JPS6053240B2 - Freezing prevention device for the bottom ground of a low-temperature liquefied gas underground tank - Google Patents

Freezing prevention device for the bottom ground of a low-temperature liquefied gas underground tank

Info

Publication number
JPS6053240B2
JPS6053240B2 JP53068301A JP6830178A JPS6053240B2 JP S6053240 B2 JPS6053240 B2 JP S6053240B2 JP 53068301 A JP53068301 A JP 53068301A JP 6830178 A JP6830178 A JP 6830178A JP S6053240 B2 JPS6053240 B2 JP S6053240B2
Authority
JP
Japan
Prior art keywords
low
liquefied gas
water
underground tank
temperature liquefied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53068301A
Other languages
Japanese (ja)
Other versions
JPS54159718A (en
Inventor
秀博 勝井
和男 石野
哲也 花村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP53068301A priority Critical patent/JPS6053240B2/en
Publication of JPS54159718A publication Critical patent/JPS54159718A/en
Publication of JPS6053240B2 publication Critical patent/JPS6053240B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、LNG、LPG等の低温液化ガス貯蔵用地下
タンクにおける底部近傍の地盤凍結防止装置に係るもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a ground freezing prevention device near the bottom of an underground tank for storing low-temperature liquefied gas such as LNG or LPG.

前記地下タンクの底部近傍の地盤凍結を防止するために
は、底版コンクリートの下に温流体を流して低熱を吸収
し、かくして熱交換された流体を回収して所期の目的を
達成することが提案されてきた。
In order to prevent the ground from freezing near the bottom of the underground tank, it is possible to flow a hot fluid under the concrete bottom slab to absorb the low heat, and then recover the heat-exchanged fluid to achieve the intended purpose. It has been proposed.

前記の目的のためには次の条件が満たされなければなら
ない。
For the above purpose the following conditions must be met:

(イ)温水は底版下を均一に流れて死水部を作らないこ
と。
(a) Warm water should flow uniformly under the bottom slab and no dead water areas will be created.

蓋し死水部が形成されると、その部分の水が凍結して凍
結部分を介して地盤が冷却され、凍上の原因となるから
である。同 (イ)の条件が3師以上の長期間に亘つて
保持されること。
This is because when a dead water area is formed, the water in that area freezes and the ground is cooled through the frozen area, causing frost heave. The conditions in (a) above shall be maintained for a long period of three or more years.

これは長期間、不断に新らしい水が流れるため、水垢、
スケール等が附着して目詰りを生起すると流れが妨げら
れ、死水部ができ易いからである。I/→ 流量は経済
性からするとできるだけ小さい方が望まιルが、温水に
よる加温の目的から、その最小流量は約40イIhrが
妥当である。
This is because new water constantly flows over a long period of time, causing limescale and
This is because if scale or the like adheres and causes clogging, the flow is obstructed and dead water areas are likely to be formed. I/→ It is desirable that the flow rate be as small as possible from an economic point of view, but for the purpose of heating with hot water, a minimum flow rate of about 40 Ihr is appropriate.

而して前記した温水による低温液化ガス貯蔵用地下タン
クの底版下部地盤の凍結防止装置は次の2通りに大別さ
れる。(i)従来提案されているように、底版下に砂利
、または砕石、玉石等を敷均らして浸透層を形成し、浸
透層内に水を流す方法。
The above-mentioned freezing prevention devices for the ground under the bottom plate of underground tanks for storing low-temperature liquefied gas using hot water can be broadly classified into the following two types. (i) As previously proposed, a method of spreading gravel, crushed stones, cobblestones, etc. under the bottom slab to form a permeable layer and allowing water to flow into the permeable layer.

(11)底版下に暗渠を作り、暗渠内に水を通す方法。(11) A method of creating a culvert under the bottom slab and passing water through the culvert.

しカルながら前記(i)の方法にあつては均一な水の流
れが保証され難く、また長期間の使用によつて浸透層内
の空隙が目詰りを生起すると、死水部を生じ易い欠点が
ある。次に温水の流れの型式としては次のようなものが
考えられる。
However, in the method (i) above, it is difficult to guarantee a uniform flow of water, and if the voids in the permeation layer become clogged due to long-term use, dead water areas are likely to occur. be. Next, the following types of hot water flow can be considered.

