JPS6051781B2 - Battery separator and its manufacturing method - Google Patents

Battery separator and its manufacturing method

Info

Publication number
JPS6051781B2
JPS6051781B2 JP53125592A JP12559278A JPS6051781B2 JP S6051781 B2 JPS6051781 B2 JP S6051781B2 JP 53125592 A JP53125592 A JP 53125592A JP 12559278 A JP12559278 A JP 12559278A JP S6051781 B2 JPS6051781 B2 JP S6051781B2
Authority
JP
Japan
Prior art keywords
oil
chlorine
solvent
separator
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53125592A
Other languages
Japanese (ja)
Other versions
JPS5553063A (en
Inventor
和雄 村田
秀一 井土
正明 佐々木
勝二 芦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Battery Corp filed Critical Yuasa Battery Corp
Priority to JP53125592A priority Critical patent/JPS6051781B2/en
Publication of JPS5553063A publication Critical patent/JPS5553063A/en
Publication of JPS6051781B2 publication Critical patent/JPS6051781B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Separators (AREA)

Description

【発明の詳細な説明】 本発明は塩素を含有するセパレータとその製法に関する
もので、安価で且つ高性能なる電池用セパレータを提供
することにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a separator containing chlorine and a method for producing the same, and an object of the present invention is to provide a battery separator that is inexpensive and has high performance.

鉛電池用セパレータ材質として塩素含有重合体は広く使
用されてきた。
Chlorine-containing polymers have been widely used as separator materials for lead-acid batteries.

即ち、ヨーロッパ、アメリカではポリ塩化ビニル粉末を
焼結したセパレータやポリ塩化ビニルを溶剤や澱粉と共
に混合し、後溶剤及び澱粉を除去して微孔セパレータと
したものなどが使用されてきた。又、塩化ビニル−アク
リロニトリル共重合体繊維よりなる織物も陽極活物質の
保持用セパレータとして使用されてきた。電池性能に対
しては電解液中の塩素は電極格子体の腐蝕を促進するた
め有害であるにもかかわらず、このように広く塩素含有
重合体が使用されてきたのは、この重合体が他の汎用重
合体に比較して耐酸、耐酸化性に優れており且つ安価で
あるからである。しかしながら近年自動車用電池の実使
用温度がエンジンルームのスペースの減少、アフターバ
ーナーの設置などのために、従来の使用温度範囲が40
〜50℃てあつたのに対し、60〜800Cの高温下に
おかれるようになつてきたために遊離分解する塩素の量
が問題となつてきた。
That is, in Europe and the United States, separators made by sintering polyvinyl chloride powder, and those made by mixing polyvinyl chloride with a solvent and starch, and then removing the solvent and starch to form microporous separators, have been used. Furthermore, woven fabrics made of vinyl chloride-acrylonitrile copolymer fibers have also been used as separators for holding positive electrode active materials. Although chlorine in the electrolyte is harmful to battery performance because it accelerates corrosion of the electrode grid, the reason why chlorine-containing polymers have been widely used is that they This is because it has excellent acid resistance and oxidation resistance and is inexpensive compared to general-purpose polymers. However, in recent years, the actual operating temperature of automobile batteries has decreased due to the reduction of engine compartment space and the installation of afterburners.
As opposed to ~50°C, the amount of chlorine decomposed free has become a problem because it has come to be exposed to high temperatures of 60~800°C.

このような高温下での塩素含有重合体の劣化は下記のプ
ロセスにより加速されることが我々の実験の結果明らか
となつた。1)塩素含有重合体は高温下において構成塩
素をHCl又はCl2として放出する。
Our experiments have revealed that the deterioration of chlorine-containing polymers at such high temperatures is accelerated by the following process. 1) Chlorine-containing polymers release constituent chlorine as HCl or Cl2 at high temperatures.

(2)脱塩酸は次の反応式の如く二酸化鉛と反応する。(2) Dehydrochloric acid reacts with lead dioxide as shown in the following reaction formula.

2HCl+円。2+H2SO4→PbSO4+C12+
2H2Oここで生成する塩素ガスの一部はP山。
2HCl + yen. 2+H2SO4→PbSO4+C12+
2H2O A part of the chlorine gas generated here is P mountain.

