JPS6052788A - Scintillation camera - Google Patents

Scintillation camera

Info

Publication number
JPS6052788A
JPS6052788A JP16000583A JP16000583A JPS6052788A JP S6052788 A JPS6052788 A JP S6052788A JP 16000583 A JP16000583 A JP 16000583A JP 16000583 A JP16000583 A JP 16000583A JP S6052788 A JPS6052788 A JP S6052788A
Authority
JP
Japan
Prior art keywords
nonlinear
pmts
amplification
peripheral part
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16000583A
Other languages
Japanese (ja)
Other versions
JPH0426072B2 (en
Inventor
Yoshihiko Kumazawa
熊澤 良彦
Tsunekazu Matsuyama
松山 恒和
Mitsuhiro Tanaka
三博 田中
Masaaki Tochi
土地 雅明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP16000583A priority Critical patent/JPS6052788A/en
Publication of JPS6052788A publication Critical patent/JPS6052788A/en
Publication of JPH0426072B2 publication Critical patent/JPH0426072B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting
    • G01T1/164Scintigraphy
    • G01T1/1641Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras
    • G01T1/1642Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras using a scintillation crystal and position sensing photodetector arrays, e.g. ANGER cameras

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nuclear Medicine (AREA)

Abstract

PURPOSE:To improve a spatial distortion and a uniformity in the peripheral part of a visual field by adjusting amplification factors of PMTs (photomultipliers) or amplifying systems and making nonlinear pints of amplifying systems related to PMTs in the peripheral part and those related to PMTs in the central part different from each other in accordance with magnitudes of outputs of individual amplifying systems. CONSTITUTION:Amplification factors of PMTs 302 and 303 or preamplifiers 402 and 403 (or amplifying sytems including waveform shaping circuits 502 and 503, etc.) related to PTMs 302 and 303 in the peripheral part are made different from the amplification factor related to a PTM 301 in the central part, and outputs inputted to individual nonlinear amplifiers 6 are different from one another even if the same radiation sources are placed just above individual PTMs 3 to give the same radiation input to them. With respect to nonlinear amplifiers 6, input/ output characteristics different from those of a nonlinear amplifier 601 corresponding to the central part are given to nonlinear amplifiers 602 and 603 corresponding to the peripheral part in accordance with the difference of inputs of nonlinear amplifiers 6.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明はシンチレーションカメラの改良に関する。[Detailed description of the invention] (b) Industrial application fields This invention relates to improvements in scintillation cameras.

(ロ)従来技術 シンチレーションカメラは、よく知られているように、
シンチレータに放射線を入射させてシンチレーション光
を発生させ、この光をシンチレータの裏面に多数配列さ
れた光電変換器(普通はフォトマルチプライア; PM
Tを用いることが多いので以下PMTと言う)に導き、
この各P¥Tの出力をそれぞれ増幅系を通して重み付は
加算回路よりなる位置演算回路に入力することにより、
シンチレーション光の発生位置を計算して画像を得るも
のである。
(b) Conventional scintillation cameras, as is well known,
Radiation is incident on a scintillator to generate scintillation light, and this light is transferred to a large number of photoelectric converters (usually photomultipliers; PM) arranged on the back side of the scintillator.
(hereinafter referred to as PMT),
By inputting the output of each P\T through an amplification system to a position calculation circuit consisting of an addition circuit for weighting,
An image is obtained by calculating the position where scintillation light is generated.

