JPS6051622B2 - Effective energy utilization method in heat supply equipment consisting of a combination of heat pump cycle and cogeneration steam cycle - Google Patents

Effective energy utilization method in heat supply equipment consisting of a combination of heat pump cycle and cogeneration steam cycle

Info

Publication number
JPS6051622B2
JPS6051622B2 JP55056050A JP5605080A JPS6051622B2 JP S6051622 B2 JPS6051622 B2 JP S6051622B2 JP 55056050 A JP55056050 A JP 55056050A JP 5605080 A JP5605080 A JP 5605080A JP S6051622 B2 JPS6051622 B2 JP S6051622B2
Authority
JP
Japan
Prior art keywords
heat
cycle
temperature
expander
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55056050A
Other languages
Japanese (ja)
Other versions
JPS56151851A (en
Inventor
博 谷口
敬介 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP55056050A priority Critical patent/JPS6051622B2/en
Publication of JPS56151851A publication Critical patent/JPS56151851A/en
Publication of JPS6051622B2 publication Critical patent/JPS6051622B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は地域冷暖房、プロセス加温及び工場作業用の
熱を供給する場合における熱利用率の増大を図るために
なされたもので、ヒートポンプサイクルと熱併給蒸気サ
イクルの組合せからなる給熱設備におけるエネルギー有
効利用方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] This invention was made to increase the heat utilization rate when supplying heat for district heating and cooling, process heating, and factory work. This paper relates to a method for effectively utilizing energy in a heat supply facility consisting of a combination of a combined heat and steam cycle.

〔従来の技術〕[Conventional technology]

地域冷暖房、プロセス加温及び工場作業用の熱を供給す
る場合には各種排熱を利用する方式や熱併給動力方式に
よると有効であるが、現在は専用ボイラーを利用する方
式が主に実施されている。
When supplying heat for district heating and cooling, process heating, and factory work, it is effective to use various types of waste heat or cogeneration power, but currently, methods that use dedicated boilers are mainly used. ing.

従来、熱併給動力方式とは、燃料を燃焼させて発、゛
、を−レ ヨ【丁ヨヨ、f5子↓↓H金を回転させて動
力を得る一方、タービン駆動後の作業流体の排熱を利用
して中温度の熱を供給する方式である。また専用ボイラ
ー方式とは、熱を供給するために専用のボイラーを使用
する方式であつて、燃料を燃焼させて発生した高温の熱
を使用目的に応じて中温等の適宜の温度に調整して利用
する方式であるが、この方式ではエクセルギー損失が大
きく、たとえ使用端までの熱損失が少なくてもエネルギ
ーレベルの低下による有効性の減少を免れることはでき
ない。また集中熱併給方式を適用する場合には途中の配
管損失が増大することも考えられ、各個の専用ボイラー
方式に比べてその利点は相殺されるおそれがある。また
、従来、ヒートポンプサイクルと熱併給蒸気サイクルの
組合せからなる熱貯蔵装置なるものが知られている(特
公昭54−36328号公報)。
Traditionally, combined heat and power systems generate electricity by burning fuel.
This is a system that uses the exhaust heat of the working fluid after driving the turbine to supply medium-temperature heat, while generating power by rotating the turbine. In addition, the dedicated boiler method is a method that uses a dedicated boiler to supply heat, and the high-temperature heat generated by burning fuel is adjusted to an appropriate temperature such as medium temperature depending on the purpose of use. However, this method has a large exergy loss, and even if the heat loss to the end of use is small, the effectiveness is inevitably reduced due to a decrease in the energy level. In addition, when a centralized cogeneration system is applied, piping loss along the way may increase, and its advantages may be canceled out compared to using individual boiler systems. Furthermore, a heat storage device consisting of a combination of a heat pump cycle and a cogeneration steam cycle has been known (Japanese Patent Publication No. 54-36328).

この熱貯蔵装置においては、ヒートポンプサイクルの圧
縮機が蒸気サイクルの蒸気タービンによつて駆動される
とともに、蒸気タービンから排出される鼻蒸気の凝縮熱
と圧縮機から吐出される高温冷媒の凝縮熱とを一つの蓄
熱媒体槽内に放出させて、並列的な方式で熱交換をさせ
て熱利用を行つているため、熱利用率が低く、またヒー
トポンプサイクルの高圧液冷媒の膨脹は絞り弁で行つて
いるため・冷媒の膨脹に際してのエネルギーは有効に利
用されていない。〔発明が解決しようとする問題点〕こ
の発明は、前記従来技術の熱併給動力方式の諸欠点を解
消するためのものであつて、ヒートポンプサイクルを熱
併給蒸気サイクルと組合せるとともに、大きな負荷変動
に対しても能率よく適応できるエネルギーの有効利用の
方法を得ることを目的とする。
In this heat storage device, the compressor of the heat pump cycle is driven by the steam turbine of the steam cycle, and the heat of condensation of the nasal steam discharged from the steam turbine and the heat of condensation of the high temperature refrigerant discharged from the compressor are combined. Since heat is utilized by discharging the refrigerant into a single heat storage medium tank and exchanging heat in parallel, the heat utilization rate is low, and the expansion of the high-pressure liquid refrigerant in the heat pump cycle is performed using a throttle valve. The energy from the expansion of the refrigerant is not used effectively. [Problems to be Solved by the Invention] The present invention is intended to solve the various drawbacks of the conventional combined heat and power generation system, and combines a heat pump cycle with a combined heat and steam cycle, and eliminates large load fluctuations. The purpose of this study is to find a method for effectively utilizing energy that can be efficiently adapted to the environment.

