JPS5876785A - Scintillation camera - Google Patents

Scintillation camera

Info

Publication number
JPS5876785A
JPS5876785A JP17499981A JP17499981A JPS5876785A JP S5876785 A JPS5876785 A JP S5876785A JP 17499981 A JP17499981 A JP 17499981A JP 17499981 A JP17499981 A JP 17499981A JP S5876785 A JPS5876785 A JP S5876785A
Authority
JP
Japan
Prior art keywords
signal
circuits
output
circuit
outputs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17499981A
Other languages
Japanese (ja)
Other versions
JPH0227633B2 (en
Inventor
Yoshihiko Kumazawa
熊澤 良彦
Tsunekazu Matsuyama
松山 恒和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP17499981A priority Critical patent/JPH0227633B2/en
Publication of JPS5876785A publication Critical patent/JPS5876785A/en
Publication of JPH0227633B2 publication Critical patent/JPH0227633B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting
    • G01T1/164Scintigraphy
    • G01T1/1641Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras
    • G01T1/1642Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras using a scintillation crystal and position sensing photodetector arrays, e.g. ANGER cameras

Abstract

PURPOSE:To attain pictures with good linearity by a camera wherein output from each photoelectric converter disposed in rear of a scintillator is divided by the total output to be normalized, and locational arithmetic operation is performed after conversion from non-linear characteristic to linear characteristic. CONSTITUTION:Fluorescence generated by radiation incident upon a scientillator 1 enters PMT 31-3n, which outputs are fed via preamplifiers 41-4n to an adder 5 where they are totally added. When an added signal (a) exceeds a given value in a trigger circuit 6, a trigger signal (b) is applied to integration circuits 80-8n and also fed to a timing generating circuit 7 to issue a signal (c). The signal (a) and the output from each preamplifier are respectively integrated in a period from the signal (b) to (c) by the circuit 80 and the circuits 81-8n. In division circuits 101-10n, outputs from the circuits 81-8n are divided by the output of the circuit 80 and then stored in memories 131-13n, respectively. These data signals are applied via D/A converters 141-14n to X- and Y-direction positional arithmetic circuits 15, 17 of weighed addition type. A picture 21 with good linearity can be attained from outputs of these circuits 15, 17.

Description

【発明の詳細な説明】 この発明は、通常アンガー型と呼ばれているシンチレー
ションカメラの改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in scintillation cameras commonly referred to as Anger type cameras.

アンカー型シンチレーションカメラでは、放射線入射に
応じて発光するシンチレータの背面に多数の光電子増倍
管(以下、PM’l’と略す)を配列し、この各PMT
出力から、通常抵抗マトリクス重み付き加算回路等でな
る位置演算回路によゆ発光点の位置を演算するようにし
ている。ところで一般にシンチレータ発光位置に対する
PMT出力はベル型非線型となっている(第2図参照)
。この非線型性のため得られる画像は一般に非直線性を
含んだものとなる。
In an anchor-type scintillation camera, a large number of photomultiplier tubes (hereinafter abbreviated as PM'l') are arranged on the back of a scintillator that emits light in response to incident radiation, and each PMT
From the output, the position of the light emitting point is calculated by a position calculation circuit, which is usually a resistance matrix weighted addition circuit or the like. By the way, in general, the PMT output with respect to the scintillator light emission position is bell-shaped nonlinear (see Figure 2).
. Because of this nonlinearity, the resulting image generally contains nonlinearity.

特に通常のアンカー型シンチレーションカメラの場合、
空間分解能を向上させるため、シンチレータ、ライトガ
イド等を薄くしたり、スレッショルドプリアンプを用い
たりすることが行なわれているが、こうすると空間非直
線性が劣化する傾向になり、画像は一般に各P M i
’の中心方向に歪む。
Especially in the case of normal anchor-type scintillation cameras,
In order to improve spatial resolution, attempts are being made to make scintillators, light guides, etc. thinner, and to use threshold preamplifiers, but this tends to degrade spatial nonlinearity, and images are generally i
' Distorted towards the center.