従来より、このようなシンチレーションカメラにおいて
空間分解能を向上させる目的で、あるいは空間的歪i改
善させる目的で、各PMTと位置演算回路との間に接続
された増幅系に関して非線形特性を持たせることが提案
され、その非線形特性を波高分析器のエネルギウィンド
レベルまたは各事象毎のエネルギ信号に比例して変化さ
せることも提案されている(特公昭51−29839、
特公昭56−51312、特開昭53−84378、特
開昭55−44998等の各公報参照)しかし、従来の
これらの提案にかかる構成では、視野の周辺部に特有の
空間的型と不均一性が残るという問題があった。
Conventionally, in order to improve the spatial resolution or improve the spatial distortion in such scintillation cameras, it has been possible to provide nonlinear characteristics to the amplification system connected between each PMT and the position calculation circuit. It has also been proposed to change the nonlinear characteristics in proportion to the energy wind level of the pulse height analyzer or the energy signal for each event (Japanese Patent Publication No. 51-29839,
(Refer to Japanese Patent Publications No. 56-51312, No. 53-84378, No. 55-44998, etc.) However, in the configurations related to these conventional proposals, the spatial shape and non-uniformity peculiar to the peripheral part of the visual field There was a problem of remaining gender.

すなわち、上記提案のひとつでは、各PMTおよびこれ
らに接続される増幅系の増幅率が全部等しいという構成
をとっており、この場合、木質的に最外周のPMTの外
側にはPMTが無いという配列の局所的非対称性に起因
して、視野の周辺部において空間的型とエネルギ信号波
高の位置依存性が著しいという欠点がある。
In other words, in one of the above proposals, the amplification factors of each PMT and the amplification system connected to them are all equal, and in this case, there is no PMT outside the outermost PMT in terms of wood structure. Due to the local asymmetry of the field of view, the disadvantage is that the spatial type and the positional dependence of the energy signal height are significant in the periphery of the field of view.

また、別の提案では、加算回路での重みを最外周のPM
Tに関してのみ大きくするというように他のPMTの重
みと異ならせるという構成をとっているが、この構成に
よればたしかにエネルギ信号波高の位置依存性に関して
は改善されるが1周辺部において空間的型が著しいとい
う欠点を依然として有している。
In another proposal, the weight in the adder circuit is set to the outermost PM.
The configuration is such that the weight is made larger only for T, which is different from the weights of other PMTs. Although this configuration certainly improves the position dependence of the energy signal wave height, the spatial type in one periphery is However, it still has the disadvantage that it is significant.

さらに別の提案では、最外周のPMTに関してのみPM
Tまたは増幅系の増幅率を異ならせる(たとえば増幅率
を大きくする)という構成を採用しており、この構成に
よってエネルギ信号波高の位置依存性に関して改善され
、また空間的型の周辺効果(たとえば周辺部において中
心部方向に歪む現象)も多少改善されるが、周辺部でP
MTの真上がホットスポットまたはコールトスボッ)と
なるような空間的型が現われるという欠点が生じる。
In yet another proposal, PM only for the outermost PMT
A configuration in which the amplification factor of the T or amplification system is made different (for example, by increasing the amplification factor) is adopted, and this configuration improves the position dependence of the energy signal wave height and also reduces the spatial type of peripheral effect (for example, the peripheral effect). However, the phenomenon of distortion toward the center at the periphery of the P
A disadvantage arises in that a spatial pattern appears in which a hot spot or hot spot is directly above the MT.

(ハ)目的 この発明は、各PMTおよびこれに対応する各増幅系の
増幅率を非線形としたシンチレーションカメラにおいて
視野の周辺部の空間的型や不均一性を改善することを目
的とする。
(c) Purpose This invention aims to improve the spatial shape and non-uniformity of the peripheral part of the field of view in a scintillation camera in which the amplification factors of each PMT and each corresponding amplification system are nonlinear.

(ニ)構成 この発明のシンチレーションカメラでは、周辺部のPM
Tに関してのみ中心部のPMTに比べて同一人力に対す
る各増幅系の出力が異なるように、PMTまたは増幅系
の増幅率が調整され、かつ各増幅系における非線形点(
折れ曲り点およびまたはスレッショルドレベル)も、周
辺部のPMTに関するものと中心部のPMTに関するも
のとで各増幅系出力の大小に応じてそれぞれ異なるよう
に構成されている。
(d) Configuration In the scintillation camera of this invention, PM in the peripheral area
The amplification factors of the PMTs or amplification systems are adjusted so that the output of each amplification system for the same human power is different compared to the central PMT only with respect to T, and the nonlinear point (
The bending point and/or threshold level is also configured to be different for the PMTs in the peripheral area and for the PMTs in the central area, depending on the magnitude of the output of each amplification system.