〔問題点を解決するための手段〕[Means for solving problems]

ヒートポンプサイクルと熱併給蒸気サイクルの組合せか
らなる給熱設備におけるエネルギーの有効利用をはかる
ため、ヒートポンプサイクルのスクリュー式圧縮機を熱
併給蒸気サイクルのスクリュー式膨脹機により駆動する
とともに、前記ヒートポンプサイクルの液冷媒が絞り膨
脹する際の圧力変化をも利用できるようにするため、こ
の圧力変化に際して特にスクリュー式の二相流膨脹機を
回転させ、この回転力によつても前記のスクリュー式圧
縮機を駆動させる。
In order to effectively utilize energy in a heat supply facility consisting of a combination of a heat pump cycle and a cogeneration steam cycle, the screw compressor of the heat pump cycle is driven by the screw expander of the cogeneration steam cycle, and the liquid of the heat pump cycle is driven by the screw expander of the cogeneration steam cycle. In order to make use of the pressure change when the refrigerant is throttled and expanded, the screw-type two-phase flow expander is rotated during this pressure change, and this rotational force also drives the screw-type compressor. let

〔実施例〕〔Example〕

次にこの発明を実施例について説明する。 Next, the present invention will be explained with reference to embodiments.

図において、Aはボイラーと熱機関を含む熱併給蒸気サ
イクル、Bはヒートポンプサイクルである。
In the figure, A is a cogeneration steam cycle including a boiler and a heat engine, and B is a heat pump cycle.

ボイラー1からの過熱蒸気は蒸気管6を通つてスクリュ
ー式膨脹機2に流入し、該膨脹機2を回転させた後、蒸
気導出管7を通り中温熱交換器(二次熱交換器)8に流
入する。ここで熱交換管25内を流れる負荷側流体と熱
交換し凝縮して液管9から送液ポンプ10により再びボ
イラー1内に戻され以後この循環経路を流動する。一方
、ヒートポンプ用のスクリュー式圧縮機3はスクリュー
式膨脹機2と回転軸18により連結されているため駆動
され、系内のフロン系冷媒は圧縮されて高温高圧ガスと
なり吐出管11を経て凝縮器(一次熱交換器)12に流
入する。
Superheated steam from the boiler 1 flows into the screw expander 2 through the steam pipe 6, rotates the expander 2, and then passes through the steam outlet pipe 7 to the medium temperature heat exchanger (secondary heat exchanger) 8. flows into. Here, it exchanges heat with the load-side fluid flowing in the heat exchange tube 25, condenses, and is returned to the boiler 1 from the liquid tube 9 by the liquid feeding pump 10, and thereafter flows through this circulation path. On the other hand, the screw compressor 3 for the heat pump is driven because it is connected to the screw expander 2 by the rotating shaft 18, and the fluorocarbon refrigerant in the system is compressed and becomes a high-temperature, high-pressure gas through the discharge pipe 11 to the condenser. (primary heat exchanger) 12.

ここで.熱交換管23内を流れる負荷側流体と熱交換し
凝縮して凝縮液管13を通りスクリュー式二相流膨脹機
4に流入し圧力エネルギーを利用してこれを回転させる
。スクリュー式二相流膨脹機4は回転軸19によつてス
クリュー式圧縮機3と連結され・ているためこれを駆動
して動力を回収した後、二相流の液ガス混合流体は導管
14より蒸気器15に流入する。そして蒸発管16内を
流動する際に入口20、出口21をもつ排熱流体と熱交
換して蒸発し系の外部から熱を吸収した後、吸入管17
を経てスクリュー式圧縮機3に吸入される。一方、負荷
側流体は戻り管22を経て凝縮器12に流入熱交換管2
3を通過中に加熱され次いで連通管24を経て中温熱交
換器8に流入し熱交換管25を通過中に更に加熱されて
昇温し送湯管26を経て負荷側へ還流される。次にこの
実施例の作用を説明する。
here. It exchanges heat with the load-side fluid flowing in the heat exchange pipe 23, condenses, and flows into the screw type two-phase flow expander 4 through the condensate pipe 13, where it is rotated using pressure energy. The screw type two-phase flow expander 4 is connected to the screw type compressor 3 by a rotary shaft 19, so after driving this and recovering power, the two-phase liquid-gas mixed fluid is passed through the conduit 14. It flows into the steamer 15. As it flows through the evaporation pipe 16, it exchanges heat with the exhaust heat fluid having an inlet 20 and an outlet 21, evaporates, and absorbs heat from the outside of the system.
It is sucked into the screw compressor 3 through the. On the other hand, the load-side fluid flows into the condenser 12 via the return pipe 22 through the heat exchange pipe 2
3, and then flows into the medium temperature heat exchanger 8 via the communication pipe 24. While passing through the heat exchange pipe 25, it is further heated to raise the temperature, and is returned to the load side via the hot water supply pipe 26. Next, the operation of this embodiment will be explained.

