを特徴とする空燃比制御装置
1 An air-fuel ratio sensor provided in the exhaust system of one cylinder group of an engine consisting of two cylinder groups, and an integrating means for outputting an integral output whose increase/decrease direction is switched based on the signal of the air-fuel ratio sensor. Feedback control means for controlling the air-fuel ratio of one cylinder group to a predetermined air-fuel ratio by an output, and a signal obtained by superimposing the average output of the integral output of this feedback control means and a rectangular wave signal having an opposite phase to this integral output. an air-fuel ratio control device comprising: a correction control means for controlling the air-fuel ratio of the other cylinder group of the two cylinder groups based on the output signal;
JP5783578A 1978-05-15 1978-05-15 Air fuel ratio control device Expired JPS6053771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5783578A JPS6053771B2 (en) 1978-05-15 1978-05-15 Air fuel ratio control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5783578A JPS6053771B2 (en) 1978-05-15 1978-05-15 Air fuel ratio control device

Publications (2)

Publication Number Publication Date
JPS54148930A JPS54148930A (en) 1979-11-21
JPS6053771B2 true JPS6053771B2 (en) 1985-11-27

Family

ID=13066997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5783578A Expired JPS6053771B2 (en) 1978-05-15 1978-05-15 Air fuel ratio control device

Country Status (1)

Country Link
JP (1) JPS6053771B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190631A (en) * 1984-03-12 1985-09-28 Nissan Motor Co Ltd Air-fuel ratio control device
JPS60249641A (en) * 1984-05-25 1985-12-10 Mazda Motor Corp Air-fuel ratio controller for multicylinder engine
JPH06280643A (en) * 1993-03-26 1994-10-04 Mitsubishi Electric Corp Air-fuel ratio control device for internal combustion engine

Also Published As

Publication number Publication date
JPS54148930A (en) 1979-11-21

Similar Documents

Publication Publication Date Title
US5570574A (en) Air-fuel ratio control system for internal combustion engine
US5417058A (en) Device for detecting deterioration of a catalytic converter for an engine
JPS63615B2 (en)
JPH03194144A (en) Air-fuel ratio control device for internal combustion engine
JPS6053771B2 (en) Air fuel ratio control device
JPH04339147A (en) Control device for air-fuel ratio of internal combustion engine
JPS6133981B2 (en)
US5067466A (en) System for measuring air flow rate for internal combustion engines
JPS603440A (en) Method of controlling air fuel ratio of engine
JPH0338417B2 (en)
JP3306146B2 (en) Control device for engine with evaporative fuel supply device
JP2692307B2 (en) Air-fuel ratio control device for internal combustion engine
JPS5941013B2 (en) Mixture concentration correction method for internal combustion engines
JPS62195461A (en) Ignition timing control device for internal combustion engine
JP2890750B2 (en) Air-fuel ratio control device for engine
JPH06200809A (en) Air-fuel ratio control device of internal combustion engine
JPH06117304A (en) Engine control device
JPS639659A (en) Load detector for internal combustion engine
JP3593388B2 (en) Air-fuel ratio control device for internal combustion engine
JPS6260957A (en) Air-fuel ratio controller for internal combustion engine
JPS6299644A (en) Air-fuel ratio controller for engine
JPH04194338A (en) Air-fuel ratio controller for engine
JP2001152946A (en) Exhaust emission control device for internal combustion engine
JPS61118539A (en) Air-fuel ratio controller for electronic-control fuel injection internal-combustion engine
JPH0531651B2 (en)