JPH04312764A - Separator for zinc-bromine battery - Google Patents

Separator for zinc-bromine battery

Info

Publication number
JPH04312764A
JPH04312764A JP3104652A JP10465291A JPH04312764A JP H04312764 A JPH04312764 A JP H04312764A JP 3104652 A JP3104652 A JP 3104652A JP 10465291 A JP10465291 A JP 10465291A JP H04312764 A JPH04312764 A JP H04312764A
Authority
JP
Japan
Prior art keywords
bromine
separator
battery
exchange resin
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3104652A
Other languages
Japanese (ja)
Inventor
Kazuo Kawahara
河原 和生
Toru Saeki
徹 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP3104652A priority Critical patent/JPH04312764A/en
Publication of JPH04312764A publication Critical patent/JPH04312764A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To suppress self-discharge to improve energy efficiency and durability of a battery by carrying fluorocarbon-based cation-exchange resin on hydrophilic particles-containing finely porous polymer substrate in highly dispersed condition. CONSTITUTION:Fluorocarbon-based cation-exchange resin is carried on a finely porous polymer substrate which is made of an acid-resistant and bromine- resistant material such as silica, etc., and contains hydrophilic particles having a shape able to be mixed. Here, as the ion-exchange resin, ion-exchangeable resin having a specified chemical formula is used and at the time of carrying the resin on the substrate, a solution using a volatile organic solvent is used. By using a separator 2 prepared in the way for a battery main body 1, transmission of bromide ion is effectively suppressed, so that while voltage efficiency of the battery is prevented from lowering, Coulomb's efficiency is increased and energy efficiency of the battery is improved and at the same time owing to the durability of the ion-exchange resin to bromine, the battery can have a long life.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、エネルギー効率の高い
亜鉛−臭素電池に使用される耐久性に優れたセパレータ
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly durable separator used in zinc-bromine batteries with high energy efficiency.

【0002】0002

【従来の技術】亜鉛−臭素電池は電解液循環型の金属−
ハロゲン電池の一種として電解液に臭化亜鉛水溶液を用
いたもので、電気自動車の駆動源等の動力用二次電池の
有力な候補電池である。
[Prior art] Zinc-bromine batteries are metal batteries with electrolyte circulation.
It is a type of halogen battery that uses an aqueous zinc bromide solution as an electrolyte, and is a promising candidate battery for secondary batteries for power such as electric vehicle drive sources.

【0003】このような亜鉛−臭素電池は反応物質及び
構成材料が安価なため、低コストが期待され、しかも発
電電圧が高く、電極反応の可逆性も良いため、電気自動
車ばかりでなく、他の各種利用分野においても広範囲に
実用化されようとしている。
[0003] Since the reactants and constituent materials of such zinc-bromine batteries are cheap, they are expected to be low-cost. Furthermore, the generated voltage is high and the reversibility of the electrode reaction is good, so they are used not only in electric vehicles but also in other applications. It is about to be put into practical use in a wide range of fields.

【0004】このような亜鉛−臭素電池は、特開昭52
−122835、特開昭58−199167、米国特許
4,105,829等に開示されている。
[0004] Such a zinc-bromine battery was disclosed in Japanese Patent Application Laid-Open No. 1983
-122835, Japanese Unexamined Patent Publication No. 58-199167, and US Pat. No. 4,105,829.

【0005】この亜鉛−臭素電池に用いられる電解液と
しては、活物質である臭化亜鉛の他に臭素と反応して電
解液に不溶で電解液より比重の大きな錯化合物を形成す
る錯化剤を加えた水溶液が使用され、さらに、必要に応
じて電解液の導電率を向上させるためKCl やNH4
 Cl等の支持電解質を加えた電解液も使用される。錯
化剤としてはメチル・エチルモルホリニュウムブロマイ
ド、メチル・エチルピリジニウムブロマイド等が使用さ
れる。
The electrolyte used in this zinc-bromine battery includes, in addition to zinc bromide, which is an active material, a complexing agent that reacts with bromine to form a complex compound that is insoluble in the electrolyte and has a higher specific gravity than the electrolyte. An aqueous solution containing KCl or NH4 is used, and if necessary, KCl or NH4 is added to improve the conductivity of the electrolyte.
Electrolytes with added supporting electrolytes such as Cl may also be used. As the complexing agent, methyl ethylmorpholinium bromide, methyl ethylpyridinium bromide, etc. are used.

【0006】亜鉛−臭素電池の原理図を図1に示す。電
極反応槽1はセパレータ2によって正極室1aと負極室
1bに仕切られている。このセパレータは正極3と負極
4が直接接触し短絡してしまうことを防止するとともに
、正極の活物質である臭素が負極側に移動して負極活物
質である亜鉛と化学反応を起こし自己放電することを抑
制するためのものである。電極室1a、1bはそれぞれ
配管5、6によって正極液貯蔵槽7及び負極液貯蔵槽8
に接続され、2系統の電解液循環経路を形成している。 各電解液は配管5、6に設けられたポンプ9、10によ
り電極室1a、1bに圧送される。また、前記正極液貯
蔵槽7内には臭素錯化合物貯蔵槽11が形成されており
、正極室1aで生成する臭素錯化合物を貯蔵し、その一
部をバルブ12を介して配管5内に供給する。
A diagram of the principle of a zinc-bromine battery is shown in FIG. The electrode reaction tank 1 is partitioned by a separator 2 into a positive electrode chamber 1a and a negative electrode chamber 1b. This separator prevents the positive electrode 3 and the negative electrode 4 from coming into direct contact and causing a short circuit, and bromine, which is the active material of the positive electrode, moves to the negative electrode side and causes a chemical reaction with zinc, which is the active material of the negative electrode, resulting in self-discharge. It is intended to suppress this. The electrode chambers 1a and 1b are connected to a positive electrode liquid storage tank 7 and a negative electrode liquid storage tank 8 by pipes 5 and 6, respectively.
are connected to form two electrolyte circulation paths. Each electrolytic solution is pumped into the electrode chambers 1a, 1b by pumps 9, 10 provided in the pipes 5, 6. Further, a bromine complex compound storage tank 11 is formed in the positive electrode liquid storage tank 7, and stores the bromine complex compound generated in the positive electrode chamber 1a, and supplies a part of it into the pipe 5 through a valve 12. do.