絞り弁に相当するスクリュー式二相流膨脹機4ノは回転
軸19によりスクリュー式圧縮機3と連結されているの
で動力が回収され、その動力分だけスクリュー式膨脹機
2による駆動力は少なくて済むことになり、同じ熱機関
の発生動力でヒートポンプサイクルBで外界より汲み上
げる熱量が増加・することになるが、この動力回収装置
を備えた熱併給蒸気サイクルAとヒートポンプサイクル
Bとの組合せ設備の綜合的な熱利用の一例を定量的に示
すと次のとおりである。
Since the screw type two-phase flow expander 4, which corresponds to a throttle valve, is connected to the screw type compressor 3 by the rotating shaft 19, the power is recovered, and the driving force by the screw type expander 2 is reduced by the amount of power recovered. This means that the amount of heat pumped up from the outside world by heat pump cycle B with the same power generated by the heat engine increases. A quantitative example of comprehensive heat utilization is as follows.

今、熱併給蒸気サイクルAのボイラー1から発゛生する
過熱蒸気を544k91h1380℃、11taとする
とき、この過熱蒸気がスクリュー式膨脹機2に流入して
これを駆動した後、中温熱交換器8に排出され動力変換
するに際しスクリュー式膨脹機2の効率η=0.85と
すると88.6KWが得られる。
Now, when the superheated steam generated from the boiler 1 of the combined heat and steam cycle A is 544k91h1380°C and 11ta, this superheated steam flows into the screw expander 2 and drives it, and then the intermediate temperature heat exchanger 8 When the efficiency of the screw expander 2 is assumed to be η=0.85, 88.6 KW is obtained.

このとき該膨脹機2からの排出蒸気は75℃、0.4a
taであり、この排出蒸気は中温熱交換器8に入り凝縮
する。一方、戻り管22を経て30℃の温度で熱交換管
23内に流入した負荷側流体は55℃となつて連通管2
4へ流入し次いで中温熱交換器8の熱交換管25に流入
し凝縮熱により70℃に加熱される。
At this time, the exhaust steam from the expander 2 is 75°C and 0.4a
ta, and this exhaust steam enters the medium temperature heat exchanger 8 and is condensed. On the other hand, the load-side fluid flowing into the heat exchange tube 23 at a temperature of 30°C via the return pipe 22 reaches a temperature of 55°C and enters the communication pipe 23.
4, then flows into the heat exchange tube 25 of the medium temperature heat exchanger 8, and is heated to 70° C. by the heat of condensation.

ここでの凝縮熱量は302000Kca11hである。
ここで水蒸気は凝縮して752c10.4ataの温水
となつて送液ポンプ10によつて再びボイラー1に送ら
れ加熱されて再び水蒸気となり、熱併給蒸気サイクルA
内を循環する。一方、ヒートポンプサイクルBのスクリ
ュー式圧縮機3はスクリュー式膨脹機2からの88.6
KWの入力により駆動されるが、冷媒ガスRl2はスク
リュー式圧縮機の綜合効率0.85でガス圧縮仕事を行
ない、吐出管11へ75℃、15.51itaで凝縮器
12に導入され、熱交換管23内を流れる30℃の負荷
側流体の戻り温水と熱交換して60′Cll5.5at
aの凝縮液となる。
The amount of heat of condensation here is 302,000 Kca11h.
Here, the water vapor is condensed and becomes hot water of 752c10.4ata, which is sent to the boiler 1 again by the liquid sending pump 10, heated, and turned into water vapor again.
circulate within. On the other hand, the screw compressor 3 of the heat pump cycle B uses the 88.6
The refrigerant gas Rl2 is driven by the input of KW, and the screw compressor performs gas compression work with a total efficiency of 0.85, and is introduced into the condenser 12 at 75°C and 15.51 ita into the discharge pipe 11, where it undergoes heat exchange. By exchanging heat with the return hot water of the load-side fluid at 30°C flowing inside the pipe 23, the
It becomes the condensate of a.

ここでの凝縮熱量は490000Kac11hである。
また凝縮器12に流入してくる30℃の戻り温水は55
℃に加熱されて中温熱交換器8に流入するが、この熱交
換率η=0.95とすると、70℃で18800k91
hの量の温水が得られ導管26から負荷側へ還流されて
利用される。
The amount of heat of condensation here is 490,000 Kac11h.
Also, the return hot water of 30°C flowing into the condenser 12 is 55°C.
It is heated to ℃ and flows into the medium temperature heat exchanger 8, but if this heat exchange coefficient η = 0.95, at 70℃ it is 18800k91
h amount of hot water is obtained and is returned to the load side through the conduit 26 for use.

