JPS6051582A - Molecule washing method - Google Patents

Molecule washing method

Info

Publication number
JPS6051582A
JPS6051582A JP15790583A JP15790583A JPS6051582A JP S6051582 A JPS6051582 A JP S6051582A JP 15790583 A JP15790583 A JP 15790583A JP 15790583 A JP15790583 A JP 15790583A JP S6051582 A JPS6051582 A JP S6051582A
Authority
JP
Japan
Prior art keywords
cleaning
cleaned
water
dirt
surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15790583A
Other languages
Japanese (ja)
Other versions
JPS6348597B2 (en
Inventor
野老山 福三郎
砂山 誠治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TASU GIJUTSU KENKYUSHO KK
Original Assignee
TASU GIJUTSU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TASU GIJUTSU KENKYUSHO KK filed Critical TASU GIJUTSU KENKYUSHO KK
Priority to JP15790583A priority Critical patent/JPS6051582A/en
Publication of JPS6051582A publication Critical patent/JPS6051582A/en
Publication of JPS6348597B2 publication Critical patent/JPS6348597B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 く技術分類・分野〉 17fl示技術は、ガラス、石英等の17製品の加工段
階における各種のミクロン単位、サブミクロン単位の汚
れを洗浄除去乾燥する技術分野に属する。
DETAILED DESCRIPTION OF THE INVENTION Technical Classification/Field> The 17fl technology belongs to the technical field of cleaning and drying various micron and submicron level contaminants during the processing stages of 17 products such as glass and quartz.

〈要旨の解説〉 而して、この発明は、ガラス、石英等の被洗浄物の表面
に付着した各行の複合汚れにλ・jして所定の界面活性
剤を添加して被洗浄物に対りる洗浄を行い、その後すす
ぎ工程を経て、表面に配向吸着した界UrJ活性剤の連
続膜を高分子M!媒剤の洗浄液によって分解除去するよ
うにし続いて洗浄乾燥するようにした分子洗浄方法に関
゛する発明であり、特に、上記高分子触媒剤により界面
活性剤の吸着膜を除去した後水和性溶剤による洗浄工程
を経てそれまでの工程で得た分解生成物を溶解させて更
に、表面の水濡れ性を良くさせ過酸化水素水に還元性電
解質液を添加させて残存微粒子汚れを剥離除去りるよう
にした分子洗浄方法に係る発明である。
<Explanation of the gist> Therefore, the present invention adds a predetermined surfactant to each row of compound stains adhering to the surface of an object to be cleaned, such as glass or quartz, by adding a predetermined surfactant to the surface of the object to be cleaned. A continuous film of the UrJ activator oriented and adsorbed on the surface is removed by polymer M! This invention relates to a molecular cleaning method in which a solvent is decomposed and removed by a cleaning solution, followed by washing and drying, and in particular, after removing a surfactant adsorption film with the polymeric catalyst, hydration Through the cleaning process with a solvent, the decomposition products obtained in the previous processes are dissolved, and the water wettability of the surface is improved, and a reducing electrolyte solution is added to the hydrogen peroxide solution to peel off and remove the remaining particulate dirt. This invention relates to a method for cleaning molecules.

〈従来技術〉 一般に工業製品、例えば、ガラス、石英等による製品に
対する汚れはマクロ的に分けると、無機質、有I!!質
とその複合汚れに大別され、被洗浄物物の製品や材質を
損傷せずこれらの汚れを完全に溶解剥離して除去するこ
とは通常甚だ困り1であり、したがって、従来一般には
被洗浄物の製品、材質や汚れに適した水アルコール等の
各秤溶媒を選定し、選定溶媒に対し界面活性剤、及び、
ビルダー剤を適宜に配合し、更に超音波、液1111拌
、シャワー等の物理的エネルギーを印加(JI用して洗
浄J“る精密化学洗浄法を採用していた。
<Prior art> In general, stains on industrial products such as glass, quartz, etc. can be macroscopically classified into inorganic and organic stains. ! It is usually extremely difficult to completely dissolve and remove these stains without damaging the product or material of the object to be cleaned. Select a solvent such as water alcohol that is suitable for the product, material and stain, and add surfactant and
A precision chemical cleaning method was employed in which a builder agent was appropriately blended and physical energy such as ultrasonic waves, liquid stirring, and showering was applied (cleaning using JI).