【0007】ところで、この電池を充電すると、正極で
臭素イオンの酸化が、負極で亜鉛イオンの還元が起こり
、正極では臭素の生成が、負極では亜鉛の電着が起こる
。正極で生成した臭素は電解液中の錯化剤と反応して錯
化合物13を形成し、前記臭素錯化合物貯蔵槽11に分
離貯蔵される。しかし、この錯化剤は生成した臭素をす
べて捕捉するわけではなく、解離平衡によって、通常0
.05〜0.2mol/lの遊離の臭素を正極液中に残
している。 この遊離臭素がセパレータ2を通って負極液側に拡散し
、負極活物質である亜鉛と直接反応する。これが自己放
電となり、この分充電した電気量が失われることになる
。したがって、セパレータを通る臭素量が多いほど充電
電気量に対する放電電気量の割合、つまり充放電のクー
ロン効率が低下することになる。このようにセパレータ
2の臭素透過性は電池のクーロン効率に大きく影響を及
ぼす。
By the way, when this battery is charged, oxidation of bromine ions occurs at the positive electrode, reduction of zinc ions occurs at the negative electrode, production of bromine occurs at the positive electrode, and electrodeposition of zinc occurs at the negative electrode. Bromine generated at the positive electrode reacts with the complexing agent in the electrolytic solution to form a complex compound 13, which is separated and stored in the bromine complex compound storage tank 11. However, this complexing agent does not capture all of the generated bromine, and due to dissociation equilibrium, it usually
.. 05-0.2 mol/l of free bromine remains in the catholyte. This free bromine diffuses to the negative electrode liquid side through the separator 2 and reacts directly with zinc, which is the negative electrode active material. This becomes self-discharge, and the amount of charged electricity is lost. Therefore, as the amount of bromine passing through the separator increases, the ratio of the amount of discharged electricity to the amount of charged electricity, that is, the coulombic efficiency of charging and discharging, decreases. As described above, the bromine permeability of the separator 2 greatly affects the coulombic efficiency of the battery.

【0008】電解液中でセパレータを透過していく遊離
臭素Br2 は大部分臭素イオンBr− と錯イオンを
形成し、Br3 − のような負の電荷を有した錯イオ
ンとして挙動している。そこで、イオン化していないも
のやプラスの電荷を持った陽イオンなら容易に通すが陰
イオンは通しにくい陽イオン交換膜をセパレータに用い
れば遊離臭素の透過を抑えることができる(Journ
al of  Power Sources 7,p3
13(1979) )。
Free bromine Br2 passing through the separator in the electrolytic solution mostly forms complex ions with bromine ions Br-, and behaves as negatively charged complex ions like Br3-. Therefore, the permeation of free bromine can be suppressed by using a cation exchange membrane as a separator, which easily passes unionized or positively charged cations but does not allow anions to pass through (Journ
al of Power Sources 7, p3
13 (1979)).

【0009】しかし、陽イオン交換膜では陰イオンの通
過が過度に抑制されたり、イオンの流れがスムーズでは
ないため微孔性膜等の通常のセパレータに比べ電池の内
部抵抗が増加してしまう。そのため、今度は電圧効率が
低下し結局は電池のエネルギー効率が悪化するという問
題を引き起こしていた。また、陽イオン交換膜は高価で
あるという欠点があった。
However, in cation exchange membranes, the passage of anions is excessively suppressed and the flow of ions is not smooth, so that the internal resistance of the battery increases compared to ordinary separators such as microporous membranes. This in turn caused a problem in that the voltage efficiency decreased and eventually the energy efficiency of the battery deteriorated. Additionally, cation exchange membranes have the disadvantage of being expensive.

【0010】さらに、陽イオン交換膜でもその厚さを薄
くすれば実質的な陽イオン交換性が低下するものの、電
解液中での膜抵抗を減少させることができる。しかしな
がら、この時には膜の機械的な強度が低下するため実用
上用いることができない。
Furthermore, if the thickness of the cation exchange membrane is made thinner, the membrane resistance in the electrolyte solution can be reduced, although the actual cation exchange performance will be lowered. However, in this case, the mechanical strength of the membrane decreases, so that it cannot be used practically.

【0011】このように、亜鉛─臭素電池用セパレータ
には臭素イオン透過性を抑えれば内部抵抗が増加し、膜
の抵抗を下げれば臭素イオンの透過量が増加するという
二律背反する問題があった。
[0011] As described above, separators for zinc-bromine batteries have had the contradictory problem that if the permeability of bromide ions is suppressed, the internal resistance increases, and if the resistance of the membrane is reduced, the amount of permeation of bromide ions increases. .

【0012】そこで、膜抵抗の低いシリカ−ポリオレフ
ィン系の微孔性膜に陽イオン交換性を若干付与すること
で廉価で電気抵抗をあまり増大させずに、臭素透過性を
抑える膜を得ようとの試みがなされた。たとえば、米国
エネルギー省は微孔性膜にスルフォン化ポリスルフォン
(以下SPS と略す)を含浸させることによりセパレ
ータ膜にSO3 − 基を導入し陽イオン交換膜性を付
与した(報告No.SAND−89−1914C)。
[0012] Therefore, an attempt was made to obtain a low-cost membrane that suppresses bromine permeability without significantly increasing electrical resistance by imparting some cation exchange properties to a silica-polyolefin microporous membrane that has low membrane resistance. An attempt was made. For example, the U.S. Department of Energy introduced SO3 - groups into a separator membrane by impregnating a microporous membrane with sulfonated polysulfone (hereinafter abbreviated as SPS), giving it cation exchange membrane properties (Report No. SAND-89). -1914C).

【0013】しかし、このSPS は微孔性膜の表面に
集中して堆積するため微孔性膜の細孔を塞ぎ易く、十分
な陽イオン交換性を与える量を含浸させると電気抵抗の
増加を招き、また遊離臭素によりSPS 自身が酸化さ
れ脆くなるため亜鉛─臭素電池用セパレータとしては使
用できなかった。
However, since this SPS is concentrated and deposited on the surface of the microporous membrane, it tends to block the pores of the microporous membrane, and when impregnated in an amount that provides sufficient cation exchangeability, it causes an increase in electrical resistance. Moreover, free bromine oxidizes SPS itself and makes it brittle, so it could not be used as a separator for zinc-bromine batteries.