(ホ)実施例 この実施例では61本のPMT3が第1図のように六角
稠密状に配列されており、このようにして第2図に示す
ようにシンチレータ1の裏面にライトガイド2を介して
取り付けられている。61本のPMT3のそれぞれに第
1図に示すように1〜61の番号を付け、これらを3種
類に分類し、第2〜4番、第6番、第it番、第12番
、第18番、第19番、第26番、第36番、第43番
、第44番、第50番、第51番、第56番、第58〜
60番のPMT3を最外周辺部のPMT302と呼び、
第1番、第5番、第17番、第35番、第57番、第6
1番のPMT3を最外周頂点部のPMT303と呼び、
これ以外のPMT3を中心部のPMT301と呼ぶこと
とする。シンチレータ1に放射線が入射するとこのシン
チレータlのなかでシンチレーション光が発生し、この
光がライトガイド2を経てPMT3の各々に導かれる。
(E) Example In this example, 61 PMTs 3 are arranged in a hexagonal dense arrangement as shown in FIG. 1, and in this way, as shown in FIG. installed. Each of the 61 PMTs 3 is numbered 1 to 61 as shown in Figure 1, and these are classified into three types: No. 2 to No. 4, No. 6, No. IT, No. 12, and No. 18. No. 19, No. 26, No. 36, No. 43, No. 44, No. 50, No. 51, No. 56, No. 58-
PMT3 numbered 60 is called PMT302 at the outermost periphery,
No. 1, No. 5, No. 17, No. 35, No. 57, No. 6
The first PMT3 is called the outermost apex PMT303,
The other PMTs 3 will be referred to as the central PMT 301. When radiation is incident on the scintillator 1, scintillation light is generated within the scintillator 1, and this light is guided to each of the PMTs 3 via the light guide 2.

こうしてPMT3の各々から出力が生じ、この各出力が
それぞれ対応するプリアンプ4、波 。
In this way, an output is generated from each of the PMTs 3, and each of these outputs is connected to a corresponding preamplifier 4 and a waveform.

形整形回路5、非線形増幅器6を経て位置演算回路7に
入力され、この位置演算回路7で重み付は加算されると
ともにエネルギに関する除算(規格化)等が行なわれて
位置信号X、Yが得られる。
The signals are inputted to a position calculation circuit 7 via a shaping circuit 5 and a nonlinear amplifier 6, and the position calculation circuit 7 adds weights and performs division (normalization) regarding energy to obtain position signals X and Y. It will be done.