囚 中央噴出し方式 (B)周辺噴出方式 (C)渦巻方式 第1図は前記(2)中央噴出し方式を示すもので、底版
aの下部中央に配設された管路bより分流隔壁cによつ
て放射状に区劃された区域に温水を噴出し、底版a下部
周辺に配設した集水管dより集水するものであり、均等
流を得るためには1区劃に10本以上の多数の夫々独立
した集水管dを必要とし、また温水の流量が小さいため
、タンク側壁e周辺部では流速は約0.1Tn!NlS
eCと極端に小さくなり、このような低流速では死水、
よどみが生じ易いという欠点がある。
Central spout system (B) Peripheral spout system (C) Spiral system Figure 1 shows the above-mentioned (2) central spout system, in which flow is flowed from the pipe b disposed at the center of the lower part of the bottom plate a to the dividing wall c. Hot water is spouted into areas divided radially by the pipes, and the water is collected from water collection pipes d placed around the bottom of the bottom plate a.In order to obtain an even flow, 10 or more pipes are installed in each section. Since a large number of independent water collection pipes d are required and the flow rate of hot water is small, the flow velocity around the tank side wall e is approximately 0.1Tn! NlS
eC becomes extremely small, and at such a low flow rate, dead water,
It has the disadvantage that stagnation tends to occur.

第2図は前記(B)周辺噴出方式の一例を示し、タンク
底版a下部外周に管路bのノズルfを所定間隔に配設し
、同各ノズルfよりタンク周壁と切線方向に供給した温
水を、タンク底版aの下部中央に配設された集水管dに
よつて集水し、底版a下部に旋回流を生起せしめるよう
にしたものであるが、温水流量が小さいためタンク側壁
周辺部では流速は極端に小さくなり、死水、よどみを生
じ易く、また均等な流れを得るために、多数の独立した
配管が必要になり、配管が複雑化し、ポンプ台数も多く
なり、維持管理費が嵩む憾みがある。
Figure 2 shows an example of the above-mentioned (B) peripheral jetting method, in which nozzles f of pipe line b are arranged at predetermined intervals on the outer periphery of the lower part of the tank bottom plate a, and hot water is supplied from each nozzle f in a direction tangential to the tank peripheral wall. The water is collected by a water collecting pipe d installed at the center of the bottom of the tank bottom plate a, and a swirling flow is generated at the bottom of the bottom plate a. However, since the hot water flow rate is small, the water is collected in the area around the side wall of the tank. The flow velocity becomes extremely low, which tends to cause dead water and stagnation, and in order to obtain an even flow, many independent pipings are required, which complicates the piping, increases the number of pumps, and increases maintenance costs. There is.

第3図は前記第2図の欠点を除去するため、タンク底壁
aの下部に対設された一双の管路bに弧状のヘッダーバ
イブgを接続し、同ベツダパイプgに配設したノズルの
径を漸変させ、同各ノズルより側壁eに噴射される温水
の速度を一定にし、同温水を中央の集水管dに集水しよ
うとするものであるが、ノズルロ径の経年変化を無視で
きないし、また流量の変動がある場合、計算通り、ノズ
ルからの噴出速度を全ノズルについて一定に保つことは
不可能である。しかるに前記(C)渦巻方式によれば前
記各方式の欠点が除去されタンク底版下に均一な温水の
流れが形成され、且つ前掲(11)の暗渠方式を併用す
ることにより目詰りの生起する惧れもないことに着目し
て本発明が提案されたものであつて、本発明は、低温液
化ガス地下タンクにおける底版下部全域に亘り、上面が
閉鎖された螺旋状の1本の配管系統て管路を配設し、同
管路に地盤凍結防止用温流体を流動せしめるように構成
されたことを特徴とする低温液化ガス地下タンクにおけ
る底部地盤.の凍結防止装置に係るものである。
In order to eliminate the drawbacks shown in Fig. 2, an arc-shaped header vibe g is connected to a pair of pipes b installed oppositely at the bottom of the bottom wall a of the tank, and a nozzle installed in the pipe g is connected to the bottom wall a of the tank. The idea is to gradually change the diameter of the nozzle, keep the speed of hot water jetted from each nozzle to the side wall e constant, and collect the same hot water into the central water collection pipe d, but changes over time in the diameter of the nozzle cannot be ignored. However, if there are fluctuations in the flow rate, it is impossible to maintain the jet velocity from the nozzles constant for all nozzles, as calculated. However, according to the above-mentioned (C) spiral system, the disadvantages of the above-mentioned systems are eliminated, a uniform flow of hot water is formed under the tank bottom plate, and the risk of clogging is avoided when the underdrain system (11) is used in combination. The present invention has been proposed with an eye to the fact that there is no such problem, and the present invention provides a single spiral piping system with a closed top surface extending over the entire lower part of the bottom plate of an underground tank for low-temperature liquefied gas. A bottom ground in an underground tank for low-temperature liquefied gas, characterized in that it is configured to have a pipe and flow a hot fluid for preventing ground freezing through the pipe. This relates to anti-freezing equipment.

