JPS6119880B2 - - Google Patents

Info

Publication number
JPS6119880B2
JPS6119880B2 JP10124479A JP10124479A JPS6119880B2 JP S6119880 B2 JPS6119880 B2 JP S6119880B2 JP 10124479 A JP10124479 A JP 10124479A JP 10124479 A JP10124479 A JP 10124479A JP S6119880 B2 JPS6119880 B2 JP S6119880B2
Authority
JP
Japan
Prior art keywords
tank
water
crushed stone
pipe
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10124479A
Other languages
Japanese (ja)
Other versions
JPS5628397A (en
Inventor
Katsuyuki Kakehi
Bunzo Tada
Yoshiharu Koyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP10124479A priority Critical patent/JPS5628397A/en
Publication of JPS5628397A publication Critical patent/JPS5628397A/en
Publication of JPS6119880B2 publication Critical patent/JPS6119880B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

【発明の詳細な説明】 この発明は、メタン、プロパン等、常温、常圧
のもとでは気体である物質を、冷却、圧縮して液
化したLNG、LPG等の低温液化ガスを貯蔵する
ための低温地下式タンクの底部凍結防止構造に関
する。
[Detailed Description of the Invention] This invention is a method for storing low-temperature liquefied gases such as LNG and LPG, which are obtained by cooling and compressing substances such as methane and propane that are gases at normal temperature and pressure. Regarding the bottom freezing prevention structure of low temperature underground tanks.

従来、低温液化ガスの貯蔵タンクは、万一の漏
洩流出事故、破壊事故発生時の被害の拡大防止、
敷地の有効利用等種々の観点から広く用いられて
いる。しかしながら、低温地下式タンクは、周辺
の土壌がタンク内の低温液体によつて凍結し、こ
れが広範囲に広がつた場合は、側壁、底盤及び附
近の地盤や工作物、樹木等に種々の影響を及ぼす
ので、凍結を一定の範囲内に収めるように制御す
る必要がある。特にタンク底盤直下の土壌が凍結
した場合は、凍結地下水の膨脹による凍上現象が
起り、タンク全体が持上げられたり、不等浮上に
よりタンクが破壊するおそれがある。また、地下
水の量が多い場合は凍結に先立つて水圧でタンク
が破壊したりするおそれもある。
Conventionally, storage tanks for low-temperature liquefied gas have been used to prevent damage from spreading in the unlikely event of a leak, spill, or destruction.
It is widely used from various viewpoints such as effective use of land. However, in low-temperature underground tanks, the surrounding soil freezes due to the low-temperature liquid inside the tank, and if this spreads over a wide area, it can have various effects on the side walls, bottom, nearby ground, structures, trees, etc. Therefore, it is necessary to control the freezing to within a certain range. In particular, if the soil directly below the tank bottom freezes, frost heaving may occur due to the expansion of frozen groundwater, and there is a risk that the entire tank may be lifted up or the tank may be destroyed due to uneven levitation. Additionally, if there is a large amount of groundwater, there is a risk that the water pressure will destroy the tank before it freezes.

この対策として、従来実施されている一般的な
低温地下式タンクの底部凍結防止構造は、第1図
に示す如く、タンク1の底盤2の直下に設けた砂
礫層3に管壁に多数の孔を穿つた温水の分配管4
と、そのやや下方に同じく管壁に孔を穿つた排水
の集中管5を埋設し、地上より給水管6を通じて
分配管4に温水を供給し、砂礫層3に温水を注入
して加熱し、地下水とともに集中管5を通じて地
上に設けられたポンプ6′で汲上げ、所要量の水
をヒータ7で加熱した上、ポンプ8により再び給
水管6を通じて分配管4に供給し、残余の水は枝
管9より排出し、このようにしてタンク底盤下の
砂礫層に温水を循環させるとともに、余分の地下
水を汲上げることによりタンク底盤の土壌の凍結
を防止していた。しかし、砂礫層の中に孔の開い
た分配管や集中管を埋設することは腐食が発生し
やすく、また、管の詰り等の事故が発生する可能
性もある。このような場所で事故が発生した場合
は凍結防止機能が全く停止するだけでなく、その
補修は極めて困難である。
As a countermeasure against this problem, the bottom freeze prevention structure of conventional low-temperature underground tanks has many holes in the pipe wall in the gravel layer 3 provided directly below the bottom plate 2 of the tank 1, as shown in Fig. 1. Hot water distribution pipe 4
A drainage central pipe 5, which also has a hole in the pipe wall, is buried slightly below that, hot water is supplied from the ground to the distribution pipe 4 through the water supply pipe 6, and hot water is injected into the gravel layer 3 to heat it. The required amount of water is pumped up along with groundwater through a central pipe 5 by a pump 6' installed on the ground, heated by a heater 7, and then supplied again to the distribution pipe 4 through a water supply pipe 6 by a pump 8, and the remaining water is sent to a branch pipe. The hot water was discharged from the pipe 9, and in this way hot water was circulated through the gravel layer under the tank bottom, and excess groundwater was pumped up to prevent the soil on the tank bottom from freezing. However, burying perforated distribution pipes and central pipes in a gravel layer is likely to cause corrosion, and there is also a possibility that accidents such as pipe clogging may occur. If an accident occurs in such a location, not only will the antifreeze function stop completely, but it will also be extremely difficult to repair it.