で酸化されCIO−、C1O2−、C1O3−の形で酸
化されていくが、これらの酸化物はきわめて酸化作用が
強く且フつ液体中に溶解又は分散してセパレータの微細
孔に侵入してセパレータを劣化させる。その酸化作用は
充電時に発生する酸素ガスより大きなものである。この
ような塩素ガス又は塩素の低級酸化物が電5池内に生成
すると塩素含有化合物はこの酸化剤によつて酸化され塩
素イオンを遊離し、この塩素イオンは再び二酸化鉛と反
応して塩素ガス又はその化合物となつて再び塩素含有重
合体を侵すという悪循環をもたらす。
These oxides are oxidized in the form of CIO-, C1O2-, and C1O3-, but these oxides have an extremely strong oxidizing effect and dissolve or disperse in the liquid and enter the fine pores of the separator. deteriorate. Its oxidizing effect is greater than that of oxygen gas generated during charging. When such chlorine gas or lower chlorine oxides are generated in the battery, the chlorine-containing compounds are oxidized by this oxidizing agent to liberate chlorine ions, which react with lead dioxide again to generate chlorine gas or chlorine ions. The compound becomes a compound that attacks the chlorine-containing polymer again, creating a vicious cycle.

本発明はこの初期の塩素の遊離を防止することができれ
ば塩素含有重合体の劣化は殆ど防止できることを見出し
たものである。
The present invention is based on the discovery that if this initial release of chlorine can be prevented, the deterioration of the chlorine-containing polymer can be almost prevented.

この塩素の遊離を防ぐ方法として重合体に対する熱安定
剤として、カーボン、シリカ、オイルなどを添加し、そ
の効果を確めたところ、特にオイルの熱安定性効果が顕
著であることを見出した。更にオイルの熱安定性効果を
追求したところ、オイルの性質が重合体と親和性があり
、耐酸、耐酸化性に富むものであり且つ重合体と分子レ
ベルで均一に相溶せしめた溶液から成膜せしめたものが
有効であつた。即ちオイルは溶剤中に溶解して成膜液に
入れておくことが特に有効であり、成膜後オイルを含浸
せしめるよりも良い性能を示すことが判明した。ここで
言うオイルとは、プロセスオイル、石油系潤滑オイルな
どの石油系オイル、ポリグリコール、リン酸エステル、
ケイ酸エステル、シリコーン系油、弗素系油などの合成
潤滑オイル、魚油、鯨油など*8の動物性オイル、アマ
ニ油、ゴマ油、大豆油、オリーブ油などの植物性オイル
である。本発明を実施例により説明する。実施例1 塩素化度68%の塩素化塩化ビニル樹脂15部をテトラ
ヒドロフラン印部に完全に溶解し、後イソプロピルアル
コール25部を加えて均一な溶液となし、この溶液に第
1表に示す塩素発生防止用の各種添加物を添加し、更に
0.5部の界面活性剤(ア1ルキルスルフオン酸ソーダ
)を添加して成膜液を作成した。
As a method of preventing the release of chlorine, we added carbon, silica, oil, etc. as thermal stabilizers to the polymer, and when we confirmed their effects, we found that the thermal stabilizing effect of oil was particularly remarkable. Furthermore, we investigated the thermal stability effect of oil and found that the oil has an affinity with polymers, has high acid and oxidation resistance, and is made of a solution that is uniformly compatible with polymers at the molecular level. The one coated with a film was effective. That is, it has been found that it is particularly effective to dissolve the oil in a solvent and add it to the film forming solution, and that this shows better performance than impregnating the film with oil after film formation. The oils mentioned here include process oils, petroleum-based oils such as petroleum-based lubricating oils, polyglycols, phosphate esters,
These include synthetic lubricating oils such as silicate esters, silicone oils, and fluorine oils, animal oils such as fish oil and whale oil*8, and vegetable oils such as linseed oil, sesame oil, soybean oil, and olive oil. The present invention will be explained by examples. Example 1 15 parts of chlorinated vinyl chloride resin with a degree of chlorination of 68% was completely dissolved in the area marked with tetrahydrofuran, and then 25 parts of isopropyl alcohol was added to make a homogeneous solution, and the chlorine generation shown in Table 1 was added to this solution. A film forming solution was prepared by adding various preventive additives and further adding 0.5 part of a surfactant (sodium alkyl sulfonate).