本発明においては前記したように、低温液化ガス地下タ
ンクの底版下部成域に亘つて1本の配管系統で管路が螺
旋状に配設されていて、同螺旋状管路に温水を流して地
下タンク底部地盤の凍結を−防止するようにしたので、
温流体を1本の配管系統でしかも低流量で前記底版下部
全域に亘つて均一に流すことができるものである。
In the present invention, as described above, the pipes are arranged in a spiral manner in one piping system across the lower part of the bottom plate of the underground tank for low-temperature liquefied gas, and hot water is allowed to flow through the spiral pipe. This prevents the ground at the bottom of the underground tank from freezing.
The hot fluid can be uniformly flowed over the entire lower part of the bottom plate with a single piping system and at a low flow rate.

しかも前記管路は、その流路断面が十分に広いので、長
期間使用しても腐蝕や水垢等による管路の閉塞や目詰り
、破損を生起する惧れがない。
Moreover, since the channel has a sufficiently wide cross section, there is no risk of blockage, clogging, or damage of the channel due to corrosion, limescale, etc. even after long-term use.

なお前記管路は構造力学的には巨大な上載荷重に耐えな
ければならないが、本発明においては前記管路を剛強な
コンクリート製とし、その施工に当つては先す敷コンク
リート上に渦巻状のコンクリート側壁を施工し、その上
にプレキャストコンクリート版を配設し、同版を下型枠
として底版コンクリートを打設することにより、温流体
による・地下タンク底部地盤の凍結防止装置を剛強なコ
ンクリート構造より構成し、巨大な上載荷重に十分耐え
うるようにするとともに、タンク底版コンクリートも何
等支障なく迅速に打設できるようにするのである。以下
本発明を図示の実施例について説明する。
Note that the pipeline must withstand a huge overload from a structural mechanical point of view, but in the present invention, the pipeline is made of strong concrete, and when constructing it, a spiral pattern is first applied to the concrete. By constructing a concrete side wall, placing a precast concrete slab on top of it, and placing the bottom slab concrete using the same slab as the lower formwork, a strong concrete structure is created that prevents freezing of the ground at the bottom of the underground tank using hot fluid. The structure is designed to be able to withstand huge overload loads, and also to allow the tank bottom slab concrete to be placed quickly and without any problems. The present invention will be described below with reference to the illustrated embodiments.

1は低温液化ガス地下タンクにおける側壁、2はその底
版で、同底版2の下底部地盤に形成された床付砕石層3
上に順次アスファルトコンクリート層牡均らしコンクリ
ート層5を重層し、同均らしコンクリート層5上に、前
記底版2の全域に亘つて螺旋状の1本の配管系統でコン
クリート製管路6が構成されている。
1 is the side wall of a low-temperature liquefied gas underground tank, 2 is its bottom slab, and the crushed stone layer 3 with a floor formed in the ground at the bottom of the bottom slab 2
An asphalt concrete layer and a leveled concrete layer 5 are layered one after another on top of the leveled concrete layer 5, and a concrete pipe line 6 is constructed by a single spiral piping system over the entire area of the bottom slab 2. ing.