本発明は上記に鑑み、空間的に直線性の良い画像が得ら
れるよう改善したシンチレーションカメラを提供するこ
とを目的とする。
In view of the above, an object of the present invention is to provide an improved scintillation camera that can obtain images with good spatial linearity.

以下、本発明の一実施例について図面を参照しながら説
明する。第1図において、シンチレ−タlに入射したγ
線等は吸収されて発光する。
An embodiment of the present invention will be described below with reference to the drawings. In Figure 1, γ incident on scintillator l
Rays, etc. are absorbed and emit light.

それらの光量の一部はライトガイド2を通って各PMT
31〜311で電流信号に変換され、更に各プリアンプ
41〜4nにより電圧信号に変換される。これら各プリ
アンプ41〜4nの出力は加算回路5で加算され、信号
aが得られる。
A portion of that light passes through the light guide 2 to each PMT.
31 to 311, the signal is converted into a current signal, and further converted into a voltage signal by each preamplifier 41 to 4n. The outputs of each of these preamplifiers 41 to 4n are added by an adder circuit 5 to obtain a signal a.

この信号aはトリガ回路6に入力され、信号aが所定の
しきい値より大きい時トリガ信号すが発生し、このトリ
ガ信号【)はタイミング発生回路7に送られるとともに
積分回路80.81〜8nの各々に送られる。タイミン
グ発生回路7ではトリガ信号すが入力されると信号Cが
出力され、史に後述の信号dが入力されることにより信
号0〜皿が順次適当なタイミングで発生される。
This signal a is input to the trigger circuit 6, and when the signal a is larger than a predetermined threshold value, a trigger signal is generated. are sent to each of them. In the timing generating circuit 7, when the trigger signal S is inputted, a signal C is outputted, and when a signal d, which will be described later, is inputted to the timing generating circuit 7, the signals 0 to D are sequentially generated at appropriate timings.

上記加算回路5からの信号aは積分回路80に送られ、
またプリアンプ41〜4nの各出力は積分回路81〜8
nの各々に送られており、上記の信号すにより積分開始
し、信号Cにより積分終了し、信号V、 、 V、〜V
nがそれぞれ得られ、信号eによりサンプルホールド回
bY 90 。
The signal a from the adding circuit 5 is sent to the integrating circuit 80,
In addition, each output of the preamplifiers 41 to 4n is connected to an integrator circuit 81 to 8.
Integration is started by the above signal S, integration is ended by signal C, and signals V, , V, ~V are sent to each of n.
n are obtained respectively, and sample and hold times bY 90 are obtained by the signal e.

91〜9nの各々に取り込まれ、除算回路101〜10
nを通って信号V、/ V、〜Vn/V。の各々をr尋
る。これらの信号は信号fにより動作するーリーンプル
ボールド回路l1l−1In及び信V」gによって動作
するAD変換器121”−12n ツi:それぞれ通っ
てデジタル信Q v、〜v11に裟1匁、される、2こ
れらの信号v、〜v−if非aをメモII l :(1
〜13nの各々に入力され、信号11によってそれぞれ
より信号w1〜W・の各々が読み出さ1]2、これらが
DA変換器141”=14 nの各々でアナログ信号に
変換された後、通常の重み付加停方式のX方間位置演算
回路15及びY方間位置演算回路17に入力され、信号
Wx 、 yY治・得る。これらの信号WX、WYはそ
れぞれ信号1で1111作するサンプルホールド回路1
6.18を通って位置信号としてのX信号とX信号とさ
れ、表示装]H21に送られる。
91 to 9n, and divided into division circuits 101 to 10.
n through the signal V,/V, ~Vn/V. Ask each of r. These signals are operated by the signal f - the lean pull bold circuit l1l-1In and the AD converter 121''-12n operated by the signal V'g. , 2 Note these signals v, ~v-if non a II l :(1
~13n, and each of the signals w1~W* is read out from each by the signal 111]2, and after these are converted into analog signals by each of the DA converters 141''=14n, normal weighting is performed. The signals WX and yY are inputted to the X-direction position calculation circuit 15 and Y-direction position calculation circuit 17 of the additional stop method, and the signals WX and yY are obtained.
6.18, it is made into an X signal as a position signal and an X signal, and sent to the display device H21.