【0014】[0014]

【発明が解決しようとする課題】そこで、本発明は効果
的に遊離臭素の透過を抑制することができるにもかかわ
らず、電解液中での膜抵抗の増大が少なく、しかも遊離
臭素を含む電解液中でも安定な、亜鉛─臭素電池用セパ
レータを提供することを目的とする。
[Problems to be Solved by the Invention] Therefore, although the present invention can effectively suppress the permeation of free bromine, the increase in membrane resistance in the electrolytic solution is small, and moreover, it is possible to effectively suppress the permeation of free bromine. The purpose of the present invention is to provide a separator for zinc-bromine batteries that is stable even in liquid.

【0015】[0015]

【課題を解決するための手段】本発明の亜鉛−臭素電池
用のセパレータは細孔を有し、親水性粒子を含有する高
分子で形成された基体と、該基体に高分散状態で担持さ
れたフッ化炭素質イオン交換樹脂とからなる。
[Means for Solving the Problems] The separator for a zinc-bromine battery of the present invention has a substrate made of a polymer having pores and containing hydrophilic particles, and a separator supported on the substrate in a highly dispersed state. fluorocarbon ion exchange resin.

【0016】[0016]

【作用】亜鉛−臭素電池の電解液中で大部分の遊離臭素
Br2 は臭化物イオンBr− と錯イオンを形成しB
r3 − ,Br5 − といった具合いに負の電荷を
持って電解液に溶解している。そのため陽イオン交換性
のセパレータを用いることはこれら負の電荷を持った臭
素錯イオンの透過を抑制することになる。
[Action] Most of the free bromine Br2 in the electrolyte of a zinc-bromine battery forms a complex ion with the bromide ion Br-.
They have negative charges such as r3 − and Br5 − and are dissolved in the electrolyte. Therefore, using a cation exchange separator will suppress the permeation of these negatively charged bromine complex ions.

【0017】一方、亜鉛−臭素電池を充放電するために
はセパレータを通して電荷担体としてのイオンの透過が
起こらなければならず、このイオンの透過が抑制される
と内部抵抗の増加になる。
On the other hand, in order to charge and discharge a zinc-bromine battery, ions as charge carriers must pass through the separator, and if this ion permeation is suppressed, the internal resistance increases.

【0018】従って、完全な陽イオン交換膜をセパレー
タに用いると臭素の透過は十分抑制できるが電気抵抗の
増大も大きくなり実用的でない。実用上は電気抵抗を余
り増大させずに遊離臭素の透過を抑制するため適度な陽
イオン交換膜性を持たせることが必要となる。
Therefore, if a complete cation exchange membrane is used as a separator, the permeation of bromine can be sufficiently suppressed, but the increase in electrical resistance will also be large, making it impractical. Practically speaking, it is necessary to have appropriate cation exchange membrane properties in order to suppress the permeation of free bromine without significantly increasing electrical resistance.

【0019】本発明で用いる細孔を有する高分子基体(
微孔性高分子)は親水性粒子を含有させることによって
電解液に対する濡れ性が向上するので液中での膜抵抗が
小さい。本発明のセパレータ膜は前記基体に陽イオン交
換樹脂を高分散状態で担持したため次のような作用を有
する。
[0019] Polymer substrate having pores used in the present invention (
Microporous polymers have improved wettability with electrolyte by containing hydrophilic particles, and therefore have low membrane resistance in the liquid. The separator membrane of the present invention has the following effects because the cation exchange resin is supported on the substrate in a highly dispersed state.

【0020】本発明で用いられるフッ化炭素質イオン交
換樹脂はハロゲン元素である臭素に対して十分な耐久性
を持つ。また、本発明の高分子基体中の親水性粒子はセ
パレータ膜に親水性を付与する。本発明のイオン交換樹
脂は高分子基体に埋め込まれている親水性粒子間の隙間
の主に高分子生地が露出した疎水性部分に親和性を示し
吸着担持されるらしく高分散状態となっている。従って
、担持したイオン交換樹脂は局所的に偏在することがな
く微孔性高分子基体の細孔を塞ぐことがない。このため
、電解液中のZn2+、K+ 、等のイオンがこの細孔
をスムーズに通り抜けることができ、電解液中における
セパレータの膜抵抗は余り大きくならない。
The fluorocarbon ion exchange resin used in the present invention has sufficient durability against bromine, which is a halogen element. Furthermore, the hydrophilic particles in the polymer base of the present invention impart hydrophilicity to the separator membrane. The ion exchange resin of the present invention has an affinity for the exposed hydrophobic parts of the polymer fabric, mainly in the gaps between the hydrophilic particles embedded in the polymer base, and is in a highly dispersed state where it appears to be adsorbed and supported. . Therefore, the supported ion exchange resin is not locally unevenly distributed and does not block the pores of the microporous polymer substrate. Therefore, ions such as Zn2+, K+, etc. in the electrolytic solution can pass through these pores smoothly, and the membrane resistance of the separator in the electrolytic solution does not become very large.

【0021】また、高分散状態で担持されたイオン交換
膜によりイオン交換性がセパレータ全体に渡って付与さ
れるため、臭素(Br2 )が錯イオン化したBr3 
− 、Br5 − 、等の透過が抑制され、自己放電に
つながる臭素の透過も少ない。
[0021] Furthermore, since the ion exchange membrane supported in a highly dispersed state imparts ion exchange properties to the entire separator, bromine (Br2) is complex-ionized Br3.
-, Br5-, etc. are suppressed, and the permeation of bromine, which can lead to self-discharge, is also reduced.

【0022】[0022]

【発明の効果】本発明のセパレータは、基体の高分子に
親水性粒子を含有させた耐臭素性に優れ、電解液中での
膜抵抗が小さい微孔性膜と、この膜全体に高分散状態で
担持された耐臭素性の良好なフッ素系陽イオン交換樹脂
とからなっており、セパレータの電気抵抗増大が僅かで
、効果的に臭素(臭素の陰イオン錯体)の透過を抑制で
きる。このため本発明のセパレータを用いることによっ
て電池の電圧効率の低下を極力抑制しながらクーロン効
率を増加させることが可能となり、電池のエネルギー効
率が向上する。
Effects of the Invention The separator of the present invention has a microporous membrane with excellent bromine resistance and low membrane resistance in an electrolytic solution, which contains hydrophilic particles in the base polymer, and is highly dispersed throughout the membrane. The separator is made of a fluorine-based cation exchange resin with good bromine resistance supported on the separator, and the electrical resistance of the separator increases only slightly, effectively suppressing the permeation of bromine (bromine anion complex). Therefore, by using the separator of the present invention, it is possible to increase the coulombic efficiency while suppressing a decrease in the voltage efficiency of the battery as much as possible, and the energy efficiency of the battery is improved.