凝縮器12で凝縮されたRl2は液冷媒は15.5at
aの圧力でスクリュー式二相流膨脹機4内に噴射し二相
流の混合流体は25℃、6.6ataて導管14に排出
され、入口圧力15.5ataと出口圧力6.6ata
の圧力差でスクリュー式二相流膨脹機4を回転させる。
The liquid refrigerant of Rl2 condensed in the condenser 12 is 15.5 at
The mixed fluid of the two-phase flow is injected into the screw type two-phase flow expander 4 at a pressure of 15.degree.
The screw type two-phase flow expander 4 is rotated with a pressure difference of .

この圧力エネルギーはフラッシュされた液、ガスの二相
流となつて該膨脹機4に作用し回転エネルギーとして回
収されるものである。この膨脹機の効率をη=0.5と
すると、略6.3KWの動力が回転軸19を介して圧縮
機3に伝達され回収される。したがつてスクリュー式膨
脹機2からの伝達動力である入力が88.6KWであつ
ても圧縮機3は88.6+6.3=94.9(KW)の
圧縮仕事をすることになる。別言すればヒートポンプサ
イクルBのスクリュー式圧縮槻jに94.9KWの圧縮
仕事を遂行させるのに88.6KWの動力で済むことに
なる。蒸発器15には排熱流体が入口20から流入し蒸
発管16内を流動する冷媒に熱を与え30′C前後とな
つて出口21から放出され、一方ガス量16100kg
1h1蒸発熱量424000Kca11hの冷媒ガスが
スクリュー式圧縮機3に吸入される。この実施例では給
熱設備の温水量は18800k91hであり、これが3
0℃から70゜Cに昇温しているのであるから、の熱を
得ている。
This pressure energy becomes a two-phase flow of flashed liquid and gas, acts on the expander 4, and is recovered as rotational energy. Assuming that the efficiency of this expander is η=0.5, approximately 6.3 KW of power is transmitted to the compressor 3 via the rotating shaft 19 and recovered. Therefore, even if the input power transmitted from the screw expander 2 is 88.6 KW, the compressor 3 will perform compression work of 88.6+6.3=94.9 (KW). In other words, it takes 88.6 kW of power to make the screw type compressor j of heat pump cycle B perform 94.9 kW of compression work. The waste heat fluid flows into the evaporator 15 from the inlet 20, heats the refrigerant flowing in the evaporator tube 16, reaches a temperature of around 30'C, and is discharged from the outlet 21, while the gas amount is 16,100 kg.
Refrigerant gas having an evaporation heat amount of 424,000 Kca11h is sucked into the screw compressor 3. In this example, the amount of hot water in the heat supply equipment is 18,800k91h, which is 3.
Since the temperature is being raised from 0°C to 70°C, we are gaining heat.

給熱設備内のボイラー1に供給する燃料の熱量は、であ
る。
The amount of heat of the fuel supplied to the boiler 1 in the heat supply equipment is.

この給熱設備の熱利用率COPは、 となり、この給熱設備をボイラーの単独燃焼による加熱
と比べると、となり、2.皓の加熱能力が出ることとな
る。
The heat utilization coefficient COP of this heat supply equipment is as follows.Comparing this heat supply equipment to heating by boiler combustion alone, it is as follows.2. This will bring out the heating ability of Hao.