他方、信号V、は史に波高分析回路2oに送られ、設定
したエネルギウィンドに入っでいる場合はこの波高分析
回路20から信号dどアンブランク信号が出力される。
On the other hand, the signal V is sent to the pulse height analysis circuit 2o, and if it is within the set energy window, the signal d is output as a blank signal.

また、サンプルホールド回路90からの信号v、゛は信
号Iによって動作するサンプルホールド回路19により
取り込まれ、エネルギ信号(Z信号)として表示装置2
1に送られる。従って、表示装置21ではX信号及びX
信号で示される位置に輝点が表示される。
Further, the signals v and ゛ from the sample and hold circuit 90 are taken in by the sample and hold circuit 19 operated by the signal I, and are sent to the display device 2 as an energy signal (Z signal).
Sent to 1. Therefore, in the display device 21, the X signal and
A bright spot is displayed at the position indicated by the signal.

ここで1個のPMTについてみると、その出力の積分出
力■の発光位置依存性(以下、応答特性という)は主に
当該PMTの発光位置からの立体角に脇存し、P M 
T中心軸から発光位置までの距離rについて描くと、第
2図に示すようにベル型非泊線型になる。壕だ、応答特
性は立体角以外に総発光量にも依存している。そこで上
記の構成ではまず除算回路101〜10nにおいて総発
光量に近似的に比例した信号V、で出力v (V’1〜
Vnの各信号)を除算することにより規格化し、立体角
に純粋に比例する信号V/V。
Looking at one PMT here, the dependence of the integrated output (■) on the light emitting position (hereinafter referred to as response characteristics) mainly depends on the solid angle from the light emitting position of the PMT, and P M
If the distance r from the T center axis to the light emitting position is drawn, it becomes a bell-shaped non-linear type as shown in FIG. Well, the response characteristics depend not only on the solid angle but also on the total amount of light emitted. Therefore, in the above configuration, the division circuits 101 to 10n first output a signal V, which is approximately proportional to the total light emission amount, v (V'1 to
A signal V/V that is normalized by dividing each signal of Vn) and is purely proportional to the solid angle.

に変換した後、次にこの規格化した信号V/V。After converting to V/V, this normalized signal is converted to V/V.

を非線型メモ’J 131”−13nにより第3図に示
すように、たとえば台形状の応答特性Wに変換する。こ
の台形のような形状の応答特性Wは位置演算する場合に
生じる非直線性及び空間分解能が改善されるよう定めた
もので、V/V、からWへの変換特性は第4図に示すよ
うになゆ、この変換特性が非線型メモ’J l 31=
l 3 nの各々に予め記憶されている。この非線型メ
モ1月31〜13nはそれぞれI) −B、OM等の半
導体メモリ等により構成される。なお、第2図及び第3
図はPMT及びプリアンプのエネルギ直線性が充分に良
い(すなわち、V/V、の〔依存性はV、にに依らない
)と仮定して描いたものである。
is converted into, for example, a trapezoidal response characteristic W using the nonlinear memo 'J 131''-13n as shown in FIG. The conversion characteristic from V/V to W is as shown in Fig. 4, and this conversion characteristic is a nonlinear memo 'J l 31=
l 3 n are stored in advance. Each of the non-linear memos 31 to 13n is composed of a semiconductor memory such as I)-B, OM, or the like. In addition, Figures 2 and 3
The figure was drawn assuming that the energy linearity of the PMT and preamplifier is sufficiently good (that is, the dependence of V/V is independent of V).

