JPS6052549A - Method for dissolving solid material in chromium- containing steel bath - Google Patents

Method for dissolving solid material in chromium- containing steel bath

Info

Publication number
JPS6052549A
JPS6052549A JP15792083A JP15792083A JPS6052549A JP S6052549 A JPS6052549 A JP S6052549A JP 15792083 A JP15792083 A JP 15792083A JP 15792083 A JP15792083 A JP 15792083A JP S6052549 A JPS6052549 A JP S6052549A
Authority
JP
Japan
Prior art keywords
scrap
chromium
steel bath
temperature
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15792083A
Other languages
Japanese (ja)
Inventor
Shingo Sato
信吾 佐藤
Takashi Inoue
隆 井上
Noriyuki Masumitsu
升光 法行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP15792083A priority Critical patent/JPS6052549A/en
Publication of JPS6052549A publication Critical patent/JPS6052549A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To prevent oxidation reaction loss of Cr in the stage of charging chromium contg.- or non-Cr contg. scrap into a Cr-contg. steel bath by using a solid carbon material as a heat source or (C) source and adjusting the (C) level in the steel bath together with temp. at the equilibrium of C-Cr-temp. CONSTITUTION:A solid carbon material (e.g.; coke) is used as a heat source or (C) source and the above-described scrap or alloy iron is dissolved into a Cr- contg. steel bath in the stage of refining a steel in a converter. The scrap and alloy iron are dissolved while the oxidation loss of metallic Cr and the erosion of refractories are decreased by adjusting the (C) or the temp. in the steel bath with respect to the equilibrium of the C-Cr-temp. As a result a large amt. of the inexpensive chromium scrap is melted without decreasing the consumption of the refractories.

Description

【発明の詳細な説明】 1)産業上の利用分野 本発明は転炉において固体炭素物質を熱源として、含ク
ロム鋼浴中に含クロムスクラップあるいは非含クロムス
クラップを溶解する際に、該スクラップ投入前に鋼浴中
の〔C〕温度に関して、C−Cr一温度の平衡関係から
優先脱炭反応が起こる条件を確保する事によシスクラ、
プ中或いは鋼浴中のCrの酸化損失を抑制しながらスク
ラップを溶解する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION 1) Industrial field of application The present invention provides a method for melting chromium-containing scrap or non-chromium-containing scrap into a chromium-containing steel bath using a solid carbon material as a heat source in a converter. With respect to the [C] temperature in the steel bath, by ensuring conditions for preferential decarburization to occur from the equilibrium relationship of C-Cr temperature, Siscra,
The present invention relates to a method for melting scrap while suppressing oxidation loss of Cr in a steel bath or steel bath.

b)従来技術 従来含クロム鋼浴中に含クロムスクラップ又は非含クロ
ムスクラップあるいは合金鉄などの固形物質の溶解を実
施する場合、C−Cr一温度の平衡関係を考慮して行な
ってはいるが、炭素物質を熱源あるいは〔り源として利
用していなかったので平衡関係において選択できる自由
度としては鋼浴温度を調整するのみであった。つまシ昇
熱材としてフェロシリコンあるいはアルミニウムといっ
た合金鉄を用いて鋼浴を高温度に昇熱してスクラップ又
は合金鉄を溶解するか、あるいはスクラップ又は合金鉄
を少量ずつ連続的に投入し温度降下中を小さくしながら
スクラップ又は合金鉄を溶解するか、更にスクラップや
合金鉄を予熱して一括あるいは連続して投入するといっ
たように温度調整のみでCrの酸化反応を調整していた
b) Prior Art Conventionally, when melting solid substances such as chromium-containing scrap or non-chromium-containing scrap or ferroalloy in a chromium-containing steel bath, the equilibrium relationship between C-Cr and temperature has been considered. Since the carbon material was not used as a heat source or a heat source, the only degree of freedom that could be selected in the equilibrium relationship was to adjust the steel bath temperature. Either ferro-alloy such as ferrosilicon or aluminum is used as the heat-raising material to heat the steel bath to a high temperature to melt the scrap or ferro-alloy, or scrap or ferro-alloy is continuously introduced in small amounts while the temperature is lowered. The oxidation reaction of Cr has been controlled only by temperature adjustment, such as by melting the scrap or ferroalloy while reducing the amount of Cr, or by preheating the scrap or ferroalloy and adding it all at once or continuously.