【0023】また、フッ素系陽イオン交換樹脂は臭素に
対する耐久性が良好なため上記効果が長期に渡って持続
する。このため、長寿命の亜鉛─臭素電池を実現するこ
とが可能となる。
[0023] Furthermore, since the fluorine-based cation exchange resin has good durability against bromine, the above effects are maintained for a long period of time. Therefore, it becomes possible to realize a long-life zinc-bromine battery.

【0024】[0024]

【実施例】本発明を具体例、実施例を用いてさらに詳し
く説明する。
[Example] The present invention will be explained in more detail using specific examples and examples.

【0025】(具体例1)基体中に存在せしめる親水性
の粒子としてはシリカ、粘土物質等の酸化物粒子、ポリ
ビニルアルコール等の有機物粒子など耐酸性、耐臭素性
物質からなる粒子状態、粉末状態、その他、高分子基体
に混合可能な形態のものを用いることができる。シリカ
の微粒子が特に好適である。
(Specific Example 1) The hydrophilic particles to be present in the substrate are particles or powder made of acid-resistant and bromine-resistant substances such as oxide particles such as silica and clay substances, and organic particles such as polyvinyl alcohol. , and other forms that can be mixed with the polymer substrate can be used. Particularly preferred are fine particles of silica.

【0026】(具体例2)本発明に用いるフッ化炭素質
イオン交換樹脂としては一般式(1)で表されるイオン
交換性の樹脂が適している。
(Specific Example 2) As the fluorocarbonaceous ion exchange resin used in the present invention, an ion exchange resin represented by the general formula (1) is suitable.

【0027】[0027]

【化1】[Chemical formula 1]

【0028】lは5〜13.5、mは0、1、2、・・
・・、nは1、2、・・・・、xは1000程度。この
ような樹脂の代表例はNafion(Du Pontの
登録商標) である。
[0028] l is 5 to 13.5, m is 0, 1, 2, etc.
..., n is 1, 2, ..., x is about 1000. A typical example of such a resin is Nafion (a registered trademark of Du Pont).

【0029】(具体例3)フッ化炭素質イオン交換樹脂
を、細孔を有し、親水性粒子を含有する高分子で形成さ
れた基体に高分散状態で担持させる亜鉛−臭素電池用セ
パレータの製造方法は細孔を有し、親水性粒子を含有す
る高分子で形成された基体にフッ化炭素質イオン交換樹
脂溶液を含有させる工程と、前記含有させたイオン交換
樹脂を前記基体に固定する工程とからなる。
(Specific Example 3) A separator for a zinc-bromine battery in which a fluorocarbon ion exchange resin is supported in a highly dispersed state on a substrate made of a polymer having pores and containing hydrophilic particles. The manufacturing method includes a step of containing a fluorocarbonaceous ion exchange resin solution in a substrate formed of a polymer having pores and containing hydrophilic particles, and fixing the contained ion exchange resin to the substrate. It consists of a process.

【0030】細孔を有する高分子で形成された基体にフ
ッ化炭素質イオン交換樹脂溶液を含浸させる工程ではフ
ッ化炭素質イオン交換樹脂が溶液化しているため高分子
基体の表面あるいは内部に簡単に浸透し、高分子基体の
表面を始め、その基体の内部に複雑に入り組んで存在す
る細孔の壁面にでもフッ化炭素質イオン交換樹脂を担持
させることができる。
In the process of impregnating a fluorocarbon ion exchange resin solution into a substrate made of a polymer having pores, since the fluorocarbon ion exchange resin is in solution, it is easy to coat the surface or inside of the polymer substrate. The fluorocarbon ion exchange resin can be supported not only on the surface of the polymer substrate but also on the walls of the pores that are intricately present inside the substrate.

【0031】イオン交換樹脂溶液としては揮発性の有機
溶媒を使ったものが適当である。また、水との混合溶媒
にしてもよい。好適な有機溶媒を例示するとアルコール
が挙げられる。その濃度は特に限定されない。
As the ion exchange resin solution, one using a volatile organic solvent is suitable. Further, a mixed solvent with water may be used. Examples of suitable organic solvents include alcohols. Its concentration is not particularly limited.

【0032】また、基体にイオン交換樹脂を固定する工
程では、フッ化炭素質イオン交換樹脂のフッ化炭素高分
子部分を、親水性粒子を含有した高分子基体の親水性粒
子がなく高分子の生地が露出した部分に選択的に析出さ
せ、そこで結晶成長させる。選択的な析出は疎水性部同
士の親和力によるものと考えられる。このためフッ化炭
素質イオン交換樹脂がセパレータを形成する高分子基体
に強固に高分散状態で担持される。
In addition, in the step of fixing the ion exchange resin to the substrate, the fluorocarbon polymer portion of the fluorocarbon ion exchange resin is removed from the fluorocarbon polymer portion of the polymer substrate containing hydrophilic particles without the hydrophilic particles. The material is selectively deposited on exposed areas of the fabric and crystals grow there. The selective precipitation is thought to be due to the affinity between the hydrophobic parts. Therefore, the fluorocarbon ion exchange resin is firmly supported in a highly dispersed state on the polymer base forming the separator.

【0033】この製造方法によれば、親水性粒子を含有
するとともに、細孔を有する高分子で形成された基体と
、該基体の表面および/または細孔内に高分散状態で担
持されたフッ化炭素質イオン交換樹脂とからなる亜鉛−
臭素電池用のセパレータを容易に製造することができる
According to this manufacturing method, a substrate formed of a polymer containing hydrophilic particles and having pores, and a fluorine supported in a highly dispersed state on the surface and/or in the pores of the substrate are used. Zinc consisting of carbonaceous ion exchange resin
Separators for bromine batteries can be easily produced.

【0034】(具体例4)具体例3の高分子で形成され
た基体にフッ化炭素質イオン交換樹脂溶液を含浸させる
工程では含浸させる方法は特に問わないが、浸せき法、
刷毛塗法あるいはスプレー法等が利用される。含浸後、
溶媒を取り除くために減圧処理等の処理を行ってもよい
(Specific Example 4) In the step of impregnating the substrate formed of the polymer of Specific Example 3 with a fluorocarbonaceous ion exchange resin solution, the impregnation method is not particularly limited, but the impregnation method may be a dipping method,
A brush coating method, a spray method, etc. are used. After impregnation,
In order to remove the solvent, treatment such as reduced pressure treatment may be performed.