この発明は、従来のものの以上述べた問題点を
解決した、簡単な構造で故障が起りにくく、保守
の容易な、信頼性の高い、低温地下式タンクの底
部凍結防止構造を提供することを目的とする。
The purpose of this invention is to provide a structure for preventing freezing of the bottom of a low-temperature underground tank, which has a simple structure, is less prone to failure, is easy to maintain, and has high reliability, which solves the above-mentioned problems of the conventional ones. shall be.

この発明を、実施例を示す図面にもとずいて説
明すれば、第2図において、コンクリート製の円
筒形低温地下式タンク10の側壁11は底盤12
の深さよりも下方に延長されて裾壁13を形成し
ている。裾壁13の内面と底盤12の下面で囲ま
れた円筒状空間の下方適宜の高さ迄はその下方の
土壌14と連続した土壌層となつており、その上
面と底盤12の下面との間は砕石槽15を形成
し、砕石16を充填して底盤12及びタンク1内
に貯液の重量を土壌に伝達し支持している。砕石
槽15の周囲には、適当な高さのせき17が周設
され、その外側を囲繞して給水溝18が設けられ
ている。給水溝18の内部は粒度の粗い砕石19
が充填されており、水が流れやすくなつている。
砕石槽15の中央には、周壁の上面の高さが前記
のせき17の上面よりやや低い集水ます20が設
けられており、その内部にも粗い砕石19が充填
されている。低温地下式タンク1の周囲適数箇所
に集水ます20の下面の位置よりやや深い排水ピ
ツト21が設けられている。前記の給水溝18よ
り裾壁13を貫通して給水口22が設けられ、排
水ピツト21の中を地上から下降して配管された
給水管23が、給水口22の側面に設けられた枝
管又は座に接続されている。給水口22の主管の
排水ピツト内の開口は盲フランジ24で閉塞され
ている。また、各排水ピツト21と集水ます20
とは排水管25で連結されている。排水ピツト2
1の底部には、該ピツトの底に溜つた水を排水す
る揚水ポンプ26が設置され、該ポンプの吐出口
には排水ピツト21の中を地上迄配管された揚水
管27が接続されている。揚水管27と前記給水
管23とは地上で連絡管28により接続されてお
り、連絡管28の途中には管内の水を加熱するヒ
ータ29が設けられている。また、揚水管の地上
部には枝管30が設けられている。図には示され
ていないが、上記のそれぞれの管には、必要な箇
所に弁類等が設けられていることは言う迄もな
い。
To explain this invention based on drawings showing embodiments, in FIG. 2, a side wall 11 of a concrete cylindrical low temperature underground tank 10 is connected to a bottom plate
The bottom wall 13 is extended below the depth of the bottom wall 13 . The lower part of the cylindrical space surrounded by the inner surface of the hem wall 13 and the lower surface of the bottom plate 12 is a soil layer that is continuous with the soil 14 below it up to an appropriate height, and there is a soil layer between the upper surface and the lower surface of the bottom plate 12. A crushed stone tank 15 is formed and crushed stones 16 are filled in the bottom plate 12 and tank 1 to transfer the weight of the stored liquid to the soil and support it. A weir 17 of an appropriate height is provided around the crushed stone tank 15, and a water supply groove 18 is provided surrounding the outside thereof. The inside of the water supply groove 18 is made of coarse crushed stone 19
is filled, making it easier for water to flow.
At the center of the crushed stone tank 15, there is provided a water collection basin 20 whose circumferential wall has an upper surface slightly lower in height than the upper surface of the weir 17, and its interior is also filled with coarse crushed stones 19. Drainage pits 21, which are slightly deeper than the lower surface of the water collecting basin 20, are provided at appropriate locations around the low-temperature underground tank 1. A water supply port 22 is provided penetrating the skirt wall 13 from the water supply groove 18, and a water supply pipe 23 descending from the ground in the drainage pit 21 is a branch pipe provided on the side of the water supply port 22. Or connected to the seat. The opening in the drain pit of the main pipe of the water supply port 22 is closed with a blind flange 24. In addition, each drainage pit 21 and water collection basin 20
It is connected with the drain pipe 25. Drain pit 2
A water pump 26 is installed at the bottom of the drain pit 21 to drain water accumulated at the bottom of the pit, and a water pump 27 that runs through the drain pit 21 to the ground is connected to the discharge port of the pump. . The lift pipe 27 and the water supply pipe 23 are connected on the ground by a communication pipe 28, and a heater 29 is provided in the middle of the communication pipe 28 to heat the water within the pipe. Further, a branch pipe 30 is provided in the above-ground part of the pumping pipe. Although not shown in the figure, it goes without saying that each of the above-mentioned pipes is provided with valves and the like at necessary locations.