これらプリアンプ4、波形整形回路5、非線形増幅器6
もまたPMT301.302,303に応じて3種類に
分類され、それぞれ対応する番号401〜403,50
1〜503.601〜603が付されている。上記波形
整形回路5の各々の出力はまた、加算回路8にも入力さ
れ、エネルギ信号Zが得−られ、このエネルギ信号Zは
波高分析器9に送られてこの波高分析器9によりこのエ
ネルギ信号Zがあるエネルギウィンド内に入っているか
否かが判別され、入っている場合アンプランク信号がこ
の波高分析器9から発生する。またエネルギ信号Zは非
線形点制御電圧発生回路lOに入力され、放射線入射の
各事象毎にそのエネルギに応じて非線形増幅器6の非線
形点が変るように非線形点制御電圧を発生し、これを非
線形増幅器6の各々に送る。中心部のPMT301に対
応する非線形増幅器601の入出力特性は、たとえば第
3図の実線で示すような、高入力信号に対する増幅率が
小さい所謂抑圧型非線形特性とし、2箇所の折れ曲り点
(低い方をLNLI、高い方をHNLlとする)を有し
、これらはそれぞれ非線形点制御電圧LlおよびHlで
制御される。最外周の辺部および頂点部のPMT302
.303に対応する非線形増幅器602,603につい
ても同様で、前者は第3図の1点鎖線で、後者は第3図
の点線でそれぞれ示されているように2箇所の折れ曲り
点LNL2、HNL2およびLNL3、HNL3を有し
、これらの折れ曲り点はそれぞれ非線形点制御電圧L2
、H2およびL3、H3により制御される。このように
入出力特性に抑圧型非線形特性を持たせることにより、
PMT3の各々の真上でホットスポットとなるような空
間的型(およびそれに起因する不均一性)を改善するこ
とができ、その結果ライトガイド2およびシンチレータ
lを薄くすることが可能になるため、間接的に空間分解
能を向上させる効果を生じる。
These preamplifier 4, waveform shaping circuit 5, nonlinear amplifier 6
is also classified into three types according to PMT301, 302, 303, and the corresponding numbers 401 to 403, 50 respectively.
1-503.601-603 are attached. The output of each of the waveform shaping circuits 5 is also input to an adder circuit 8 to obtain an energy signal Z. This energy signal Z is sent to a pulse height analyzer 9, which converts the energy signal It is determined whether or not Z is within a certain energy window, and if so, an unblank signal is generated from this pulse height analyzer 9. The energy signal Z is also input to the nonlinear point control voltage generation circuit IO, which generates a nonlinear point control voltage so that the nonlinear point of the nonlinear amplifier 6 changes according to the energy for each event of radiation incidence, and converts the nonlinear point control voltage to the nonlinear amplifier 6. Send to each of 6. The input/output characteristics of the nonlinear amplifier 601 corresponding to the central PMT 301 are, for example, so-called suppressed nonlinear characteristics with a small amplification factor for high input signals, as shown by the solid line in FIG. The higher one is LNLI and the higher one is HNLl), and these are controlled by nonlinear point control voltages Ll and Hl, respectively. PMT302 at the outermost edge and apex
.. The same goes for the nonlinear amplifiers 602 and 603 corresponding to 303, the former having two bending points LNL2, HNL2 and LNL3 and HNL3, and each of these bending points has a nonlinear point control voltage L2.
, H2 and L3, H3. By providing suppressed nonlinear characteristics to the input/output characteristics in this way,
Since the spatial pattern (and the resulting non-uniformity) of hot spots directly above each of the PMTs 3 can be improved, and as a result it becomes possible to make the light guide 2 and the scintillator l thinner, This indirectly has the effect of improving spatial resolution.

ここで、この発明によれば、周辺部のPMT302.3
03に関してはPMT302.303またはプリアンプ
402,403(あるいは波形整形回路502,503
等を含めた増幅系について)の増幅率を中心部のPMT
 301に関する増幅率とは異ならせてあり、同一の放
射線源を各PMT3の真上に置いて同一の放射線入力を
与えたときでも非線形増幅器6の各々に入力される出力
が異なるものとなるようにしている。かつこの非線形増
幅器6の入力の違いに応じて、非線形増幅器6に関して
も1周辺部に対応する非線形増幅器602.603に中
心部に対応する非線形増幅器601とは異なる入出力特
性を持たせるようにしている。
Here, according to the present invention, PMT302.3 in the peripheral part
For 03, PMT302.303 or preamplifier 402,403 (or waveform shaping circuit 502,503
Regarding the amplification system including
301, so that even when the same radiation source is placed directly above each PMT 3 and the same radiation input is applied, the outputs input to each of the nonlinear amplifiers 6 will be different. ing. In addition, in accordance with the difference in the input of the nonlinear amplifier 6, the nonlinear amplifiers 602 and 603 corresponding to one peripheral part of the nonlinear amplifier 6 are made to have different input/output characteristics from the nonlinear amplifier 601 corresponding to the central part. There is.