前記のように第一にC−Cr一温度平衡において鋼浴温
度を高温度にする事でCrの酸化反応を防止していたこ
と、第二に昇熱材としてフェロシリコンを用いた場合ス
ラグ量が増大していたこと等によシ従来法によれば耐火
物損傷が大であった。また連続的に投入する場合は製鋼
、圧延工程から発生するさまざまな形状のスクラップを
転炉上部シーートから投入するために、予め小片に切断
する必要がおシコストが釧高になっていた。さらに予熱
したとしても、C−Cr一温度の平衡に関して温度のみ
で対応していたため、温度の降下幅からスクラップ又は
合金鉄の一括投入量には限界があった。
As mentioned above, firstly, the oxidation reaction of Cr was prevented by increasing the steel bath temperature at C-Cr temperature equilibrium, and secondly, the amount of slag was reduced when ferrosilicon was used as the heating material. Due to the increase in the number of refractories, the conventional method caused significant damage to the refractories. In addition, when continuously charging scraps of various shapes generated from the steelmaking and rolling processes, it is necessary to cut them into small pieces in advance to input them from the upper sheet of the converter, which increases the cost. Furthermore, even if preheating was performed, the C-Cr temperature equilibrium was handled only by temperature, so there was a limit to the amount of scrap or alloy iron that could be input at once due to the range of temperature drop.

C)発明の目的 本発明はこれらの点に鑑み含クロム鋼浴中に含クロムス
クラップ又は非含クロムスクラップを投入溶解する時固
体炭素物質を熱源おるいは〔C〕源として用いることに
よ、!7 C−Cr一温度の平衡において温度と同時に
鋼浴中の〔C〕レベルを調整してCrの酸化反応ロスを
防止する事を可能とするものである。従って鋼浴中の〔
C〕を上昇させて鋼浴温度の上昇中を低減するか、ある
いは温度は一定に保持したままでスクラップ又は合金鉄
の溶解が可能となるので高温精錬による耐火物損耗量は
大巾に低減でき、あるいは一括して投入でき投入スクラ
ップ量を大巾に増加する事が可能となる。
C) Purpose of the Invention In view of these points, the present invention provides a method for melting chromium-containing scrap or non-chromium-containing scrap by using a solid carbon material as a heat source or [C] source in a chromium-containing steel bath. ! 7 It is possible to prevent oxidation reaction loss of Cr by adjusting the temperature and the [C] level in the steel bath at the same time in the C-Cr-temperature equilibrium. Therefore, [
The amount of refractory loss due to high-temperature refining can be greatly reduced by increasing C] to reduce the amount of steel bath temperature rising, or by making it possible to melt scrap or ferroalloy while keeping the temperature constant. Or, it can be input all at once, making it possible to greatly increase the amount of scrap input.

d)発明の構成と作用 鉄鋼−貫メーカーでステンレス鋼を溶製する場合、一般
的には転Pが溶解炉且つ精mPとなる。
d) Structure and operation of the invention When stainless steel is melted in a steel plate maker, generally the rotor P serves as the melting furnace and the mill P.

また主原料は溶銑がペースであp Cr源は高炭素フエ
ロクロム合金である。該転炉精錬法においては、熱的制
約が大きくフェロクロム合金に含有される5、0〜6.
59!+のC,2,0〜5.5%のSiでは熱源不足の
ため、さらに溶解用熱源としてフェロシリコンあるいは
アルミニウムを添加している。従ってステンレス鋼スク
ラップはほとんど使用する事ができず主として転炉出鋼
後の冷材としてわずかに利用されているにすぎなかった
The main raw material is hot metal, and the pCr source is a high carbon ferrochrome alloy. In the converter refining method, thermal constraints are large and 5,0 to 6.
59! Since +C and 2.0 to 5.5% Si are insufficient as a heat source, ferrosilicon or aluminum is further added as a heat source for melting. Therefore, stainless steel scrap could hardly be used, and was only used to a limited extent, mainly as a cold material after being tapped from a converter.