このタンク底部凍結防止構造は、以上のように
構成されているので、ヒータ29で加熱された温
水は、連絡管28、給水管23、給水口22を通
つて給水溝18に給水され、水位がせき17の上
面に達すると、温水はせき17を越して砕石槽1
5に流れ込む。そこで砕石16との間で熱交換を
行つて砕石16を加熱し、温度の下つた水は集水
ます20に流れ込み、排水管25を経て、排水ピ
ツト21の底部に溜る。揚水ポンプ26は連続的
に運転され、ピツト内に溜つた水を揚水管27を
経て地上に揚水する。揚水された水は連絡管28
を流れて、ヒータ29により加熱されて再び前述
の径路を流れる。このようにして、上述の各構成
要素は一つの循環系を形成し、常時一定の水位の
温水が砕石槽15の中を循環して、砕石は適温を
保ちタンク底盤の下方の土壌の凍結を防止するこ
とができる。もし、地下水の湧出流が多く、所定
水位をオーバーした場合は、水位を検知して、余
分の水を枝管30から循環系外に放流し、また、
図示しない温水供給配管を設けることにより、常
に定量の温水を砕石槽15に供給することも可能
である。
Since this tank bottom freeze prevention structure is configured as described above, the hot water heated by the heater 29 is supplied to the water supply groove 18 through the communication pipe 28, the water supply pipe 23, and the water supply port 22, and the water level is When the hot water reaches the top of the weir 17, it flows over the weir 17 and into the crushed stone tank 1.
Flows into 5. There, heat exchange is performed with the crushed stones 16 to heat the crushed stones 16, and the water whose temperature has decreased flows into the water collecting basin 20, passes through the drain pipe 25, and collects at the bottom of the drain pit 21. The water pump 26 is operated continuously and pumps the water accumulated in the pit to the ground via the water pipe 27. The pumped water is transferred to the connecting pipe 28
The water is heated by the heater 29 and flows through the above-mentioned path again. In this way, each of the above-mentioned components forms a circulation system, and warm water at a constant level is constantly circulated in the crushed stone tank 15, keeping the crushed stone at an appropriate temperature and preventing the soil below the tank bottom from freezing. It can be prevented. If there is a large amount of underground water flowing out and the water level exceeds a predetermined water level, the water level will be detected and the excess water will be discharged from the branch pipe 30 to the outside of the circulation system.
By providing a hot water supply pipe (not shown), it is also possible to constantly supply a fixed amount of hot water to the crushed stone tank 15.