具体的には、たとえば、最外周の辺部のPMT302に
関する増幅率が中心部のPMT301の約1.5倍に、
最外周の頂点部のPMT303に関する増幅率が中心部
のPMT301の約0.7〜0.8倍となるように、P
MT3またはプリアンプ4(あるいは波形整形回路5を
含めた増幅系)の増幅率を調整し、かつ非線形増幅器6
゜l、602.603の各々の入出力特性が、中心部す
なわち非線形増幅器601については第3図の実線で、
最外周の辺部すなわち非線形増幅器602については同
図1点鎖線で、最外周の頂点部すなわち非線形増幅器6
03については点線で示′されるように調整している。
Specifically, for example, the amplification factor for the PMT 302 on the outermost side is about 1.5 times that of the PMT 301 in the center,
P so that the amplification factor for the PMT 303 at the apex of the outermost circumference is about 0.7 to 0.8 times that of the PMT 301 at the center.
Adjust the amplification factor of the MT3 or preamplifier 4 (or the amplification system including the waveform shaping circuit 5), and adjust the amplification factor of the nonlinear amplifier 6.
The input/output characteristics of each of ゜l, 602, and 603 are as shown by the solid line in FIG.
The edge of the outermost periphery, that is, the nonlinear amplifier 602, is indicated by a dashed line in the figure, and the vertex of the outermost periphery, that is, the nonlinear amplifier 6
03 is adjusted as shown by the dotted line.

もちろん上記の値はシンチレータlやライトガイド2の
厚さやPMT3の直径および間隔等に応じて定めるべき
もので、これらのファクタによっては前述の1.5倍、
0.7〜0.8倍という値は最適なものではない。
Of course, the above values should be determined depending on the thickness of the scintillator 1 and light guide 2, the diameter and spacing of PMT 3, etc. Depending on these factors, it may be 1.5 times the above value,
A value of 0.7 to 0.8 times is not optimal.

このように周辺部と中心部とで増幅率および非線形特性
を変えているため、周辺部におけるエネルギ信号波高の
位置依存性および空間的型が良好に改善され、その結果
、有効視野を相対的に拡大することができる。
Since the amplification factor and nonlinear characteristics are changed between the periphery and the center in this way, the position dependence and spatial pattern of the energy signal wave height in the periphery are improved, and as a result, the effective field of view is relatively Can be expanded.

なお、上記の実施例では、非線形増幅器6の入出力特性
が第3図で示すような2箇所の折れ曲り点を有する抑圧
型非線形特性であるとして説明したが、折れ曲り点が2
箇所以外の場合、折れ曲りが滑らかな場合、連続的非線
形特性の場合、たとえば第4図に示すように抑圧型特性
に加えてスレッショルド特性を有する場合、885図に
示すようにスレッショルド特性のみの場合等々、−他の
非線形特性に関しても同様である。
In the above embodiment, the input/output characteristic of the nonlinear amplifier 6 was explained as a suppressed nonlinear characteristic having two bending points as shown in FIG.
For example, when the curve is smooth, when the curve is smooth, when the curve has continuous nonlinear characteristics, when there is a threshold characteristic in addition to the suppression type characteristic as shown in Fig. 4, when there is only a threshold characteristic as shown in Fig. 885. etc. - The same applies to other nonlinear characteristics.

また、上記実施例では非線形増幅器6の入出力特性が放
射線入射の各事象毎の工、ネルギ信号Zに応じて変化す
る構成としたが、この代わりに波高分析器9のエネルギ
ウィンドレベルによってlbする構成とすることもでき
る。
Furthermore, in the above embodiment, the input/output characteristics of the nonlinear amplifier 6 are configured to change according to the energy signal Z for each event of radiation incidence, but instead of this, the input/output characteristics of the nonlinear amplifier 6 are changed according to the energy wind level of the pulse height analyzer 9. It can also be configured.