次にこの溶液を厚さ0.15Trmのポリエステル不織
布に付着せしめ、シート状に成膜し、後揮発性物質を除
去せしめて微孔体を形成し、セパレータを作成した。こ
のセパレータを二酸化鉛活物質を含有する陽極板とスポ
ンジ鉛活物質を含有する陰極板の間に配置して硫酸を入
れ60AHの容量を示す電池となし、80℃の恒温中に
放置して電池の開路電圧と比重の低下量を測定した。塩
素発生は(2)式により硫酸が消費されるため、電圧並
に比重の低下によつて測定することができる。上記第1
表において比重と電圧との関係が必らずしも理論的に一
致しないのは活物質近傍と沖合の濃度が異なるためと思
われる。表中の電気抵抗は比重1。20の硫酸中で測定
した値である。
Next, this solution was applied to a polyester nonwoven fabric having a thickness of 0.15 Trm to form a film in the form of a sheet, and then volatile substances were removed to form a microporous body to prepare a separator. This separator was placed between an anode plate containing a lead dioxide active material and a cathode plate containing a sponge lead active material, and sulfuric acid was added to form a battery with a capacity of 60AH.The battery was left at a constant temperature of 80°C to open the battery. The amount of decrease in voltage and specific gravity was measured. Since sulfuric acid is consumed according to equation (2), chlorine generation can be measured by the voltage and the decrease in specific gravity. 1st above
The reason that the relationship between specific gravity and voltage in the table does not necessarily match theoretically is thought to be due to the difference in concentration near the active material and offshore. The electrical resistance in the table is a value measured in sulfuric acid with a specific gravity of 1.20.

4尚シート状に成膜するのに不織布を用いること
なく、溶液を平板上に流してシート状に成膜することも
できる。実施例2 添加物を入れない以外は実施例1と同様にして成膜し微
孔体を作成し、後これにプロセスオイル10%含有する
イソプロピルアルコール溶液に浸漬した。
4. It is also possible to form a film into a sheet by pouring the solution onto a flat plate without using a nonwoven fabric. Example 2 A microporous body was formed by forming a film in the same manner as in Example 1 except that no additives were added, and then immersed in an isopropyl alcohol solution containing 10% process oil.

このセパレータの電気抵抗は0.14Ω・Dm2であり
、電池セパレータとしては抵抗が高すぎるものであつた
。しかしこの場合でも界面活性剤を含む溶液中に浸漬す
るか、又はオイル含浸後界面活性剤溶液中に浸漬せしめ
るかすることにより電気抵抗は0.0006〜0.00
1ΩDm2程度に低下せしめることができた。実施例1
においてプロセスオイルの添加量は10%以下ても効果
があるが、オイルの効果の持続性は添加量の多い程有効
である。
The electrical resistance of this separator was 0.14 Ω·Dm2, which was too high for a battery separator. However, even in this case, the electrical resistance can be reduced to 0.0006 to 0.00 by immersing it in a solution containing a surfactant, or by immersing it in a surfactant solution after impregnating it with oil.
It was possible to reduce the resistance to about 1ΩDm2. Example 1
Although it is effective even when the amount of process oil added is 10% or less, the longer the amount added, the more effective the sustainability of the effect of the oil is.