さて、一般に使用されている低温地下式タンク
は直径が60m程度にも達し、せき17の上面を正
確に同一レベルに仕上げることはかなり困難であ
る。さらに経年変化により、せきの高さに不均一
が生じることもありうる。せきの高さに不均一が
あれば、水は低い所からばかり流入して、砕石1
6は均等な加熱ができず、完全な凍結防止が阻害
される。そこぜ、第3図に示すように、せき17
の全周にわたつて適当な間隔にスリツト31を設
けて、どのスリツトからも一様に砕石槽15に温
水が流入するようにするのがよい。また、第4図
に示したように、スリツトの代りに適当な大きさ
の開口32を設けることも可能である。経年使用
により給水口22や排水管25にたまつた砕石の
欠けや土壌の粒子、スケール等は給水口の盲フラ
ンジ24を取外せば、排水ピツト内からチユーブ
クリーナ等を用いて容易に清掃することができ
る。また、排水管25は土壌中に埋設されてはい
るが、前述の従来の装置で使用されている分配管
4及び集中管5と異り、単に集水ますの水を排水
ピツト21に流すだけでよく、管壁に多数の孔を
明ける必要はないので、耐食性の良好なメツキ管
やライニング管等を使用するのに適しており、強
度的にも有利であるから、硬質塩化ビニール管等
耐食性の優れた材質の管を使用することも可能で
ある。
Now, the commonly used low-temperature underground tanks have a diameter of about 60 m, and it is quite difficult to finish the top surface of the weir 17 to exactly the same level. Furthermore, changes over time may cause unevenness in the height of the cough. If the height of the weir is uneven, water will flow in only from low places, and the crushed stone 1
No. 6 cannot be heated evenly, and complete anti-freezing is inhibited. So, as shown in Figure 3, cough 17
It is preferable to provide slits 31 at appropriate intervals around the entire circumference so that hot water uniformly flows into the crushed stone tank 15 from all the slits. Further, as shown in FIG. 4, it is also possible to provide an opening 32 of an appropriate size instead of the slit. Chips of crushed stone, soil particles, scale, etc. that have accumulated in the water inlet 22 and drain pipe 25 due to long-term use can be easily cleaned from inside the drain pit using a tube cleaner or the like by removing the blind flange 24 of the water inlet. be able to. Further, although the drain pipe 25 is buried in the soil, unlike the distribution pipe 4 and the central pipe 5 used in the above-mentioned conventional device, it simply drains water from the water collection basin to the drain pit 21. Since it is not necessary to make many holes in the pipe wall, it is suitable for using plated pipes or lined pipes with good corrosion resistance, and since they are advantageous in terms of strength, it is suitable to use corrosion-resistant pipes such as hard vinyl chloride pipes. It is also possible to use tubes made of superior materials.

以上説明したように、この発明によれば、簡単
な構造でタンク底部全域を常に均一に加熱して凍
結を防止することが可能となり、また裾壁や土壌
中に埋設された管の清掃が容易であり、腐食、閉
塞に基因する機能の停止を避けることができるの
で、タンク底盤直下の土壌の凍結、凍上に基因す
るタンクの破損を確実に防止することが可能とな
り、環境保全の面にも寄与するなど、顕著な効果
がある。
As explained above, according to the present invention, with a simple structure, it is possible to always uniformly heat the entire bottom of the tank to prevent freezing, and it is also easy to clean the skirt walls and pipes buried in the soil. This makes it possible to avoid suspension of functions due to corrosion and blockage, making it possible to reliably prevent damage to the tank due to freezing of the soil directly under the tank bottom or frost heaving, which also contributes to environmental conservation. There are significant effects such as contributing to

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の低温地下式タンクの底部凍結防
止構造の代表例を示す断面図、第2図は本発明の
実施例を示す断面図、第3図はせきの要部の1部
を断面にて示す斜視図、第4図はその別案の1部
を断面に示す斜視図である。 10……低温地下式タンク、12……底部、1
4……土壌、15……砕石槽、16……砕石、1
7……せき、18……給水溝、20……排水ま
す、21……排水ピツト、22……給水口、23
……給水管、25……排水管、26……揚水ポン
プ、27……揚水管、28……連絡管、29……
ヒータ。
Fig. 1 is a sectional view showing a typical example of a conventional low-temperature underground tank bottom freeze prevention structure, Fig. 2 is a sectional view showing an embodiment of the present invention, and Fig. 3 is a sectional view of a part of the main part of the weir. FIG. 4 is a perspective view showing a part of the alternative plan in cross section. 10... Low temperature underground tank, 12... Bottom, 1
4... Soil, 15... Crushed stone tank, 16... Crushed stone, 1
7...Weir, 18...Water supply groove, 20...Drainage basin, 21...Drain pit, 22...Water supply port, 23
... Water supply pipe, 25 ... Drain pipe, 26 ... Lifting pump, 27 ... Lifting pipe, 28 ... Connection pipe, 29 ...
heater.

Claims (1)