さらに、上記では多数配列されているPMT 3をその
位置に応じて3種類に分類したが、2種類または4種類
以上に分類することも可能であり、また第1因に示した
61本のPMT3を六角稠密配列した構成以外の構成に
ついても同様に適用可能である。
Furthermore, in the above, a large number of PMTs 3 were classified into three types according to their positions, but it is also possible to classify them into two or four or more types, and the 61 PMTs shown in the first factor It is similarly applicable to configurations other than the hexagonal densely arranged configuration.

あるいは、第2図と位置演算方法が多少異なる構成(た
とえばプリアンプ4が非積分型で、波形整形回路5を持
たず、ピーク検出を行なうか、位置演算途中で積分を行
なうようにした構成)を採用した場合でもこの発明は適
用可能である。
Alternatively, a configuration in which the position calculation method is slightly different from that in Fig. 2 (for example, a configuration in which the preamplifier 4 is a non-integrating type, does not have the waveform shaping circuit 5, and performs peak detection, or performs integration during position calculation) may be used. The present invention is applicable even if this is adopted.

また、位置演算回路7の重みが各PMT3の位置に応じ
て必ずしも比例していない構成や、エネルギに関する規
格化用の除算回路の分母側のエネルギに関連する信号の
重みが必ずしも全てのPMT3に関して等しくない構成
についても適用可能である。
In addition, the weight of the position calculation circuit 7 is not necessarily proportional to the position of each PMT 3, and the weight of the signal related to the energy on the denominator side of the division circuit for normalizing energy is not necessarily equal for all PMTs 3. It is also applicable to configurations where there is no

(へ)効果 この発明によれば、視野の周辺部に固有の空間前型およ
びそれに起因する不均一性が改善されるとともに、周辺
部固有のエネルギ信号波高の位置依存性およびそれに起
因する不均一性が改善される。さらに、これらより相対
的にシンナレーションカメラの有効視野が拡大する。
(f) Effects According to the present invention, the spatial front type inherent to the peripheral part of the visual field and the non-uniformity caused by it are improved, and the position dependence of the wave height of the energy signal unique to the peripheral part and the non-uniformity caused by it are improved. sex is improved. Furthermore, the effective field of view of the synnarration camera is relatively expanded.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はこの発明の一実施例に関するもの
で、第1図はPMTの配列を示す平面図、第2図はブロ
ック図、第3図はこの実施例における入出力特性を示す
グラフ、第4図および第5図はiれぞれ変形例の入出力
特性を示すグラフである。 l・・・シンチレータ 2・・・ライトガイド3・・・
PMT 4・・・プリアンプ 5・・・波形整形回路 6・・・非線形増幅器7・・・
位置演算回路 8・・・加算回路9・・・波高分析器 10・・・非線形点制御電圧発生回路
Figures 1 and 2 relate to one embodiment of the present invention; Figure 1 is a plan view showing the arrangement of PMTs, Figure 2 is a block diagram, and Figure 3 shows the input/output characteristics of this embodiment. The graphs in FIGS. 4 and 5 are graphs showing the input/output characteristics of modified examples of i, respectively. l...Scintillator 2...Light guide 3...
PMT 4...Preamplifier 5...Waveform shaping circuit 6...Nonlinear amplifier 7...
Position calculation circuit 8... Addition circuit 9... Wave height analyzer 10... Nonlinear point control voltage generation circuit

Claims (1)