しかし最近溶製コスト低減の為に主原料あるいは副原料
に対して柔軟性のあるステンレス鋼溶製技術の開発が強
く望まれつつあシ、主原料に対しては安価なCr源とし
て、含クロムスクラップ(ステンレス屑)の利用が望ま
れている。しかし前記したようにC,Slの含有量の高
いフェロクロム合金の溶解でさえ熱源が不足しているた
め、フェロクロム合金に比較してC,Si含有量の低い
ステンレス鋼スクラップを高価なフェロシリコン、アル
ミニウムを用いて溶解する事は経済的に不利である。t
i仮にフェロシリコン、アルミニウムが安価な熱源とな
ったとしてもこれらの昇熱材は含クロムスクラップ又は
非含クロムスクラップあるいはその他の合金鉄溶解に際
して考慮し力ければならないC−Cr一温度の平衡関係
において温度に対してのみ調整可能な熱源であシ、自由
度が小さい。
However, recently, in order to reduce melting costs, there has been a strong desire to develop stainless steel melting technology that is flexible for main raw materials or auxiliary raw materials. The use of scrap (stainless steel scraps) is desired. However, as mentioned above, there is a lack of a heat source even for melting ferrochrome alloys with high C and Sl contents. It is economically disadvantageous to dissolve using. t
Even if ferrosilicon and aluminum become inexpensive heat sources, these heat raising materials have a C-Cr temperature equilibrium relationship that must be taken into account when melting chromium-containing scrap, non-chromium-containing scrap, or other ferroalloys. It is a heat source that can only be adjusted with respect to temperature, so the degree of freedom is small.

第1図にC−Cr一温度−Pcoの平衡図を示す。図中
ラインはP。。=1atmの場合の174 Cr含有鋼
の場合であシ、ラインよυ下側がCr20Hの生成領域
(優先酸化領域)であシ、ラインよ多上方が優先脱炭領
域である。C−Cr一温度平衡に関してフェロシリコン
あるいはアルミニウムを用いて温度で対応する場合、例
えば図中A点で示すようにC=0.25%、温度=15
50℃の含クロムペースメタルに平均溶鋼[:Cr:I
値が1796になるようにフェロクロム合金あるいはス
テンレス鋼スクラップを添加して精錬する時、Crの酸
化ロスを防止する(5) ためには(a)法のように少なくとも温度を1750℃
以上にする必要がある。しかし転炉耐火物は第2図に示
すように約1700℃付近を境にして、当該温度以上で
は大巾に溶損量が増大するため、温度上昇によるCrの
酸化ロス防止法は不利である。
FIG. 1 shows an equilibrium diagram of C-Cr-temperature-Pco. The line in the figure is P. . = 1 atm In the case of 174 Cr-containing steel, the region below the line is the Cr20H generation region (preferential oxidation region), and the region above the line is the preferential decarburization region. When dealing with C-Cr-temperature equilibrium using ferrosilicon or aluminum, for example, as shown at point A in the figure, C = 0.25%, temperature = 15
Average molten steel [:Cr:I
When refining by adding ferrochrome alloy or stainless steel scrap so that the value becomes 1796, in order to prevent oxidation loss of Cr (5), the temperature must be at least 1750°C as in method (a).
It is necessary to do more than that. However, as shown in Figure 2, the amount of melting loss in converter refractories increases significantly above approximately 1700°C, so methods to prevent oxidation loss of Cr due to temperature rise are disadvantageous. .

またフェロシリコンのよ5な昇熱材は下記(1)式に示
す酸化反応後、反応生成物が炉内に残シ、且つ塩基度調
整用にCaOを添加するためスラグ量が増加し、やはシ
耐火物溶損にとっては不利である。
In addition, with heat raising materials such as ferrosilicon, after the oxidation reaction shown in equation (1) below, reaction products remain in the furnace, and the amount of slag increases due to the addition of CaO for basicity adjustment. This is disadvantageous for corrosion of refractories.