【特許請求の範囲】[Claims] 1 タンク底盤直下の砂礫等の間隙に温水を循環
させてタンク底板下位の土壌を加熱し凍結を防止
する低温地下式タンクに於いて、タンクの底盤の
ほゞ全域にわたつて該底盤と土壌との間に設けら
れた砕石槽と、タンクの周囲に適数個設けられ
た、前記砕石槽の底面とほゞ同じ水準に達する排
水ピツトと、前記砕石槽を囲繞して設けられたせ
きと、該せきの外周をとり巻いて設けられた給水
溝と、砕石槽内に設けられた集水ますとを有し、
地上より温水を給水管を経て排水ピツト底部附近
より給水溝に供給してせきを越して砕石槽に流入
せしめ、一方、集水ますにより集水した砕石槽内
の水は排水管を経由して排水ピツト内に溜め、揚
水ポンプにより地上に揚水した後、加熱して給水
管に戻し再循環させることによつて、常時、砕石
槽内に一定水位の温水を循環させるようにしたこ
とを特徴とする、低温地下式タンクの底部凍結防
止構造。
1. In a low-temperature underground tank where hot water is circulated through gaps such as sand and gravel directly under the tank bottom plate to heat the soil below the tank bottom plate and prevent it from freezing, the bottom plate and the soil are connected to each other over almost the entire area of the tank bottom plate. a crushed stone tank provided between the two, a suitable number of drainage pits provided around the tank and reaching approximately the same level as the bottom of the crushed stone tank, and a weir provided surrounding the crushed stone tank; It has a water supply groove provided around the outer periphery of the weir and a water collection chamber provided in the crushed stone tank,
Hot water from the ground is supplied to the water supply groove from near the bottom of the drainage pit via the water supply pipe, and flows into the crushed stone tank over the weir.On the other hand, the water in the crushed stone tank collected by the water collection basin is passed through the drain pipe. The water is stored in a drainage pit, pumped to the ground using a water pump, heated, and then returned to the water supply pipe for recirculation, thereby constantly circulating hot water at a constant level within the stone crushing tank. Anti-freezing structure at the bottom of low-temperature underground tanks.
JP10124479A 1979-08-10 1979-08-10 Freezing protective structure for low-temperature underground tank bottom Granted JPS5628397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10124479A JPS5628397A (en) 1979-08-10 1979-08-10 Freezing protective structure for low-temperature underground tank bottom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10124479A JPS5628397A (en) 1979-08-10 1979-08-10 Freezing protective structure for low-temperature underground tank bottom

Publications (2)

Publication Number Publication Date
JPS5628397A JPS5628397A (en) 1981-03-19
JPS6119880B2 true JPS6119880B2 (en) 1986-05-19

Family

ID=14295486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10124479A Granted JPS5628397A (en) 1979-08-10 1979-08-10 Freezing protective structure for low-temperature underground tank bottom

Country Status (1)

Country Link
JP (1) JPS5628397A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS608599U (en) * 1983-06-30 1985-01-21 川崎重工業株式会社 Pit type double shell rigid tank
JPS6010999U (en) * 1983-07-01 1985-01-25 川崎重工業株式会社 Pit type double shell rigid tank
JPS60164099A (en) * 1984-02-02 1985-08-27 Taisei Corp Ambient ground heating device for cryogenic underground structure
US4625399A (en) * 1984-03-27 1986-12-02 Universal Instruments Corporation Method and apparatus for inserting leads of electrical components into corresponding holes according to different spacings of said holes
US6161443A (en) * 1999-02-03 2000-12-19 Universal Instruments Corporation Drive and actuation mechanism for a component insertion machine

Also Published As

Publication number Publication date
JPS5628397A (en) 1981-03-19

Similar Documents

Publication Publication Date Title
US10731369B2 (en) Automatic relief valve system with water level sensing for a fiberglass swimming pool body
US5944444A (en) Control system for draining, irrigating and heating an athletic field
US5350251A (en) Planted surface moisture control system
US6095718A (en) Subsurface fluid drainage and storage systems
US4620817A (en) Underground discharge for downspouts and sump pumps
US20070154262A1 (en) Direct Recharge Injection of Underground Water Reservoirs
JP4421671B1 (en) Geothermal water environment conservation heat supply system
US7661903B1 (en) Low-pressure dosing system for sewage disposal and associated methods
US5092709A (en) Landfill site with leachate collection
JPS6119880B2 (en)
Alter Water supply in cold regions
WO1996025035A1 (en) Control system for draining, irrigating and heating an athletic field
CN113565274A (en) Drainage system is planted on dangerization article storage tank soil top
US20170167153A1 (en) Drainage system for a fiberglass swimming pool body
Alter Water supply in Alaska
JP4070710B2 (en) Snowmelt system using groundwater heat and snowmelt method using the same
RU2761917C1 (en) Tank for non-freezing liquids with an effective permafrost preservation system in the base
JPH0457815B2 (en)
JPS5858560B2 (en) Liquefied gas storage underground tank
JPS584878Y2 (en) Leakage liquid retention equipment for liquid combustibles storage tank
Staebner Supplemental irrigation
KR101020263B1 (en) Apparatus and method for taking underground water in non-power by horizontal or upward slope digging of a mountain incline exposed on the ground
JPH0349359Y2 (en)
RU2424396C1 (en) Hydrotechnical channel on permafrost soils of slope and cooling device of embankment (versions)
CN113216725A (en) Integrated parking and storage regulation deep well facility suitable for high-density area