しかし50%以上になると電気抵抗が増大してくること
になる。本発明の代表的な実施は上記の如く予じめ溶剤
を含む溶液中に界面活性剤とともにオイルを均一に分散
することにより電気抵抗を高めることなく被覆作用を効
果的に発揮するものである。オイルを相溶する溶剤を含
む溶液から成膜する製法としては、重合体、溶剤、非溶
剤を主成分とする溶液から溶剤を揮発乾燥する方法や、
重合体、溶剤を主成分とする溶液を非溶剤中に浸漬する
ことにより、溶剤を除去せしめて後乾燥する方法が有効
である。このような方法においては溶剤は重合体重量の
3倍以上含むことが分子レベルの相溶を期待する上て望
ましい。非溶剤に浸漬して成膜する方法においては、オ
イルが非溶剤と相溶すると若干オイルの損失を伴う欠点
を有しており、相溶しないことが望ましい。本発明は上
記実施例に限定されるものではなく、塩素含有重合体に
オイルが添加され重合体表面に均一に被覆することがて
きれは有効てあり、ポリ塩化ビニル粉末を焼結してなる
セパレータの前処理又は後処理により粉末粒子表面にオ
イルを被覆しても有効である。
However, if it exceeds 50%, the electrical resistance will increase. A typical implementation of the present invention is to uniformly disperse oil together with a surfactant in a solution containing a solvent in advance as described above, thereby effectively exhibiting a coating effect without increasing electrical resistance. Methods for forming a film from a solution containing a solvent that is compatible with oil include a method in which the solvent is evaporated and dried from a solution whose main components are a polymer, a solvent, and a non-solvent;
An effective method is to immerse a solution containing a polymer and a solvent as main components in a non-solvent, remove the solvent, and then dry the solution. In such a method, it is desirable that the solvent be contained at least three times the weight of the polymer in order to expect compatibility at the molecular level. The method of forming a film by immersion in a non-solvent has the disadvantage that if the oil becomes compatible with the non-solvent, there will be some loss of oil, so it is desirable that the oil is not compatible with the non-solvent. The present invention is not limited to the above embodiments, but it is effective to add oil to a chlorine-containing polymer and uniformly coat the surface of the polymer, and it is made by sintering polyvinyl chloride powder. It is also effective to coat the powder particle surface with oil by pre- or post-treatment of the separator.

本発明に用いるオイルとしては各種のプロセスオイルが
有効であり、パラフィン系、ナフテン系、芳香族系の有
機化合物を含むものがよい。しかし耐酸、耐酸化性を有
するもので且つ電池電解液中で陰極板に析出しないもの
であれば、上記物質に限定されるものではない。陰極板
上に析出するものは電池の充電々圧を高め充電効率を低
下せしめる欠点を有している。本発明のもう一つの特徴
は界面活性剤を用いることにある。即ちこの界面活性剤
は溶剤を含む重合体溶液から成膜する方法において特に
有効である。この場合オイルと樹脂との親和性が強いた
めに分子レベルに溶剤中に溶解した重合体にオイルがつ
き、そのオイルに界面活性剤の疎水基を有する部分がつ
き、反対の親水基を有する部分が外側に顔を出した状態
で均一に成膜されていくために、第1表に示す如く10
%のオイル添加にもかかわらず電気抵抗の増大を全くみ
ないで親水性セパレータを作ることができる。このこと
はオイルと界面活性剤の効果により成膜しやすくなり微
孔の形成が容易になつたものと考えられる。なお近年ポ
リオレフィン重合体セパレータとしてオイルをポリオレ
フィンに対する可塑剤の一種としてシリカとともに練り
込み、後該オイルを除去して微孔を形成せしめる方法が
提案されているが、これは微孔を形成させるに必要な孔
成剤としてオイルが使用されるもので、後工程でオイル
が除去されたところに微孔が形成されるものであるにす
ぎず、本発明の効果を奏するものではない。
Various process oils are effective as the oil used in the present invention, and those containing paraffinic, naphthenic, and aromatic organic compounds are preferred. However, the material is not limited to the above materials as long as it has acid resistance and oxidation resistance and does not precipitate on the cathode plate in the battery electrolyte. The deposits on the cathode plate have the disadvantage of increasing the charging pressure of the battery and reducing the charging efficiency. Another feature of the invention is the use of surfactants. That is, this surfactant is particularly effective in a method of forming a film from a polymer solution containing a solvent. In this case, because the affinity between oil and resin is strong, the oil sticks to the polymer dissolved in the solvent at the molecular level, and the part of the surfactant that has a hydrophobic group sticks to the oil, and the part that has the opposite hydrophilic group sticks to the oil. In order for the film to be formed uniformly with the surface facing outward, 10
Hydrophilic separators can be made without any increase in electrical resistance despite the addition of % of oil. This is considered to be because the effects of the oil and surfactant made it easier to form a film and form micropores. In recent years, a method has been proposed in which oil is kneaded with silica as a type of plasticizer for polyolefin as a polyolefin polymer separator, and then the oil is removed to form micropores, but this is necessary for forming micropores. In this method, oil is used as a pore-forming agent, and micropores are simply formed where the oil is removed in a subsequent process, and the effect of the present invention is not achieved.