引+貌→5i02〔t〕 ・・・(1)式(スラグとな
って炉内残存) しかし本発明のように固体炭素物質を熱源あるいは〔C
〕源として使用することによpc−Cr一温度の平衡に
関する自由度はCと温度の二つになり調整の範囲が非常
に広がることになる。つまシ第1図における(b)法で
は温度を一定レベルに保持したまま鋼浴中の〔C〕含有
量を高め優先脱炭領域を確保する。具体的な方法として
は含りaムペースメタルに固体炭素物質を添加して一旦
鋼浴中の〔C〕含有量を優先脱炭領域に保持した後、さ
らに固体(6) 炭素物質とスクラップ又は合金鉄を添加すると同時に吹
酸し、鋼浴中の〔C〕と温度レベルが常に優先脱炭領域
に保持されるようにスクラップ溶解を行なう。
(remains in the furnace as slag) However, as in the present invention, solid carbon material is used as a heat source or [C
] By using it as a source, there are two degrees of freedom regarding PC-Cr-temperature equilibrium: C and temperature, and the range of adjustment is greatly expanded. In method (b) in Figure 1, the [C] content in the steel bath is increased while the temperature is maintained at a constant level to ensure a preferential decarburization region. A specific method is to add a solid carbon material to the carbonaceous paste metal to once maintain the [C] content in the steel bath in the preferential decarburization region, and then add solid carbon material and scrap or At the same time as the ferroalloy is added, acid is blown to melt the scrap so that the [C] and temperature levels in the steel bath are always maintained in the preferential decarburization region.

また第1図の(c)法のように含クロムペースメタルに
固体炭素物質を添加しながら吹酸し鋼浴の温度と〔C〕
含有量を同時に上昇させて優先脱炭領域を確保する事も
可能である。
In addition, as shown in method (c) in Figure 1, chromium-containing pace metal is blown with acid while adding a solid carbon substance to the steel bath temperature [C]
It is also possible to secure a preferential decarburization region by increasing the content at the same time.

前記のように固体炭素物質を用いて、加炭しなからC−
Cr一温度の平衡関係を調整することにより耐火物の溶
損量は大きく低減する事が可能となる。
As mentioned above, using a solid carbon material, C-
By adjusting the equilibrium relationship between Cr and temperature, the amount of erosion of the refractory can be greatly reduced.

何故なら、菓−に低層領域を例にとるならばC=0.1
%の増加が温度40℃の降下に寄与する(第ことからも
、加炭によシ耐火物溶損への影響が比較的小さい170
0℃以下に保持しながらCrの酸化ロスを防止して容易
にスクラップ又は合金鉄溶解が行なえるからである。第
二に固体炭素物質は下記(2)式に示す酸化反応後反応
生成物であるCOはガスとなって炉外に逸出するためフ
ェロシリコンのようにスラグ量の増加する律はなく多量
に添加しても耐火物溶損が大きくなる恐れはない。
This is because, if we take the low-rise area as an example, C=0.1.
% increase contributes to a temperature drop of 40°C.
This is because scrap or ferroalloy melting can be easily performed while maintaining the temperature at 0° C. or lower while preventing oxidation loss of Cr. Second, in solid carbon materials, CO, which is a reaction product after the oxidation reaction shown in equation (2) below, becomes a gas and escapes from the furnace, so unlike ferrosilicon, the amount of slag does not increase, but in large amounts. Even if it is added, there is no risk that refractory corrosion will increase.