前記管路6の側壁7上部にはプレキャストコンクリート
蓋版8が配設され、前記地下タンクの側壁1の外周に沿
つて配設された温水供給管9の下端部が、前記コンクリ
ート製管路底版16を貫通して底版2の中心部下部に位
置する螺旋状の1本の配管系統で配設された管路6の内
周端起点部に温水を供給するようになつており、同管路
6の外周端末部には地下タンク外側に配設された集水部
10が連絡し、同集水部10には、前記温水供給管9と
平行に配設された集水管11の下端部が連通している。
A precast concrete lid plate 8 is disposed above the side wall 7 of the pipe line 6, and the lower end of the hot water supply pipe 9 disposed along the outer periphery of the side wall 1 of the underground tank is connected to the concrete pipe bottom plate. Hot water is supplied to the starting point at the inner peripheral end of the pipe line 6, which is arranged in a single spiral pipe system that penetrates through the pipe line 16 and is located at the lower center of the bottom plate 2. A water collection section 10 arranged outside the underground tank is connected to the outer peripheral end of the tank 6, and a lower end of a water collection pipe 11 arranged parallel to the hot water supply pipe 9 is connected to the water collection section 10. It's communicating.

前記蓋版8及び側壁7の頂面にはアスファルトマスチッ
ク層12が層着され、同層12上に底版2のコンクリー
トが打設されている。図中13は止水壁、14は地下タ
ンクの屋根、15は側面ヒートフエンスである。
An asphalt mastic layer 12 is deposited on the top surfaces of the lid plate 8 and the side walls 7, and the concrete of the bottom plate 2 is placed on the layer 12. In the figure, 13 is a water stop wall, 14 is the roof of the underground tank, and 15 is a side heat fence.

図示の実施例は前記したように構成されているので、ポ
ンプ(図示せず)を作動して前記温水供給管9より螺旋
状の1本の配管系統で配設された管路6の内周端始点部
に供給すると、同温水は第4図の矢印に示すように、底
版2の下部全面に亘つて低流量で均一に螺旋状に流れ、
地下タンクの低温と熱交換し、かくして温度降下した水
は前記螺旋状の1本の配管系統で配設された管路6の外
周端末部より集水部10に集水され、ポンプ(図示せす
)を作動することによつて集水管11を介して排出され
る。
Since the illustrated embodiment is configured as described above, a pump (not shown) is operated to connect the inner periphery of the pipe line 6 which is arranged in one spiral piping system from the hot water supply pipe 9. When supplied to the starting point, the same temperature water flows uniformly and spirally at a low flow rate over the entire lower part of the bottom plate 2, as shown by the arrow in Fig. 4.
The water whose temperature has been lowered by exchanging heat with the low temperature of the underground tank is collected from the outer peripheral end of the pipe 6 arranged in the single spiral piping system to the water collecting part 10, and then pumped (not shown). water is discharged through the water collection pipe 11 by activating the water pipe 11.

このように前記温水によつてタンク底版2の下部地盤の
凍結が防止されるものである。
In this way, the warm water prevents the ground below the tank bottom plate 2 from freezing.

以上本発明を実施例について説明したが、本発明は勿論
このような実施例にだけ局限されるものではなく、本発
明の精神を逸脱しない範囲内で種々の設計の改変を施し
うるものである。
Although the present invention has been described above with reference to embodiments, the present invention is, of course, not limited to such embodiments, and can be modified in various ways without departing from the spirit of the present invention. .

【図面の簡単な説明】[Brief explanation of drawings]