【0035】(具体例5)具体例3の基体にイオン交換
樹脂を固定する工程では、熱処理によってイオン交換樹
脂を高分子基体に結晶化させ固定する。熱処理温度は1
50℃以下が好適である。150℃を越えるとイオン交
換樹脂の親水性側鎖が損傷しイオン交換性が損なわれる
(Specific Example 5) In the step of fixing the ion exchange resin to the substrate in Specific Example 3, the ion exchange resin is crystallized and fixed to the polymer substrate by heat treatment. The heat treatment temperature is 1
The temperature is preferably 50°C or lower. If the temperature exceeds 150°C, the hydrophilic side chains of the ion exchange resin will be damaged and the ion exchange properties will be impaired.

【0036】(実施例1)本実施例で用いた陽イオン交
換樹脂の溶液はその化学構造式が
(Example 1) The chemical structural formula of the cation exchange resin solution used in this example is

【0037】[0037]

【化1】[Chemical formula 1]

【0038】であり、lが5〜13.5、mが1〜3、
nが1、xが1000程度であるフッ化炭素質陽イオン
交換樹脂を5重量%エチルアルコールに溶解することに
よって得た。この溶液をさらにエチルアルコールで希釈
した2.5%溶液および1%溶液の3種類を用意した。 各々の溶液に高分子基体とするシリカ−ポリオレフィン
系微孔性膜を浸漬し、これを真空デシケータに入れ2時
間脱気後、溶液から微孔性膜を引き上げ空気中で乾燥さ
せた。その後80℃恒温槽中で2時間乾燥して本実施例
のセパレータを得た。
[0038] where l is 5 to 13.5, m is 1 to 3,
It was obtained by dissolving a fluorocarbonaceous cation exchange resin in which n is about 1 and x is about 1000 in 5% by weight ethyl alcohol. This solution was further diluted with ethyl alcohol to prepare three types: a 2.5% solution and a 1% solution. A silica-polyolefin microporous membrane having a polymer base was immersed in each solution, placed in a vacuum desiccator and degassed for 2 hours, and then the microporous membrane was pulled out of the solution and dried in air. Thereafter, it was dried for 2 hours in a constant temperature bath at 80° C. to obtain the separator of this example.

【0039】また、比較例としてSPS (スルフォン
化ポリスルフォン)を担持したセパレータを作製した。 SPS をジメチルフォルムアミドに溶解し10重量%
の溶液を作製した。このSPS 溶液中にシリカ−ポリ
オレフィン系微孔性膜を浸漬し真空デシケータ中で30
分から2時間脱気後、溶液から微孔性膜を引き上げ空気
中で乾燥させ、その後80℃恒温槽中で更に2時間乾燥
させて比較例のセパレータを得た。
Furthermore, as a comparative example, a separator carrying SPS (sulfonated polysulfone) was prepared. Dissolve SPS in dimethylformamide to 10% by weight
A solution was prepared. A silica-polyolefin microporous membrane was immersed in this SPS solution for 30 minutes in a vacuum desiccator.
After degassing for 2 hours, the microporous membrane was taken out of the solution and dried in air, and then further dried for 2 hours in a constant temperature bath at 80° C. to obtain a separator of a comparative example.

【0040】本実施例のセパレータと比較例のセパレー
タのイオン交換樹脂の分散状態をEPMAによるイオン
交換樹脂中のSO3 のイオウの分布を調べることによ
って比較した。結果を図2、図3に示す。本実施例のセ
パレータではイオウが表面から裏面にかけて均一に分布
している。これに対し、比較例のSPS は表面近傍に
集中して堆積している。このため、セパレータ基体であ
る微孔性膜表面の微細孔を塞ぐことになり、イオンが通
る道を狭くするため陰イオンだけでなく陽イオンをも通
りにくくし必要以上に抵抗増加をもたらす。
The dispersion state of the ion exchange resin in the separator of this example and the separator of the comparative example was compared by examining the sulfur distribution of SO3 in the ion exchange resin using EPMA. The results are shown in FIGS. 2 and 3. In the separator of this example, sulfur is uniformly distributed from the front surface to the back surface. In contrast, the SPS of the comparative example was concentrated near the surface. For this reason, the micropores on the surface of the microporous membrane that is the separator base are blocked, and the path for ions to pass is narrowed, making it difficult for not only anions but also cations to pass through, resulting in an unnecessarily increased resistance.

【0041】また、SPS は本実施例のイオン交換樹
脂に比較して耐臭素性が不十分であることが判明した。 則ち、SPS のみの膜を作製し、遊離臭素を0.2m
ol/l含む溶液に144 時間浸漬したところ、黄色
に変色し極めて脆く壊れ易くなった。これはIRスペク
トルからも確認することができた。
It was also found that SPS has insufficient bromine resistance compared to the ion exchange resin of this example. In other words, a membrane made only of SPS was prepared, and free bromine was added to 0.2 m
When immersed for 144 hours in a solution containing OL/L, it turned yellow and became extremely brittle and easily broken. This could also be confirmed from the IR spectrum.

【0042】上記本実施例のセパレータおよび比較例と
するSPS 含浸セパレータ及び何も含浸させずに単に
80℃恒温槽で2時間だけ乾燥させただけのセパレータ
について、電気抵抗及び臭素透過係数の評価並びに8セ
ル電池で充放電評価を実施した。
Evaluation of electric resistance and bromine permeability coefficient of the separator of the present example, the SPS-impregnated separator as a comparative example, and the separator that was simply dried in an 80° C. thermostat for 2 hours without impregnating it with anything. Charge/discharge evaluation was performed on an 8-cell battery.

【0043】電気抵抗測定に用いた電気抵抗測定セルを
図4に示す。該測定セルは、セパレータ14を内板17
、18で挟み、該内板17、18と外板19、20との
間にはカーボン電極22、23を設けた物である。そし
て、セパレータ14の両側にカーボン電極22、23と
の間に電解液室15、16を設ける。なお、符合21は
測定メータ(LCRメータ)である。セパレータの抵抗
値は、測定セル中央部にセパレータを挟んだ場合と挟ま
ない場合でカーボン電極間の抵抗を交流で測定しその差
から計算して求める。なお、測定電解液には2mol/
lの臭化亜鉛水溶液を用いた。
The electrical resistance measurement cell used for electrical resistance measurement is shown in FIG. The measurement cell includes a separator 14 and an inner plate 17.
, 18, and carbon electrodes 22, 23 are provided between the inner plates 17, 18 and the outer plates 19, 20. Further, electrolyte chambers 15 and 16 are provided on both sides of the separator 14 between the carbon electrodes 22 and 23. Note that the reference numeral 21 is a measurement meter (LCR meter). The resistance value of the separator is determined by measuring the resistance between the carbon electrodes with alternating current when the separator is sandwiched in the center of the measurement cell and when it is not sandwiched, and calculating from the difference. In addition, the measurement electrolyte contains 2 mol/
1 of zinc bromide aqueous solution was used.