ヒートポンプサイクルBの蒸発器15の入口20から流
入する排熱流体の温度が高く60〜80℃位のときは、
凝縮器12の温度を100〜200゜C位に高くとるこ
とができる。このような場合、高温化においても老化す
ることなく安定な冷媒として、Rll4または「フロー
リノール85」すなわちトリフルオロエタノール85モ
ル%と水15モル%の混合物(CF3CH2OH85モ
ル%+H2Ol5モル%)等が用いられる。なお、凝縮
温度が100〜130゜CのときはRll4を、また1
30〜200℃のときは「フロリノール85」が適して
いる。また高温度においても安定な冷媒としては、これ
らは一例てあり、例えば「フロリノール」のモル%が異
なる冷媒も温度条件等に応じ適宜選択し使用できること
は勿論である。また前記の実施例では、吐出管11から
凝縮器12に流入する冷媒ガスの温度と蒸気導出管7か
ら中温熱交換器8に流入する蒸気の温度とは共に75゜
Cであつたが、熱併給蒸気サイクルA及びまたはヒート
ポンプサイクルBに流入、流出する外部熱源の熱量の変
動や、設備に流入する負荷側流体の温度、流量の変動に
より吐出管11を流れる冷媒ガスの温度の方が蒸気導出
管7を流れる蒸気の温度より高くなる場合は、その温度
差を検出して負荷側流体の流れの方向が逆になることも
ある。
When the temperature of the waste heat fluid flowing in from the inlet 20 of the evaporator 15 of the heat pump cycle B is high, about 60 to 80°C,
The temperature of the condenser 12 can be as high as 100-200°C. In such cases, Rll4 or "Florinol 85", a mixture of 85 mol% trifluoroethanol and 15 mol% water (85 mol% CF3CH2OH + 5 mol% H2Ol), is used as a stable refrigerant without aging even at high temperatures. It will be done. In addition, when the condensation temperature is 100 to 130°C, Rll4 and 1
"Florinol 85" is suitable when the temperature is 30 to 200°C. Further, these are examples of refrigerants that are stable even at high temperatures, and it goes without saying that refrigerants containing different mole percentages of "florinol" can be appropriately selected and used depending on the temperature conditions, etc. Further, in the above embodiment, the temperature of the refrigerant gas flowing into the condenser 12 from the discharge pipe 11 and the temperature of the steam flowing into the medium temperature heat exchanger 8 from the steam outlet pipe 7 were both 75°C. The temperature of the refrigerant gas flowing through the discharge pipe 11 may be higher than the temperature of the refrigerant gas flowing through the discharge pipe 11 due to fluctuations in the amount of heat of the external heat source flowing into and out of the co-supply steam cycle A and/or heat pump cycle B, and fluctuations in the temperature and flow rate of the load-side fluid flowing into the equipment. If the temperature becomes higher than the temperature of the steam flowing through the pipe 7, the temperature difference may be detected and the flow direction of the load-side fluid may be reversed.

負荷側流体は導管26から流入し先ず中温熱交換器8を
通り次いで凝縮器12を通つて加熱された後、戻り管2
2から流出するように流れを切り換え熱伝達率をよくす
る。例えば、ヒートポンプサ・イクルBの蒸発器15に
流入する排熱源の温度が高くなるとスクリュー式圧縮機
3から吐出される冷媒ガスの温度も例えば80′Cのよ
うに高くなりスクリュー式膨脹機2からの排出の温度7
5゜Cより高くなるので負荷側流体の流れは逆になる。
なお、熱併給蒸気サイクルの液送ポンプにスクリュー式
を使用すれば高圧力が得られ、また高速回転が得られる
ため小型となり耐久性がありしかも騒音も少ない利点が
ある。
The load-side fluid enters from conduit 26 and first passes through medium temperature heat exchanger 8 and then through condenser 12 where it is heated before passing through return pipe 2.
Switch the flow so that it flows out from 2 to improve the heat transfer coefficient. For example, when the temperature of the exhaust heat source flowing into the evaporator 15 of the heat pump cycle B increases, the temperature of the refrigerant gas discharged from the screw compressor 3 also increases, for example to 80'C, and the temperature of the refrigerant gas discharged from the screw expander 2 increases. Discharge temperature 7
Since the temperature is higher than 5°C, the flow of the fluid on the load side is reversed.
Note that if a screw type liquid pump is used for the combined heat and steam cycle, high pressure can be obtained and high speed rotation can be obtained, which has the advantage of being compact, durable, and less noisy.

また遠心型タービンポンプより安価である。次に第2図
により本発明の方法において、スクリュー式二相流膨脹
機によつて液冷媒が絞り膨脹する際の圧力変化を利用す
ることによる利点を説明する。
It is also cheaper than centrifugal turbine pumps. Next, with reference to FIG. 2, the advantage of utilizing the pressure change when the liquid refrigerant is throttled and expanded by the screw type two-phase flow expander in the method of the present invention will be explained.

冷媒の減圧膨脹に絞り弁を用いるヒートポンプサイクル
は、A−+B−+C→J−+Aとなる。
A heat pump cycle that uses a throttle valve to expand the refrigerant under reduced pressure is A-+B-+C→J-+A.

C−)Jが膨脹過程である。この場合の冷凍熱量〔蒸発
器15により汲み上げることのできる熱量〕は(1A−
1j)Kcallk9である。従来技術(特開昭54−
100551号公報)の膨脹タービンによる場合のヒー
トポンプサイクルは、A→B−+C−+H−+Aとなる
C-) J is the expansion process. In this case, the amount of refrigeration heat [the amount of heat that can be pumped up by the evaporator 15] is (1A-
1j) Kcallk9. Conventional technology (Japanese Patent Application Laid-Open No. 1986-
100551) using the expansion turbine, the heat pump cycle is A→B-+C-+H-+A.

C−+Hが膨脹過程である。この場合は膨脹タービンに
よつて能率は悪いが幾分、冷凍熱量を増加することがで
き(IA−IH)Kcallk9となる。これに対し、
本発明においては、スクリュー式二相流膨脹機を使用す
るので、C点から冷媒を膨脹させるときは、そのヒート
ポンプサイクルはA→B−+C−+G−+Aとなり、冷
凍熱量を(IA−1。
C−+H is the expansion process. In this case, although the efficiency is poor due to the expansion turbine, the amount of refrigeration heat can be increased somewhat, resulting in (IA-IH) Kcallk9. On the other hand,
In the present invention, a screw type two-phase flow expander is used, so when the refrigerant is expanded from point C, the heat pump cycle becomes A→B-+C-+G-+A, and the amount of refrigeration heat is (IA-1.