例えば、従来の代表的な精密化学洗浄の1例をフローシ
ー1〜で示すと略第1図に示づ通りである。
For example, one example of conventional typical precision chemical cleaning is shown in flow sheet 1 to approximately as shown in FIG.

さりながら、上述従来の精密化学洗浄v1においては一
般通常の汚れ除去効果を格別に向上μしめるべく上述の
如く溶媒に界面活性剤等をしばしば使用していたが、か
かる手段を用いると、洗浄工程において汚れは除去され
るにしても、界面活性現象として親水基と疎水基の分子
474 造を持つ連続膜が被洗浄物表面に配向吸着して
残存され、しかも、往々にして被洗浄品にり=jして1
種のシミ状(乾燥シミ〉に残ってしまう欠点があった。
However, in the conventional precision chemical cleaning v1 mentioned above, surfactants and the like are often used in the solvent as mentioned above in order to significantly improve the general dirt removal effect. Even if the dirt is removed, a continuous film with a molecular structure of hydrophilic and hydrophobic groups remains on the surface of the object to be cleaned due to the surface active phenomenon, and moreover, it often remains on the surface of the object to be cleaned. =j then 1
There was a drawback that the seeds remained in the form of stains (dry stains).

即ち、水、或は、アルコールによるりJぎ工程中のづ゛
りぎ効果にばらつきを生じ、更に、界面活性剤が水洗工
程以降へ持込まれ、これが蓄積されて界面活性剤の膜厚
、及び、その分布にばらつきが発生し、これが上述乾燥
シミの原因となる難点となっており、年来これらが解決
されず、光学産業や電子産業のネックとなっている不具
合があつlこ 。
In other words, the rinsing effect caused by water or alcohol during the rinsing process varies, and furthermore, the surfactant is carried into the water rinsing process and thereafter, and this accumulates, resulting in changes in the surfactant film thickness and This causes variations in its distribution, which is a problem that causes the dry stains mentioned above, and these problems have not been solved for many years, causing problems that have become a bottleneck for the optical and electronic industries.

而して、洗浄液に界面活性剤を用い4゛とも汚れが精密
に除去剥離されるような場合においてlよずリーぎ工程
においてしばしば次のような問題があつlこ 。
However, when a surfactant is used in the cleaning solution to precisely remove and peel off dirt, the following problems often occur in the stripping process.

即ち、純水、或は、蒸溜水や)フルコール、フロン等の
ほとんどの有機溶剤は電気的比抵抗が高いため、t−y
ぎ液中にサブミクロン−数ミクロン微粒子汚れが浮遊状
に存在するようなコロイド現象を呈し、夫々特有の電位
を持つことになる。
In other words, since most organic solvents such as pure water, distilled water, flucoal, and fluorocarbons have high electrical resistivity, t-y
Submicron to several micron particulate contaminants exist in suspension in the sanitizing solution, exhibiting a colloidal phenomenon, each with its own unique potential.

一方、表面の絶縁性が高いガラス、セラミック、半導体
等の被洗浄物の表面が全く清浄であると覆れば、材質の
任類や前工程の加工層厚、或は、環境の湿度等の条件に
応じてそれぞれ固有の界面電位を右することになる。
On the other hand, if the surface of the object to be cleaned, such as glass, ceramic, or semiconductor, which has a highly insulating surface, is completely clean, it may be due to factors such as the type of material, the thickness of the processed layer in the previous process, or the humidity of the environment. Each interface will have its own unique interfacial potential depending on the conditions.