【0044】臭素透過係数測定に用いた測定セルを図5
に示す。本セルは、中央のセパレータ14により二つの
部屋に仕切られている。なお、符合27はスターラであ
る。一方の濃厚室25には2mol/l ZnBr2 
,  0.2mol/l Br2の臭素濃厚液を他方の
希薄室26には2mol/l ZnBr2 ,  0.
02mol/l Br2 をそれぞれ同量入れ、両室の
臭素濃度を経時的に測定する。臭素は濃い方の濃厚室2
5から薄い方の希薄室26に拡散するため、濃厚室25
の臭素濃度は経時的に低下し、希薄室26の臭素濃度は
経時的に増加する。この時の変化はFickの第一法則
から次式で表される。
FIG. 5 shows the measurement cell used for measuring the bromine permeability coefficient.
Shown below. This cell is partitioned into two rooms by a separator 14 in the center. Note that the reference numeral 27 is a stirrer. One concentration chamber 25 contains 2 mol/l ZnBr2
, 0.2 mol/l Br2 and the other dilution chamber 26 contains a bromine concentrate containing 2 mol/l ZnBr2, 0.2 mol/l ZnBr2.
The same amount of 02 mol/l Br2 was added to each chamber, and the bromine concentration in both chambers was measured over time. Bromine is in the concentrated chamber 2
5 to the thinner dilute chamber 26, the rich chamber 25
The bromine concentration in the dilution chamber 26 decreases over time, and the bromine concentration in the dilution chamber 26 increases over time. The change at this time is expressed by the following equation based on Fick's first law.

【0045】−1/2Ln|(2C−C0 )/C0 
|=APt/V              (2)
-1/2Ln|(2C-C0)/C0
|=APt/V (2)

【0046】P  :  透過係数(cm/sec)A
  :  セパレータ面積(cm2)V  :  電解
液量(cm3) C  :  時刻t での臭素濃度(mol/l)C0
 :  初期臭素濃度(mol/l)t  :  時間
(sec)
P: Permeability coefficient (cm/sec) A
: Separator area (cm2) V : Electrolyte volume (cm3) C : Bromine concentration at time t (mol/l) C0
: Initial bromine concentration (mol/l) t : Time (sec)

【0047】上記の両室それぞれについて、上式(2)
 の左辺を時間に関してプロットすると直線が得られ、
その傾きから臭素透過係数が計算される。
For each of the above two chambers, the above formula (2)
Plotting the left side of with respect to time yields a straight line,
The bromine permeability coefficient is calculated from the slope.

【0048】表1に電気抵抗及び臭素透過係数の測定結
果をそれぞれの含浸量(重量増)とともに記す。また、
図6、7に含浸量と面積抵抗及び臭素透過係数の関係を
示す。
Table 1 shows the measurement results of electrical resistance and bromine permeability coefficient together with the impregnated amount (weight increase). Also,
Figures 6 and 7 show the relationship between the amount of impregnation, the area resistance, and the bromine permeability coefficient.

【0049】[0049]

【表1】[Table 1]

【0050】表1及び図6、7から明らかなように、本
実施例のフッ化炭素含浸セパレータ、比較例のSPS 
含浸セパレータいずれも含浸量が増えるほど電気抵抗は
徐々に増加し、臭素透過係数が大きく減少している傾向
が分かる。しかし、本実施例のセパレータと比較例のセ
パレータを比較すると本実施例の方が電気抵抗の増加が
少ない割に臭素透過係数の低下が大きい。則ち、本実施
例では3割程度の抵抗増加で臭素透過は1/5以下とな
っている(試料No.R1とNo.3を比較)のに対し
、比較例では電気抵抗が約2倍となっても臭素透過係数
は1/5となっていない(試料No.R1とR4を比較
)。 以上のように本実施例のセパレータは電気抵抗が小さく
、臭素の透過抑制効果が大きい優れた亜鉛─臭素電池用
セパレータとなった。
As is clear from Table 1 and FIGS. 6 and 7, the fluorocarbon-impregnated separator of this example and the SPS of the comparative example
It can be seen that in both impregnated separators, as the amount of impregnation increases, the electrical resistance gradually increases, and the bromine permeability coefficient tends to decrease significantly. However, when comparing the separator of the present example with the separator of the comparative example, the decrease in the bromine permeability coefficient is greater in the present example, although the increase in electrical resistance is smaller. In other words, in this example, the bromine permeation is less than 1/5 with an increase in resistance of about 30% (comparing samples No. R1 and No. 3), whereas in the comparative example, the electrical resistance is about twice as high. Even so, the bromine permeability coefficient is not 1/5 (comparing sample Nos. R1 and R4). As described above, the separator of this example was an excellent separator for zinc-bromine batteries with low electrical resistance and a large effect of suppressing bromine permeation.

【0051】更に、電極面積 900cm2 の8 セ
ルスタック電池に上記セパレータを用い、電流密度を2
0mA/cm2 で充放電した時の電池効率の結果を表
2に示す。表から明かなように比較例のSPS 含浸セ
パレータの場合は含浸量が少ないと殆ど効果がなく、含
浸量を増やすと(試料No.R4)電圧効率が大きく低
下するためエネルギー効率は僅か1%程度しか増加しな
い。これに対して本実施例のフッ化炭素含浸セパレータ
の場合は(試料No.1,2,3)電圧効率は殆ど変化
なくクーロン効率が改善されるため、エネルギー効率は
最大3%向上している。
Furthermore, the above separator was used in an 8-cell stack battery with an electrode area of 900 cm2, and the current density was set to 2.
Table 2 shows the results of battery efficiency when charging and discharging at 0 mA/cm2. As is clear from the table, in the case of the SPS impregnated separator of the comparative example, there is almost no effect when the amount of impregnation is small, and when the amount of impregnation is increased (sample No. R4), the voltage efficiency decreases significantly, so the energy efficiency is only about 1%. only increases. On the other hand, in the case of the fluorocarbon-impregnated separators of this example (sample Nos. 1, 2, and 3), the voltage efficiency hardly changes and the coulomb efficiency improves, so the energy efficiency improves by up to 3%. .