第1A図は低温液化ガス地下タンクの底版下部地盤の凍
結防止用温水の供給型式の一例を示す平面図、第1B図
はその縦断面図、第2A図は前記温水の供給型式の他の
一例を示す平面図、第2B図はその縦断面図、第3A図
は前記温水の供給型式の更に他の一例を示す平面図、第
3B図及び第3C図は夫々第3A図の部分Xの拡大平面
図並に拡大縦断面図、第3D図は第3A図の部分縦断面
図、第4図は本発明に係る低温液化ガス地下タンクにお
ける底部地盤の凍結防止装置の一実施例を示す一部を欠
截した平面図、第5図は第4図の■一■線に沿つて截断
した縦断面図、第6図は第5図の部分■の拡大図である
。 2・・・・・・底版、6・・・・・・螺旋状管路、9・
・・・・・温水供給管、11・・・・・・集水管。
Figure 1A is a plan view showing an example of a hot water supply type for preventing freezing of the ground under the bottom plate of a low-temperature liquefied gas underground tank, Figure 1B is a longitudinal sectional view thereof, and Figure 2A is another example of the hot water supply type. FIG. 2B is a longitudinal sectional view thereof, FIG. 3A is a plan view showing still another example of the hot water supply type, and FIGS. 3B and 3C are enlarged portions of part X in FIG. 3A. FIG. 3D is a partial longitudinal sectional view of FIG. 3A, and FIG. 4 is a partial diagram showing an embodiment of the freezing prevention device for the bottom ground of a low-temperature liquefied gas underground tank according to the present invention. FIG. 5 is a longitudinal sectional view taken along line 1-1 in FIG. 4, and FIG. 6 is an enlarged view of part 2 in FIG. 2...Bottom plate, 6...Spiral conduit, 9.
...Hot water supply pipe, 11... Water collection pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 低温液化ガス地下タンクにおける底版下部全域に亘
り、螺旋状の1本の配管系統で管路を配設し、同管路に
地盤凍結防止用温流体を流動せしめるように構成された
ことを特徴とする低温液化ガス地下タンクにおける底部
地盤の凍結防止装置。
1. A single spiral piping system is installed across the entire lower part of the bottom slab of an underground tank for low-temperature liquefied gas, and the system is configured to flow hot fluid for preventing ground freezing through the pipe. Freezing prevention device for the bottom ground of underground tanks for low-temperature liquefied gas.
JP53068301A 1978-06-08 1978-06-08 Freezing prevention device for the bottom ground of a low-temperature liquefied gas underground tank Expired JPS6053240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53068301A JPS6053240B2 (en) 1978-06-08 1978-06-08 Freezing prevention device for the bottom ground of a low-temperature liquefied gas underground tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53068301A JPS6053240B2 (en) 1978-06-08 1978-06-08 Freezing prevention device for the bottom ground of a low-temperature liquefied gas underground tank

Publications (2)

Publication Number Publication Date
JPS54159718A JPS54159718A (en) 1979-12-17
JPS6053240B2 true JPS6053240B2 (en) 1985-11-25

Family

ID=13369818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53068301A Expired JPS6053240B2 (en) 1978-06-08 1978-06-08 Freezing prevention device for the bottom ground of a low-temperature liquefied gas underground tank

Country Status (1)

Country Link
JP (1) JPS6053240B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6283598A (en) * 1985-10-09 1987-04-17 Tokyo Gas Co Ltd Bottom heater of underground tank
JPS6378799U (en) * 1986-11-12 1988-05-25

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5371320A (en) * 1976-12-07 1978-06-24 Kajima Corp Temperature controlling method of constant temperature tank

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5371320A (en) * 1976-12-07 1978-06-24 Kajima Corp Temperature controlling method of constant temperature tank

Also Published As

Publication number Publication date
JPS54159718A (en) 1979-12-17

Similar Documents

Publication Publication Date Title
CN102661171B (en) Frost damage prevention drainage system for tunnel
WO2021109537A1 (en) Ultra-long tunnel sewage disposing and separation drainage structure suitable for cold regions
CN202560320U (en) Frost-damage preventing drainage system for tunnels
CN203440731U (en) Combined snow melting and ice melting device for road
CN203440732U (en) Overflow type road snow and ice melting device
CN108719011A (en) A kind of undergrounds mountainous region Ji Yu micropore ceramics irrigation system
JP4721093B2 (en) Rainwater storage tank with permeable pavement at the top
RU2618108C2 (en) Drainage system on permafrost soils
JPS6053240B2 (en) Freezing prevention device for the bottom ground of a low-temperature liquefied gas underground tank
US10584471B2 (en) Integrated retaining wall and fluid collection system
CN104563200A (en) Tunnel fire-fighting system taking road surface water and tunnel surge water as water sources
CN210460755U (en) Tunnel end wall type heat preservation center ditch water outlet
RU2381327C1 (en) Culvert under banked earth in conditions of permanently frozen grounds in periodic water course
JP4188771B2 (en) Flat block and road surface structure having water permeability and water retention
CN210458850U (en) Road with snow melting function
CN113565274A (en) Drainage system is planted on dangerization article storage tank soil top
SU1710666A1 (en) Earth structure
RU2681893C1 (en) Tunnel with sub-zero air temperature in winter in its interior part
CN215708811U (en) Drainage structures is planted at danger article storage tank earthing top
KR102536527B1 (en) Anti-freezing system for pavement that can induce drainage
RU2375519C1 (en) Culvert in conditions of permanently frozen soils on periodic water course
JPS6119880B2 (en)
JP3243344U (en) Snow melting device using boiler hot water supply
RU2206687C1 (en) Vertical cylindrical reservoir
EP1131585B1 (en) Method for providing a paving or revetment provided with a heat conveying element