このようにPMT出力V+ ”□ V nを総発光量に
比例した信号■、で除算し、て規格した後、非直Mi性
が改善されるような応答特性Wに変換しているので、総
発光量に依存せず、非直線性改善のだめの変換が行なえ
るとともに、後に位置演算により得た信号をZ信号等で
割!して規格化゛する必要がない。壕だ非線型メモ’)
 l 31=13 nの各々の記憶内容を変えることに
より各PMTの出力を変えることができるため、使用さ
れる個々のPMTの発光位置に対する応答のばらつきも
補正できる。
In this way, the PMT output V + "□ V n is divided by the signal ■ proportional to the total light emission amount, and after normalization, it is converted to the response characteristic W that improves the non-direction Mi property, so the total It is possible to perform conversion to improve nonlinearity without depending on the amount of light emitted, and there is no need to standardize the signal obtained by position calculation by dividing it by the Z signal etc.
Since the output of each PMT can be changed by changing the storage contents of each of l 31 = 13 n, variations in response to the light emitting position of the individual PMTs used can also be corrected.

なお、上記の実施例の構成は種々に変更することが可能
である。例えば、サンプルホールド回路90.91〜9
nのそれぞれの出力を先にAD変換し、その後メモリを
用いることによりデジタル的に除算してy、−y・を得
るよう構成することもできる。捷だ、除算回路101”
−10nを用いる代ねに積分回路81〜8nの各々へ入
力すべきプリアンプ41〜4nの各出力を遅延させてお
いて信号V、に応じて積分回路81〜8日の積分時間を
制御するよう構成して実質的に除算する構成とすること
もできる。史に、非線型メモリ131=13nの出力w
1〜W、は−はアナログ信号部−Wnに変換された後位
置演算回路15゜17 により位置演算されるよう構成
されているが、位置演算のだめのメモリを用いる等の構
成をとれば、デジタル信号W、〜W、をそのまま用いて
デジタル的に位置を演算することも可能でである。
Note that the configuration of the above embodiment can be modified in various ways. For example, sample and hold circuits 90.91-9
It is also possible to first perform AD conversion on each output of n, and then use a memory to digitally divide the outputs to obtain y and -y. It's Sword, Division Circuit 101"
-10n, the outputs of the preamplifiers 41-4n to be input to each of the integrating circuits 81-8n are delayed, and the integration time of the integrating circuits 81-8 is controlled according to the signal V. It is also possible to construct a configuration in which the calculation is performed and substantially divided. Historically, the output of nonlinear memory 131=13n w
1 to W and - are converted into analog signal parts -Wn, and then the positions are calculated by the position calculation circuit 15. It is also possible to digitally calculate the position using the signals W, ~W, as they are.

以上、実施例について説明したように、本発明によれば
、空間的に直線性の優れた画像を得ることができる。ま
た、より正確な位置信号を用いてのエネルギ補正が可能
である。更に、シンチレータ、ライトガイドあるいはP
MT等の光学系の配置関係やマスキング等の手段だけで
発光位置に対するPMT出力の応答特性を変形させると
いう従来の方法では一般に受光域が減少し、エネルギ分
解能が犠牲になるが1本発明によればエネルギ分解能の
低下を伴なわない。
As described above with respect to the embodiments, according to the present invention, an image with excellent spatial linearity can be obtained. Furthermore, energy correction using a more accurate position signal is possible. Furthermore, scintillator, light guide or P
Conventional methods in which the response characteristics of the PMT output to the light emitting position are changed only by the arrangement of the optical system such as the MT or by means such as masking generally reduce the light receiving area and sacrifice the energy resolution. In this case, there is no reduction in energy resolution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のブロック図、第2図はPM
Tの応答特性を表わすグラフ、第3図は総発光量で規格
化したl) M Tの応答特性及び台形状の応答特性を
表わすグラフ、第4図はPMTの応答特性と台形状の応
答特性との間の1 変換特性を表わすグラフである。 l・・シンチレータ 2・・ライトガイド31〜3n・
・光電子増倍管 5・・加算回路    6・・トリガ回路7・・タイミ
ング発生回路 80.81〜8n・・積分回路 tot−to口・・除算回路 131〜13n・・非線型メモリ 15・・Y方向位置演算回路 17・・Y方向位置演算回路 20・・波高分析回路 21・・表示装置出願人 株式
会社 高滓製作所 (9) −48:
FIG. 1 is a block diagram of an embodiment of the present invention, and FIG. 2 is a block diagram of an embodiment of the present invention.
A graph showing the response characteristics of T, Figure 3 is a graph showing the response characteristics of M T and a trapezoidal response characteristic, and Figure 4 is a graph representing the response characteristics of PMT and a trapezoidal response characteristic. 1 is a graph showing conversion characteristics between . l...Scintillator 2...Light guide 31~3n...
- Photomultiplier tube 5...Addition circuit 6...Trigger circuit 7...Timing generation circuit 80.81-8n...Integrator circuit tot-to port...Division circuit 131-13n...Nonlinear memory 15...Y Direction position calculation circuit 17... Y direction position calculation circuit 20... Wave height analysis circuit 21... Display device applicant Takasugi Seisakusho Co., Ltd. (9) -48:

Claims (1)

【特許請求の範囲】[Claims] (1)  放射線入射に応じて発光するシンチレータと
、このシンチレータの背面に配列される多数の光電変換
器とを有し、各光電変換器出力から発光点の位置を演算
するようにしたシンチレーションカメラにおいて、前記
光電変換器の各出力を全光電変換器出力和で除算して規
格化したのち、この規格化した各出力を、あらかじめ各
光電変換器について定めた非線型な関係で変換し、この
変換された出力を用いて位置演算を行なうようにしたこ
とを特徴とするシンチレーションカメラ。
(1) In a scintillation camera that has a scintillator that emits light in response to incident radiation and a number of photoelectric converters arranged on the back of this scintillator, and the position of the light emitting point is calculated from the output of each photoelectric converter. , after normalizing each output of the photoelectric converter by dividing it by the sum of all photoelectric converter outputs, converting each normalized output using a nonlinear relationship determined in advance for each photoelectric converter, and calculating this conversion. A scintillation camera characterized in that a position calculation is performed using the output.
JP17499981A 1981-10-31 1981-10-31 SHINCHIREESHONKAMERA Expired - Lifetime JPH0227633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17499981A JPH0227633B2 (en) 1981-10-31 1981-10-31 SHINCHIREESHONKAMERA

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17499981A JPH0227633B2 (en) 1981-10-31 1981-10-31 SHINCHIREESHONKAMERA

Publications (2)

Publication Number Publication Date
JPS5876785A true JPS5876785A (en) 1983-05-09
JPH0227633B2 JPH0227633B2 (en) 1990-06-19

Family

ID=15988439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17499981A Expired - Lifetime JPH0227633B2 (en) 1981-10-31 1981-10-31 SHINCHIREESHONKAMERA

Country Status (1)

Country Link
JP (1) JPH0227633B2 (en)

Also Published As

Publication number Publication date
JPH0227633B2 (en) 1990-06-19

Similar Documents

Publication Publication Date Title
US4095108A (en) Signal processing equipment for radiation imaging apparatus
JPH04270984A (en) Position detector
JPS5876785A (en) Scintillation camera
JP3323323B2 (en) Scintillation camera
JPH081462B2 (en) Scintillation camera
US4904870A (en) Device and method for correcting sensitivity of a gamma camera
JPS6042426B2 (en) scintillation camera
JP3046617B2 (en) Scintillation camera
JPH0543426Y2 (en)
JPS6385486A (en) Radiation position detector
JPS60122382A (en) Radiation image forming device
JPH0511059A (en) Scintillation camera
JP2631477B2 (en) Scintillation camera
JPS58187883A (en) Amending method of spatial distortion correction for scintillation camera
JP3332436B2 (en) Gamma camera
JPS5935171A (en) Scintillation camera
JPS5876787A (en) Scintillation camera
JPH0972963A (en) Scintillation camera
JPH0278987A (en) Scintillation camera
JPH0457987B2 (en)
JP2000056024A (en) Real-time radiation position calculating device
JPS63148186A (en) Light or radiation incidence position detector
JPH0528354B2 (en)
JPH06317671A (en) Nuclear medical imaging device
JPS6150088A (en) Pmt output stabilizer for radiation position detector