【0052】[0052]

【表2】[Table 2]

【0053】(実施例2)フッ化炭素溶液としてSol
ution Technology 社製 5% Na
fion(Nafion はDu Pont 社の登録
商標) 溶液を用いた以外は実施例1と同様の方法でシ
リカ−ポリオレフィン系微孔性膜にNafionを含浸
させたセパレータを作製した。但し、本実施例ではNa
fion溶液を希釈せずそのまま用い、また浸漬時に脱
気も行わずただ2時間浸漬するだけとした。なお、浸漬
後、取り出した膜は実施例1と同様に空気中で一旦乾燥
後、80℃恒温槽で1時間乾燥した。本実施例で得られ
た膜の電気抵抗及び臭素透過係数の測定結果を表3(試
料No.4)に示す。本実施例の膜は電気抵抗は13%
増加したが、臭素透過係数は半分以下となっており、電
圧効率を余り下げずにクーロン効率を向上させることが
できた。
(Example 2) Sol as a fluorocarbon solution
5% Na manufactured by Ution Technology
A separator was prepared by impregnating a silica-polyolefin microporous membrane with Nafion in the same manner as in Example 1 except that a Nafion (Nafion is a registered trademark of Du Pont) solution was used. However, in this example, Na
The fion solution was used as it is without being diluted, and no deaeration was performed during immersion, and the immersion was merely immersed for 2 hours. Note that, after immersion, the membrane taken out was once dried in air as in Example 1, and then dried in a constant temperature bath at 80° C. for 1 hour. The measurement results of the electrical resistance and bromine permeability coefficient of the membrane obtained in this example are shown in Table 3 (Sample No. 4). The film of this example has an electrical resistance of 13%.
However, the bromine permeability coefficient was less than half, indicating that the Coulombic efficiency could be improved without reducing the voltage efficiency too much.

【0054】また、本実施例のセパレータのイオウの分
布状態を実施例1と同様にEPMAによって調べた。そ
の結果、イオウはセパレータの厚み方向全体に亙って均
一に分布しており、Nafionが微孔性膜全体に分布
することが分かった。さらに、耐臭素性の評価を実施例
1と同様に行ったところ、肉眼でもIRチャート上でも
全く劣化の兆候が認められなかった。
Furthermore, the distribution of sulfur in the separator of this example was examined by EPMA in the same manner as in Example 1. As a result, it was found that sulfur was uniformly distributed throughout the thickness of the separator, and Nafion was distributed throughout the microporous membrane. Furthermore, when the bromine resistance was evaluated in the same manner as in Example 1, no signs of deterioration were observed either with the naked eye or on an IR chart.

【0055】[0055]

【表3】[Table 3]

【0056】(実施例3)2.5% Nafion 溶
液をシリカ−ポリオレフィン系微孔膜の両面にハケで塗
り、空気中で乾燥後、再度ハケで同じ溶液を塗った。こ
の操作を5回繰り返した後、80℃恒温槽中で1時間乾
燥して本実施例のセパレータを得た。本実施例のセパレ
ータの電気抵抗及び臭素透過係数の測定結果を表3(試
料No.5)に示す。本実施例では電気抵抗が約40%
増加したが、臭素透過係数は4分の1以下となっており
、電圧効率を余り下げずにクーロン効率を向上させるこ
とができた。
(Example 3) A 2.5% Nafion solution was applied with a brush to both sides of a silica-polyolefin microporous membrane, and after drying in air, the same solution was applied again with a brush. After repeating this operation five times, it was dried for 1 hour in a constant temperature bath at 80° C. to obtain the separator of this example. The measurement results of the electrical resistance and bromine permeability coefficient of the separator of this example are shown in Table 3 (Sample No. 5). In this example, the electrical resistance is approximately 40%.
However, the bromine permeability coefficient was reduced to one-fourth or less, and the Coulombic efficiency could be improved without significantly lowering the voltage efficiency.

【0057】(実施例4)2.5% Nafion 溶
液をシリカ−ポリオレフィン系微孔膜の両面に霧吹きス
プレーで塗布した。空気中で乾燥後再度スプレーで上記
溶液を塗った。この操作を5回繰り返した後、80℃恒
温槽中で1時間乾燥して本実施例のセパレータを得た。 本実施例で得られた膜の電気抵抗及び臭素透過係数の測
定結果を表3(試料No.6)に示す。本実施例の膜は
電気抵抗は約30%増加したが、臭素透過係数は4分の
1以下となっており、電圧効率を余り下げずにクーロン
効率を向上させることができた。
Example 4 A 2.5% Nafion solution was applied to both sides of a silica-polyolefin microporous membrane using an atomizer spray. After drying in air, the above solution was applied again by spraying. After repeating this operation five times, it was dried for 1 hour in a constant temperature bath at 80° C. to obtain the separator of this example. The measurement results of the electrical resistance and bromine permeability coefficient of the membrane obtained in this example are shown in Table 3 (Sample No. 6). Although the electrical resistance of the membrane of this example increased by about 30%, the bromine permeability coefficient was less than one-fourth, and the Coulombic efficiency could be improved without significantly lowering the voltage efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】亜鉛−臭素電池の概略構成図である。FIG. 1 is a schematic diagram of a zinc-bromine battery.

【図2】本実施例のセパレータのイオウ分布状態を表し
たEPMAの出力図である。
FIG. 2 is an EPMA output diagram showing the sulfur distribution state of the separator of this example.

【図3】比較例のSPS を含浸したセパレータのイオ
ウ分布状態を表したEPMAの出力図である。
FIG. 3 is an EPMA output diagram showing the sulfur distribution state of a separator impregnated with SPS of a comparative example.

【図4】本実施例で用いたセパレータの電気抵抗測定用
のセルの概略図である。
FIG. 4 is a schematic diagram of a cell for measuring electrical resistance of a separator used in this example.

【図5】本実施例で用いたセパレータの臭素透過係数測
定用のセルの概略図である。
FIG. 5 is a schematic diagram of a cell for measuring the bromine permeability coefficient of the separator used in this example.