9+9→Co(g) ・・・(2)式 (ガスとなって炉内よシ逸出) e)実施例 溶銑予備処理として脱si、脱P1脱S精錬を実施した
71.Otの低P1低S1ペースメタルを転炉に装入し
た。溶銑成分はC= 3.8%、5l=t、Mn=0.
35%、P=0.014%、S=0.004%、Tem
p、 = 1.335℃であった。装入後直ちに上吹う
7.XによV) 02 =18,000 Nrn3/h
rの供給速度で約8分間脱炭昇熱を実施し、C=1.1
%、温度1.588℃のペースメタルを得た。ここで予
熱されたC=6.0%、5i=5.2%、5=O101
0チ、Cr = 52.1 %の高炭素フェロクロム1
5t’i合金鉄・クックを用いて投入し02を上吹ラン
スから18.000 Nm / hrの供給速度で5分
間送酸し溶解精錬を行なった。その結果C=1.5q6
、Cr = 9.67チ、温度1411℃の含クロムペ
ースメタルを得た。次いで大きさが15〜30ma+で
成分がC=88チ、S=0.50%の塊状コークス(固
体炭素源)5.5tを上部副原料シ、−トよシ投入する
と共にC=0.05%、5I=0.40%、Cr=16
.3191のステンレス鋼屑(含クロムスクラップ)1
5.Otをスクラップパックにより投入した。投入後の
推定計算では溶鋼温度1486℃、C含有量2.4係で
優先脱炭領域になっている。その後上吹ランスより 1
4,000 Nm /hrの供給速度で吹酸を行ない8
分間溶解および脱炭精錬を行ない精錬を終了した。吹止
め時C=0.52チ、51=0.05俤、Cr=16.
61 To、温度1748℃のステンレス粗溶鋼111
.6tを得た。
9+9→Co(g)...Equation (2) (Escapes from inside the furnace as a gas) e) Example As a preliminary treatment for hot metal, desiliconization, desiliconization and desulfurization were carried out.71. Ot's low P1 low S1 pace metal was charged into the converter. The hot metal components are C=3.8%, 5l=t, Mn=0.
35%, P=0.014%, S=0.004%, Tem
p, = 1.335°C. 7. Top blows immediately after charging. V) 02 = 18,000 Nrn3/h
Decarburization heating was carried out for about 8 minutes at a feed rate of r, and C = 1.1
% and a temperature of 1.588°C was obtained. Here preheated C=6.0%, 5i=5.2%, 5=O101
0, Cr = 52.1% high carbon ferrochrome 1
A 5t'i ferroalloy cooker was used to charge the 02, and oxygen was supplied from a top blowing lance at a supply rate of 18,000 Nm/hr for 5 minutes to perform melting and refining. The result is C=1.5q6
A chromium-containing pace metal with Cr = 9.67 and a temperature of 1411°C was obtained. Next, 5.5 tons of lump coke (solid carbon source) with a size of 15 to 30 ma+ and a composition of C=88 and S=0.50% were added to the upper auxiliary raw materials, and at the same time, C=0.05 %, 5I=0.40%, Cr=16
.. 3191 stainless steel scrap (chromium-containing scrap) 1
5. Ot was added using a scrap pack. Estimated calculations after charging indicate that the molten steel temperature is 1486°C and the C content is 2.4%, which is the preferential decarburization region. Then from top blowing lance 1
Acid blowing was carried out at a supply rate of 4,000 Nm/hr8.
The refining was completed after melting and decarburizing for several minutes. When stopped, C=0.52t, 51=0.05t, Cr=16.
61 To, stainless crude molten steel 111 at a temperature of 1748°C
.. Obtained 6t.

その後RHを用いて真空下での脱炭精錬を行ないさらに
脱酸、成分調整を行なってC=0.07%、S量 =0
.35% 、Mn = 0.5 1 % 、Cr = 
1 6.5 ’Ir 、8=0.007チの5US43
0鋼を得た。
After that, decarburization refining was performed under vacuum using RH, and further deoxidation and component adjustment were performed, resulting in C = 0.07% and S content = 0.
.. 35%, Mn = 0.5 1%, Cr =
1 6.5'Ir, 8=0.007ch 5US43
0 steel was obtained.

f)発明の詳細 な説明したように本発明は固体炭素物質を熱源あるいは
〔C〕源として利用し含クロム鋼浴中にスクラップ又は
合金鉄を溶解する際、C−Cr一温度(9) の平衡に関して鋼浴中の[:C:lまたは温度を調整す
る事によシ、メタルCrの酸化ロスを小さく且つ耐火物
溶損量も小さくしながらスクラップ、合金鉄を溶解する
ことによシ耐大物原単位を低下させずに安価な含クロム
スクラップを大量に溶解できるものである。
f) Detailed Description of the Invention As described above, the present invention utilizes a solid carbon material as a heat source or [C] source to melt scrap or ferroalloy in a chromium-containing steel bath. By adjusting the [:C:l or temperature in the steel bath regarding equilibrium, the oxidation loss of metal Cr and the amount of corrosion of refractories can be reduced while melting scrap and ferroalloy. It is possible to melt a large amount of inexpensive chromium-containing scrap without reducing the unit consumption of large items.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はC−Cr一温度の平衡関係を示す図、第2図は
鋼浴温度と耐火物原単位の関係を示す図である。 特許出願人 新日本製鐵株式會社 第7回 華2回 一熔倒温膚(’c) −
FIG. 1 is a diagram showing the equilibrium relationship between C-Cr temperature, and FIG. 2 is a diagram showing the relationship between steel bath temperature and refractory unit consumption. Patent Applicant: Nippon Steel Corporation 7th Hana 2nd Annual Melting Warm Skin ('c) −