したがって、このような状態では近傍の微粒子汚れの1
部は静電気力によって吸引されて強<イ」首するように
なり、すずき液中でヅリざ動作として揺動4ればする程
、又、すずぎ槽数が多ければ多い程、1部に限ることな
く広面に数多く(4着することになり、すすいでいるの
か汚れず1着させているのか分らないような皮肉な現象
が続く不都合があり、ずずぎ液中の微粒子汚れの数をi
iJ能な限り減らり“ための技術開発が強く望まれてき
た。
Therefore, in such a state, one part of the nearby particulate dirt
The parts are attracted by the electrostatic force and begin to tilt strongly, and the more they oscillate in the tin liquid, and the more tin tanks there are, There is an inconvenience in that the number of particulate stains in the water is not limited, and the ironic phenomenon continues such that it ends up being worn 4 times, and it is difficult to tell whether it is rinsed or unstained. i
There has been a strong desire to develop technology to reduce iJ performance as much as possible.

これに対処するに逆浸透膜を使用したり、精面方式を用
いたりすることも案出されてはいるが、すづぎ精度を高
めるためには実施装置等が複雑で高コストになる不利点
があった。
To deal with this, it has been devised to use a reverse osmosis membrane or a precision method, but in order to improve the precision of rinsing, the implementation equipment is complicated and expensive. There were advantages.

尚、光学レンズ等の中で疎水面をイj−Slる材質の被
洗浄物においては、比抵抗がか4rり低い市水中でのり
すぎ工程でも、しばしば微粒子汚れの静電気的14着が
起る虞があり、これら微粒子汚れの1部は次の乾燥工程
完了時に被洗浄物表面に残存づる結ダどなって次段加工
、組立工程を経る製品としては不良製品につながり製品
分留りに大きく影響するデメリットがあった。
In addition, when cleaning objects such as optical lenses made of materials with hydrophobic surfaces, electrostatic adhesion of particulate dirt often occurs even during the process of overwashing in city water, where the specific resistance is much lower. There is a risk that some of these particulate dirt may remain on the surface of the object to be cleaned when the next drying process is completed, resulting in a defective product and a large increase in product waste. There were some disadvantages that affected it.

更に、廃液処理は、常に公害、処理コストと密接不可分
の関係にあるが、洗浄、すずき工程は特にこの廃液問題
と深く係り、これに1市接つながる界面活性剤、ビルダ
ー剤、アルコール等については後処理が避【プられない
不具合な点があり、又、稼動、非稼動中を問わず、引火
、発火等の保安上の問題、及び、作業環境保全、衛生保
1.′I上の点も無視出来ず、これに係るアルコール、
特に、その使用用についても対処がないがしろに出来な
い煩瑣な点があった。
Furthermore, waste liquid treatment is always closely and inseparably related to pollution and treatment costs, but the cleaning and tinting processes are particularly closely related to this waste liquid problem, and the surfactants, builder agents, alcohol, etc. that are closely related to this problem are There are some defects that cannot be avoided after post-processing, and there are safety problems such as ignition and ignition regardless of whether it is in operation or not, as well as work environment preservation and sanitary maintenance. The point above 'I cannot be ignored, and alcohol related to this,
In particular, there were some troublesome points regarding its use that could not be addressed.

〈発明の目的〉 この発明の目的は−L述従来技術に導ユづく精密化学洗
浄法の問題点を解決すべき技術的課題とし、ガラス等の
比較的硬質の固体表面の汚れを、可及的に精密に除去し
、触媒技術、コロイド技術等を応用付加J″ることによ
って在来態様の精密化学洗浄法によっては実現不可能で
あったサブミクロン単位の複合汚れに対しても確実に洗
?7i機能を発揮するようにして各秤産業における精密
技術利用分野に益する優れた分子洗浄方法を12供せん
とするものである。
<Objective of the Invention> The object of the present invention is to solve the problems of precision chemical cleaning methods derived from the prior art, and to remove dirt from relatively hard solid surfaces such as glass as much as possible. By applying catalytic technology, colloid technology, etc., we can reliably clean complex contaminants in the submicron scale, which was impossible with conventional precision chemical cleaning methods. This paper aims to provide 12 excellent molecular cleaning methods that exhibit ?7i functions and benefit precision technology applications in various weighing industries.