【図6】陽イオン交換樹脂の含浸量とセパレータの電気
抵抗の関係を示す線図である。
FIG. 6 is a diagram showing the relationship between the amount of cation exchange resin impregnated and the electrical resistance of the separator.

【図7】陽イオン交換樹脂の含浸量とセパレータの臭素
透過係数の関係を示す線図である。
FIG. 7 is a diagram showing the relationship between the amount of cation exchange resin impregnated and the bromine permeability coefficient of the separator.

【符号の説明】[Explanation of symbols]

1  電池本体 1a  正極側反応槽 1b  負極側反応槽 2、14  セパレータ 3  正極 4  負極 5  正極液配管 6  負極液配管 7  正極液貯蔵槽 8  負極液貯蔵槽 9、10  電解液ポンプ 11  臭素錯化合物貯蔵槽 12  バルブ 15,16  電解液室 17,18  内板 19,20  外板 21  LCRメータ 22,23  カーボン電極 25  濃厚液室 26  希薄液室 27  スターラ 1 Battery body 1a Positive electrode side reaction tank 1b Negative electrode side reaction tank 2, 14 Separator 3 Positive electrode 4 Negative electrode 5 Positive electrode liquid piping 6 Negative electrode liquid piping 7 Positive electrode liquid storage tank 8 Negative electrode liquid storage tank 9, 10 Electrolyte pump 11 Bromine complex compound storage tank 12 Valve 15, 16 Electrolyte chamber 17,18 Inner plate 19,20 Outer panel 21 LCR meter 22, 23 Carbon electrode 25 Concentrated liquid chamber 26 Dilute liquid chamber 27 Starla

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  細孔を有し、親水性粒子を含有する高
分子で形成された基体と、該基体に高分散状態で担持さ
れたフッ化炭素質イオン交換樹脂と、からなる亜鉛−臭
素電池用セパレータ。
Claim 1: Zinc-bromine comprising a substrate formed of a polymer having pores and containing hydrophilic particles, and a fluorocarbon ion exchange resin supported on the substrate in a highly dispersed state. Battery separator.
JP3104652A 1991-04-09 1991-04-09 Separator for zinc-bromine battery Pending JPH04312764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3104652A JPH04312764A (en) 1991-04-09 1991-04-09 Separator for zinc-bromine battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3104652A JPH04312764A (en) 1991-04-09 1991-04-09 Separator for zinc-bromine battery

Publications (1)

Publication Number Publication Date
JPH04312764A true JPH04312764A (en) 1992-11-04

Family

ID=14386395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3104652A Pending JPH04312764A (en) 1991-04-09 1991-04-09 Separator for zinc-bromine battery

Country Status (1)

Country Link
JP (1) JPH04312764A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009099088A1 (en) * 2008-02-06 2009-08-13 Asahi Kasei E-Materials Corporation Separator for metal halogen battery
WO2014077257A1 (en) 2012-11-13 2014-05-22 旭化成イーマテリアルズ株式会社 Separation membrane for redox flow secondary batteries, and redox flow secondary battery using same
RU2767987C1 (en) * 2021-10-28 2022-03-22 Акционерное общество «Алмет» Separator group of non-flowing metal-bromine accumulator and method for its manufacture

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009099088A1 (en) * 2008-02-06 2009-08-13 Asahi Kasei E-Materials Corporation Separator for metal halogen battery
AU2009211726B2 (en) * 2008-02-06 2012-12-06 Asahi Kasei E-Materials Corporation Separator for metal halogen battery
JP5474573B2 (en) * 2008-02-06 2014-04-16 旭化成イーマテリアルズ株式会社 Metal halogen battery separator
WO2014077257A1 (en) 2012-11-13 2014-05-22 旭化成イーマテリアルズ株式会社 Separation membrane for redox flow secondary batteries, and redox flow secondary battery using same
US9837678B2 (en) 2012-11-13 2017-12-05 Asahi Kasei E-Materials Corporation Separation membrane for redox flow secondary battery and redox flow secondary battery comprising the same
RU2767987C1 (en) * 2021-10-28 2022-03-22 Акционерное общество «Алмет» Separator group of non-flowing metal-bromine accumulator and method for its manufacture

Similar Documents

Publication Publication Date Title
JP6101455B2 (en) Ion exchange membrane charging composition, ion exchange membrane manufacturing method, ion exchange membrane and redox flow battery
US20220352534A1 (en) Bipolar ionomer membrane
Zeng et al. Polyvinylpyrrolidone-based semi-interpenetrating polymer networks as highly selective and chemically stable membranes for all vanadium redox flow batteries
JP7261586B2 (en) Composite membrane for flow battery
KR101549525B1 (en) Amphoteric ion exchange membrane used for redox flow battery having low ion permeablility for vanadium ion and redox flow battery including the same
Teng et al. PTFE/SPEEK/PDDA/PSS composite membrane for vanadium redox flow battery application
KR20160064429A (en) Composite membranes for redox flow battery electrolyte and their fabrication method
CN113169366A (en) Diaphragm for redox flow battery and method for manufacturing same
JP2001250529A (en) Alkaline secondary battery
KR20190072124A (en) Carbon material electrode, its surface treatment method and zinc-bromide toxic flow secondary cell having the same
KR102000659B1 (en) Preparation method for composite separator for redox flow batterry and composite separator for redox flow batterry
JPH04312764A (en) Separator for zinc-bromine battery
EP0233678B1 (en) Electrochemical cells
WO2021253128A1 (en) Separators for aqueous zinc-ion cells and batteries, zinc metal batteries, and methods of fabricating a separator for use in a zinc metal battery
KR20230034611A (en) Amphoteric ion exchange seperators for redox battery, manufacturing the same and redox battery comprising the same
KR102328721B1 (en) Surface treated carbon material electrode, its surface treatment method and zinc-bromide toxic flow secondary cell having the same
JPH01157071A (en) Separator for zinc-bromine battery
EP3627604B1 (en) Ion exchange separation membrane and flow battery comprising same
US11804615B2 (en) Membrane electrode assembly for redox flow battery applications
KR102244179B1 (en) Redox flow cell comprising cellulose
US11955678B2 (en) Method to improved redox flow battery performance
CN112652784B (en) Daramic composite ion conduction membrane, preparation and application
CN117941112A (en) Method for renewing asymmetric mixed solution of redox flow battery
TW202414875A (en) Redox flow battery and electrolyte thereof
CN117981131A (en) Method for improving redox flow battery performance