Claims (1)

【特許請求の範囲】 1 塩素含有重合体よりなるセパレータ中にオイルを含
有せしめたことを特徴とする電池用セパレータ。 2 セパレータが界面活性剤を含んだ特許請求の範囲第
1項記載の電池用セパレータ。 3 塩素含有重合体をオイルとともに溶剤中に均一に溶
解し、該溶液をシート状に成膜し溶剤を除去せしめるこ
とを特徴とする電池用セパレータの製法。
[Scope of Claims] 1. A separator for a battery, characterized in that the separator is made of a chlorine-containing polymer and contains oil. 2. The battery separator according to claim 1, wherein the separator contains a surfactant. 3. A method for producing a battery separator, which comprises uniformly dissolving a chlorine-containing polymer together with oil in a solvent, forming the solution into a sheet-like film, and removing the solvent.
JP53125592A 1978-10-11 1978-10-11 Battery separator and its manufacturing method Expired JPS6051781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53125592A JPS6051781B2 (en) 1978-10-11 1978-10-11 Battery separator and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53125592A JPS6051781B2 (en) 1978-10-11 1978-10-11 Battery separator and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS5553063A JPS5553063A (en) 1980-04-18
JPS6051781B2 true JPS6051781B2 (en) 1985-11-15

Family

ID=14913968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53125592A Expired JPS6051781B2 (en) 1978-10-11 1978-10-11 Battery separator and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS6051781B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59211958A (en) * 1983-05-17 1984-11-30 Japan Storage Battery Co Ltd Separator for lead storage battery
JPS59211959A (en) * 1983-05-17 1984-11-30 Japan Storage Battery Co Ltd Manufacture of separator for lead storage battery

Also Published As

Publication number Publication date
JPS5553063A (en) 1980-04-18

Similar Documents

Publication Publication Date Title
JP6198841B2 (en) Lithium-ion capacitor and manufacturing method
KR100789015B1 (en) Electrolyte composition in addition to the use thereof as an electrolyte material for electrochemical energy storage systems
KR100413907B1 (en) Electrolytic solution for cells and cells made by using the same
US3630781A (en) Process of forming rechargeable electrodes utilizing unsintered fluorocarbon binder
JP2020505312A (en) Lithium metal-skeleton carbon composite material having hydrophobic coating layer, its preparation method and application
KR20150138264A (en) Composite electrode for lithium-ion capacitor
KR101261703B1 (en) Method for improving capacity retention of lithium secondary cell, separator for the same, manufacturing method for the separator, and secondary cell comprising the same
CN108963152B (en) g-C applied to lithium-sulfur battery diaphragm3N4Preparation method of/RGO coating
EP3764439B1 (en) Sulfur-carbon composite, preparation method therefor, and positive electrode and lithium secondary battery comprising same
JP2024041926A (en) Improved water loss separator for use with lead acid battery, system for improved water loss performance, and method of making and using the same
WO2011133677A1 (en) Suppressing chemical changes in a lead-acid battery to improve its cycle life
CN114824278A (en) SEI film reaction liquid, modification method of zinc negative electrode and modified zinc negative electrode
JP5131723B2 (en) Method for producing positive electrode for lithium secondary battery, positive electrode and lithium secondary battery
JPS6051781B2 (en) Battery separator and its manufacturing method
US11404700B2 (en) Positive electrode for lithium air batteries with excellent stability, method of manufacturing the same, and lithium air battery including the same
KR100637122B1 (en) Composition for surface-treating electrode current collector of lithium secondary battery
Tashenov et al. Polyvinylidene fluoride based cathode produced by electrospinning of the lifepo4 based electrodes
JPH07262979A (en) Separator for alkaline secondary battery
CN114899494B (en) Electrolyte for lithium-sulfur battery and application thereof
US6017635A (en) Hydrophobic composition and a method of preparing a hydrophobic plate
KR100615161B1 (en) Composition for surface-treating electrode current collector of lithium secondary battery
JP2977600B2 (en) Lead storage battery
JP2739360B2 (en) Manganese dry cell
CN117855597A (en) Solid electrolyte material for lithium ion battery, and preparation method and application thereof
JPH04312764A (en) Separator for zinc-bromine battery