)Kcallk9と更に増やすことができる。また本発
明において、更にC上の過冷却過程をとらせることがで
きるので、このヒートポンプサイクルはA→B→C→E
→F→D→Aとなり、冷凍熱量は最も大きく(IA−1
D)Kcallkgにすることができる。この過程では
1領域は作動流体は液体であり、m領域は気液混合の二
相流流体であるが、スクリュー式二相流膨脹機は、その
何れの作動流体に対しても効率よく働くことができる。
前記冷凍熱量の大小の関係は次のとおりとなる。
) Kcallk9 can be further increased. In addition, in the present invention, since it is possible to further perform a supercooling process on C, this heat pump cycle is A→B→C→E.
→F→D→A, and the amount of freezing heat is the largest (IA-1
D) can be Kcallkg. In this process, the working fluid in region 1 is liquid, and in region m, it is a two-phase flow fluid of gas-liquid mixture, but the screw type two-phase flow expander works efficiently with both of these working fluids. I can do it.
The relationship between the magnitude of the refrigeration heat amount is as follows.

〔発明の効果〕〔Effect of the invention〕

この発明は集中熱供給方式の設備において、燃焼により
発生した高温蒸気を先ずスクリュー式膨脹機により動力
に変換し、これによリヒートポンプサイクルのスクリュ
ー式圧縮機を駆動して低熱源より熱を汲み上げ、動力発
生に際して生ずる排熱に加えて中温の熱を供給する方式
において、ヒ,ートポンプサイクルの絞り膨脹過程の冷
媒の圧力変化を有効利用し、この利用に際しては、膨脹
過程において生ずるガスと液との混合流体を作業流体と
するスクリュー式の二相流型の膨脹機を回転させるよう
にし、これによつて動力を回収するこ・とにより熱利用
率をさらに向上させることができる。
This invention uses a centralized heat supply system to first convert high-temperature steam generated by combustion into power using a screw expander, which then drives a screw compressor in a reheat pump cycle to pump heat from a low heat source. , a system that supplies medium-temperature heat in addition to the exhaust heat generated during power generation, effectively utilizes the pressure change of the refrigerant during the throttle expansion process of the heat pump cycle, and when using this, the gas and liquid generated during the expansion process are effectively used. The heat utilization efficiency can be further improved by rotating a screw-type two-phase flow type expander that uses a mixed fluid as the working fluid, and thereby recovering power.

そしてヒートポンプサイクルBの二相流膨脹機をスクリ
ュー式とすることにより、膨脹機の冷媒流入側と流出側
の圧力差が変動したり、液、ガスニ相流であつたり、流
体の流量の変化による設備容量が変動しても、他の翼型
、遠心タービン、レシプロエンジンのように体積効率η
、が低下しない。
By making the two-phase flow expander of heat pump cycle B a screw type, the pressure difference between the refrigerant inflow side and the outflow side of the expander fluctuates. Even if the installed capacity fluctuates, the volumetric efficiency η remains the same as with other airfoils, centrifugal turbines, and reciprocating engines.
, does not decrease.

したがつて安定した運転が可能となる。また冷媒を減圧
膨脹させる膨脹機の効率を上げるためには、膨脹機の冷
媒流入側と流出側の圧力差が大であることが望ましいが
、逆にこれが大となると圧縮機の圧縮比が大となる恐れ
があり、従ノ来のターボ型、レシプロ型では不利となる
。これに対してこの発明で使用するスクリュー式の二相
流膨脹機は、体積効率η、が他のターボ型、レシプロ型
に比べて高いのできわめて有利である。またボイラーの
高温蒸気により駆動力を得る膨.脹機もスクリュー式で
あり、容積型であるため、条件が変つても効率の変動が
小さいので、ボイラー1の能力が変動したり、膨脹機へ
の蒸気の流入、流出側の圧力差が変動したり、膨脹機内
において液が生じたり、またボイラー能力が小容量で”
あつたり、ボイラー能力が小容量のため低い圧力比しが
得られない場合であつても、効率のよい運転を確保する
ことができる。例えば、戻り管から凝縮器(一次熱交換
器)に流入する負荷側流体の温度が、負荷の変動により
変化したとすると、連通管を経て中温熱交換器(二次熱
交換器)に流入する負荷側流体の温度も変化するため、
蒸気サイクルのスクリュー式膨脹機から中温熱交換器へ
流入する排出蒸気の温度、圧力も変動することになる。
Therefore, stable operation is possible. In addition, in order to increase the efficiency of the expansion machine that expands the refrigerant under reduced pressure, it is desirable that the pressure difference between the refrigerant inflow side and the outflow side of the expansion machine be large, but conversely, if this becomes large, the compression ratio of the compressor will increase. This is a disadvantage for conventional turbo type and reciprocating type. On the other hand, the screw type two-phase flow expander used in the present invention is extremely advantageous because its volumetric efficiency η is higher than other turbo type and reciprocating types. In addition, the boiler's high-temperature steam provides driving force. Since the expander is also a screw type and a positive displacement type, the fluctuation in efficiency is small even when conditions change, so the capacity of boiler 1 will fluctuate, and the pressure difference between the inflow of steam into the expander and the outflow side will fluctuate. liquid may occur in the expander, or the boiler capacity may be small.
Efficient operation can be ensured even in cases where a low pressure ratio cannot be obtained due to excessive heat or the boiler capacity is small. For example, if the temperature of the load-side fluid flowing into the condenser (primary heat exchanger) from the return pipe changes due to load fluctuations, the temperature of the fluid flowing into the medium-temperature heat exchanger (secondary heat exchanger) via the communication pipe changes. Since the temperature of the load side fluid also changes,
The temperature and pressure of the exhaust steam flowing from the screw expander of the steam cycle to the medium temperature heat exchanger will also fluctuate.