Claims (1)

【特許請求の範囲】[Claims] 鋼の転炉精錬時、含クロム鋼浴中に固形物質を溶解する
方法において、含クロム鋼浴に固体炭素物質を添加する
ことによシ含クロム鋼浴のC−Cr一温度平衡関係にお
ける優先脱炭条件を作シ出して固形物質を溶解すること
を特徴とする含クロム鋼浴中に固形物質を溶解する方法
When refining steel in a converter furnace, in a method of dissolving solid substances in a chromium-containing steel bath, by adding solid carbon substances to the chromium-containing steel bath, it is possible to improve the priority in the C-Cr-temperature equilibrium relationship of the chromium-containing steel bath. A method for dissolving solid substances in a chromium-containing steel bath, characterized in that the solid substances are dissolved by creating decarburization conditions.
JP15792083A 1983-08-31 1983-08-31 Method for dissolving solid material in chromium- containing steel bath Pending JPS6052549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15792083A JPS6052549A (en) 1983-08-31 1983-08-31 Method for dissolving solid material in chromium- containing steel bath

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15792083A JPS6052549A (en) 1983-08-31 1983-08-31 Method for dissolving solid material in chromium- containing steel bath

Publications (1)

Publication Number Publication Date
JPS6052549A true JPS6052549A (en) 1985-03-25

Family

ID=15660344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15792083A Pending JPS6052549A (en) 1983-08-31 1983-08-31 Method for dissolving solid material in chromium- containing steel bath

Country Status (1)

Country Link
JP (1) JPS6052549A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5681655A (en) * 1979-12-01 1981-07-03 Nippon Steel Corp Refining method for medium-carbon high-chromium molten metal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5681655A (en) * 1979-12-01 1981-07-03 Nippon Steel Corp Refining method for medium-carbon high-chromium molten metal

Similar Documents

Publication Publication Date Title
US4410360A (en) Process for producing high chromium steel
US3323907A (en) Production of chromium steels
US3728101A (en) Process for making stainless steel
JPS6150122B2 (en)
US3615348A (en) Stainless steel melting practice
US4165234A (en) Process for producing ferrovanadium alloys
EP0033780B1 (en) Method for preventing slopping during subsurface pneumatic refining of steel
JPS61166910A (en) Production of chromium-containing alloy
JPS6052549A (en) Method for dissolving solid material in chromium- containing steel bath
JP7447878B2 (en) Method for decarburizing molten Cr and method for producing Cr-containing steel
JPH0987722A (en) Method for refining molten crude stainless steel
US3262772A (en) Process for the production of alloy steels
JPS61279608A (en) Production of high-chromium alloy by melt reduction
JPH0959708A (en) Method for efficently decarburization-blowing stainless steel
JP2002285222A (en) Method for producing high chromium steel
JPH093517A (en) Method for decarburization-refining stainless steel by blowing oxygen
JPH07173515A (en) Decarburization refining method of stainless steel
JPS6152208B2 (en)
JP3788392B2 (en) Method for producing high Cr molten steel
JPH02221310A (en) Production of ni-and cr-containing molten metal
JPH01252715A (en) Method for operating iron bath type smelting reduction furnace
UA124885C2 (en) METHOD OF PRODUCTION OF LOW PHOSPHORUS MANGANESE SLAG FROM RELATED METAL
JPS61291911A (en) Production of stainless steel
JPH03100140A (en) Method for producing medium or low carbon ferro-manganese
JPH0629450B2 (en) Method for producing high Mn steel