【特許請求の範囲】[Claims] (1)シンチレータと、このシンチレータの裏面に配列
される多数の光電変換器と、この各光電変換器の出力を
それぞれ増幅す′る非線形特性を有する増幅系と、これ
ら各増幅系を経た各光電変換器の出力が入力される位置
演算回路とを有するシンチレーションカメラにおいて、
周辺部の光電変換器に関してのみ中心部の光電変換器に
比べて同一人力に対する上記各増幅系の出力が異なるよ
うに、上記光電変換器または増幅系の増幅率が調整され
、かつ上記各増幅系における非線形点も、周辺部の光電
変換器に関するものと中心部の光電変換器に関するもの
とで上記各増幅系出力の大小に応じてそれぞれ異なるよ
うに構成されていることを特徴とするシンナレーション
カメラ。
(1) A scintillator, a large number of photoelectric converters arranged on the back side of the scintillator, an amplification system with nonlinear characteristics that amplifies the output of each photoelectric converter, and each photoelectric converter that passes through each of these amplification systems. In a scintillation camera having a position calculation circuit into which the output of the converter is input,
The amplification factors of the photoelectric converters or the amplification systems are adjusted so that only the photoelectric converters in the periphery have different outputs from the amplification systems for the same human power compared to the photoelectric converters in the center, and The synnarration camera is characterized in that the nonlinear points in the peripheral photoelectric converter and the center photoelectric converter are configured to be different depending on the magnitude of each amplification system output. .
JP16000583A 1983-08-31 1983-08-31 Scintillation camera Granted JPS6052788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16000583A JPS6052788A (en) 1983-08-31 1983-08-31 Scintillation camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16000583A JPS6052788A (en) 1983-08-31 1983-08-31 Scintillation camera

Publications (2)

Publication Number Publication Date
JPS6052788A true JPS6052788A (en) 1985-03-26
JPH0426072B2 JPH0426072B2 (en) 1992-05-06

Family

ID=15705915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16000583A Granted JPS6052788A (en) 1983-08-31 1983-08-31 Scintillation camera

Country Status (1)

Country Link
JP (1) JPS6052788A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0253390A2 (en) 1986-07-17 1988-01-20 Fuji Photo Film Co., Ltd. Photographic support and color photosensitive material
EP0450388A2 (en) * 1990-03-30 1991-10-09 Siemens Aktiengesellschaft Scintillation camera apparatus and method implementing a localized positioning algorithm

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0253390A2 (en) 1986-07-17 1988-01-20 Fuji Photo Film Co., Ltd. Photographic support and color photosensitive material
EP0450388A2 (en) * 1990-03-30 1991-10-09 Siemens Aktiengesellschaft Scintillation camera apparatus and method implementing a localized positioning algorithm

Also Published As

Publication number Publication date
JPH0426072B2 (en) 1992-05-06

Similar Documents

Publication Publication Date Title
JPS6052788A (en) Scintillation camera
JPS59107313A (en) Focus detecting signal processing method
JP2001124857A (en) Positron camera system and beam irradiation position measurement method in the system
JP3778659B2 (en) Radiation position detector
JP3374596B2 (en) Positron CT system
US4806756A (en) Method of adjusting radiation image read-out conditions
JP2699474B2 (en) PMT gain adjustment method
JPH05297142A (en) Scintillation camera
JPS61102579A (en) Detecting device for radiation source position
JPS6052787A (en) Scintillation camera
JPH0430554B2 (en)
KR102013206B1 (en) Method for generating correction data and method for processing infrared image using the same
JP3065625B2 (en) Radiation detector
JPS5935171A (en) Scintillation camera
JP2884748B2 (en) Image sensor characteristics measurement method
JPS5876785A (en) Scintillation camera
JPH0436352B2 (en)
JPS61195386A (en) Device for stabilizing amplification factor of photomultiplier tube
Gao et al. Effect analysis of nonuniformity on four-quadrant detector and compensation correction
JPH0423231B2 (en)
JPS59228131A (en) Laser light warning device
JPS62167494A (en) Apparatus for correcting non-linearity of gamma camera
JPH0528354B2 (en)
JPH0528353B2 (en)
JPS5934181A (en) Scintillation camera