また例えば、工場廃熱や都市ゴミ焼却熱を利用するボイ
ラーにおいて廃熱量が変動すると発生蒸気の温度、圧力
も変化する。このような場合は蒸気サイクルのスクリュ
ー式膨脹機の蒸気出口または蒸気入口の蒸気条件が変動
するので、流入、流出側の圧力差に変動を生ずるが容積
型であるため、圧力変動の広い範囲に亘り効率の低下を
さほど来たすことなく、またキャビテーションなどの故
障もなく作動するので安全な運転ができる。
For example, if the amount of waste heat in a boiler that uses factory waste heat or municipal waste incineration heat changes, the temperature and pressure of the generated steam will also change. In such a case, the steam conditions at the steam outlet or steam inlet of the screw expander in the steam cycle will fluctuate, resulting in fluctuations in the pressure difference between the inflow and outflow sides, but since it is a positive displacement type, it can withstand a wide range of pressure fluctuations. It operates without a significant drop in efficiency and without cavitation or other failures, allowing safe operation.

従来の翼型や遠心型の蒸気タービン等の場合はボイラー
から発生する蒸気の温度、圧力が低下するときは性能の
低下が大きいのでリボイラー等の付設して蒸気条件の変
動をカバーしなければならず設備のコスト上昇を余儀な
くされる。更にまた、この発明はヒートポンプサイクル
の圧縮機、二相流膨脹機及び蒸気サイクルの蒸気膨脹機
を何れもスクリュー式としたので機械相互間のマッチン
グがよく負荷変動等に対しても高い性能で対応すること
ができ、給熱システム全体の運転のバランスが良くなつ
て、エネルギー利用効率を向上させることができる。
In the case of conventional airfoil-type or centrifugal steam turbines, performance decreases significantly when the temperature and pressure of the steam generated from the boiler decreases, so a reboiler must be installed to compensate for fluctuations in steam conditions. However, the cost of equipment will inevitably increase. Furthermore, in this invention, the compressor of the heat pump cycle, the two-phase flow expander, and the steam expander of the steam cycle are all screw types, so the machines can be matched well and can respond to load fluctuations with high performance. This improves the operational balance of the entire heat supply system and improves energy usage efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの本発明の方法を実施する給熱設備の系統図
、第2図はこの発明におけるヒートポンプサイクルが従
来技術より良好な性能を示すことを説明するためのモリ
エル線図である。 A・・・・・・熱併給蒸気サイクル、B・・・・・・ヒ
ートポンプサイクル、2・・・・・・スクリュー式膨脹
機、3・・・スクリュー式圧縮機、4・・・・・・スク
リュー式二相流膨脹機。
FIG. 1 is a system diagram of a heat supply facility implementing the method of the present invention, and FIG. 2 is a Mollier diagram for explaining that the heat pump cycle of the present invention exhibits better performance than the prior art. A... Combined heat steam cycle, B... Heat pump cycle, 2... Screw type expander, 3... Screw type compressor, 4... Screw type two-phase flow expansion machine.

Claims (1)

【特許請求の範囲】[Claims] 1 ヒートポンプサイクルと熱併給蒸気サイクルの組合
せからなる給熱設備において、ヒートポンプサイクルの
スクリュー式圧縮機を熱併給蒸気サイクルのスクリュー
式膨脹機により駆動するとともに、前記ヒートポンプサ
イクルの液冷媒が絞り膨脹する際の圧力変化を利用して
スクリュー式二相流膨脹機を回転させ、この回転力によ
つても前記のスクリュー式圧縮機を駆動することを特徴
とするエネルギー有効利用方法。
1. In a heat supply facility consisting of a combination of a heat pump cycle and a cogeneration steam cycle, the screw compressor of the heat pump cycle is driven by the screw expander of the cogeneration steam cycle, and when the liquid refrigerant of the heat pump cycle is throttled and expanded. A method for effectively utilizing energy, characterized in that a screw type two-phase flow expander is rotated using the pressure change, and the screw type compressor is also driven by this rotational force.
JP55056050A 1980-04-26 1980-04-26 Effective energy utilization method in heat supply equipment consisting of a combination of heat pump cycle and cogeneration steam cycle Expired JPS6051622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55056050A JPS6051622B2 (en) 1980-04-26 1980-04-26 Effective energy utilization method in heat supply equipment consisting of a combination of heat pump cycle and cogeneration steam cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55056050A JPS6051622B2 (en) 1980-04-26 1980-04-26 Effective energy utilization method in heat supply equipment consisting of a combination of heat pump cycle and cogeneration steam cycle

Publications (2)

Publication Number Publication Date
JPS56151851A JPS56151851A (en) 1981-11-25
JPS6051622B2 true JPS6051622B2 (en) 1985-11-14

Family

ID=13016249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55056050A Expired JPS6051622B2 (en) 1980-04-26 1980-04-26 Effective energy utilization method in heat supply equipment consisting of a combination of heat pump cycle and cogeneration steam cycle

Country Status (1)

Country Link
JP (1) JPS6051622B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6226631U (en) * 1985-07-29 1987-02-18

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58138963A (en) * 1982-02-10 1983-08-18 株式会社前川製作所 Method of operating boiler-heat simultaneous supply heat pump system
JPS58158469A (en) * 1982-03-16 1983-09-20 植田 洋 Waste-heat recovery cold and hot water instrument

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51144851A (en) * 1975-06-09 1976-12-13 Mitsubishi Heavy Ind Ltd Heated water motor
JPS5436328A (en) * 1977-08-27 1979-03-17 Jirou Sakurai Method of removing internal strain caused by meterial movement in concrete pipe production
JPS5453731A (en) * 1977-10-07 1979-04-27 Sumitomo Heavy Ind Ltd Waste heat recovery unit
JPS54100551A (en) * 1978-01-24 1979-08-08 Mitsubishi Heavy Ind Ltd Refrigerator
JPS54154813A (en) * 1978-04-10 1979-12-06 Hughes Aircraft Co Cooler system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51144851A (en) * 1975-06-09 1976-12-13 Mitsubishi Heavy Ind Ltd Heated water motor
JPS5436328A (en) * 1977-08-27 1979-03-17 Jirou Sakurai Method of removing internal strain caused by meterial movement in concrete pipe production
JPS5453731A (en) * 1977-10-07 1979-04-27 Sumitomo Heavy Ind Ltd Waste heat recovery unit
JPS54100551A (en) * 1978-01-24 1979-08-08 Mitsubishi Heavy Ind Ltd Refrigerator
JPS54154813A (en) * 1978-04-10 1979-12-06 Hughes Aircraft Co Cooler system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6226631U (en) * 1985-07-29 1987-02-18

Also Published As

Publication number Publication date
JPS56151851A (en) 1981-11-25

Similar Documents

Publication Publication Date Title
US4557112A (en) Method and apparatus for converting thermal energy
CN101458000B (en) Heat-driven refrigeration and power generation integration apparatus
CN111022137B (en) Waste heat recovery system and method based on organic Rankine cycle and organic flash cycle
US4093868A (en) Method and system utilizing steam turbine and heat pump
Novotny et al. Absorption power cycles for low‐temperature heat sources using aqueous salt solutions as working fluids
JP6534012B2 (en) Cogeneration system
JP4659601B2 (en) Energy supply system, energy supply method, and energy supply system remodeling method
JP2007023976A (en) Gas turbine generator and gas turbine combined-cycle power generation system
US20180258799A1 (en) A multistage evaporation organic rankine cycle
US4474025A (en) Heat pump
US12044150B2 (en) Plant based upon combined Joule-Brayton and Rankine cycles working with directly coupled reciprocating machines
JP4999992B2 (en) Gas turbine combined power generation system
CN205382966U (en) Recovery waste heat power generation system is united to low -quality waste gas waste liquid
JPH0242102A (en) Method for recovering thermal energy and apparatus thereof
CN110953069A (en) Multi-energy coupling power generation system of gas turbine power station
JPS6051622B2 (en) Effective energy utilization method in heat supply equipment consisting of a combination of heat pump cycle and cogeneration steam cycle
GB2114671A (en) Converting thermal energy into another energy form
CN208749417U (en) Double heat source organic Rankine cycle power generation systems
JPH027412Y2 (en)
KR20140085003A (en) Energy saving system for using waste heat of ship
JP2002161716A (en) Heat recovery rankine cycle system and heat recovery method
JPS6157446B2 (en)
JPH0754211B2 (en) Co-generation system using absorption heat pump cycle
KR100658321B1 (en) Power generation system of heat-absorption type
JP4265714B2 (en) Waste heat absorption refrigerator