〈発明の構成〉 上述目的に沿い先述特許請求の範囲を要旨とづ゛るこの
発明の構成は、前述問題貞をrI7決り゛るために、複
合汚れのイ」着しているガラス、?j英等の被洗浄物を
先ず有償溶剤の貯溜されている洗浄4f!i 1〜3槽
程度の(aに連続して浸漬揺Ehさμて可溶性の有機質
汚れを除去さゼ、次いで、界面活性剤を溶解させた洗8
812の槽に入れて上記前工程より持ち込まれた右(幾
溶剤を乳化させると共に、有機質、無奢幾貿、及び、そ
の複合汚れを除去し、J′ヅぎ後、次の洗浄液の入って
いる槽において、界面活性剤を有り−る洗浄液により残
存する汚れを表面から除去し、更に、続いて高分子触媒
剤により持ち込まれた界面活性剤の配向吸着機能を失わ
Iしめ該界面活性剤による吸着連続膜を完全に除去させ
て、かつ、コロイド状微粒子の静電気的付着を防止し。
<Structure of the Invention> In accordance with the above-mentioned object and based on the scope of the above-mentioned patent claims, the structure of the present invention is to solve the above-mentioned problem by using a glass coated with complex stains. First, wash the items to be cleaned, such as 4F, where paid solvent is stored! Continuously immerse in 1 to 3 baths (a) to remove soluble organic dirt, then wash in 8 baths with surfactant dissolved.
812, which was brought in from the previous process, is emulsified and organic matter, dirt, and their combined stains are removed. After washing, the next cleaning solution is added. In a tank containing a surfactant, remaining dirt is removed from the surface using a cleaning solution containing a surfactant, and then a polymeric catalyst is used to remove the oriented adsorption function of the surfactant brought in. Completely removes the continuous adsorption film and prevents electrostatic adhesion of colloidal particles.

続いて、水和性溶剤の洗浄液の貯溜される4ffに浸漬
させて被洗浄物の親水面、或いは、疎水面共に水濡れ性
を確保できるようにし、ずずぎ後に還元性電WI貿液と
過酸化水素水と純水の人゛っているInIに浸漬され、
且つ、この液の比抵抗を5X103Ω−、c+n以下ど
し、又、比抵抗5X 103Q −cm以下の清浄な水
とによって、残存した微粒子馬れを最終的に表面から剥
離除去し、アルコール蒸気等の水和性蒸気によって、R
柊的に洗浄乾燥Jることにより、又、上記各工程に超音
波振動を印加して洗浄機能を更に活性化し、サブミクロ
ン単位の微小な汚れさえも除去することが出来るように
した技術的手段を講じたものである。
Subsequently, the object to be cleaned is immersed in 4FF in which a cleaning solution of a hydratable solvent is stored to ensure water wettability on both the hydrophilic and hydrophobic surfaces of the object. Immersed in InI containing hydrogen peroxide and pure water,
In addition, the specific resistance of this liquid is reduced to 5X103Ω-, c+n or less, and the remaining fine particles are finally peeled off from the surface using clean water with a specific resistance of 5X103Q-cm or less, and alcohol vapor, etc. By the hydrating vapor of R
Technological means that allows cleaning and drying to be carried out in a natural manner, and by applying ultrasonic vibrations to each of the above steps to further activate the cleaning function, making it possible to remove even minute dirt on a submicron scale. This study included the following.

〈実施例〉 次にこの発明の実施例を第2図以下の図面を参照して説
明すれば以下の通りである。尚、被洗浄物についてはガ
ラス、水晶、石英等で、該種被洗浄物に対する実施態様
はfdl磨接の、例えば、膜付、或いは、酸洗いエツチ
ング等の二次加工の前、及び、膜付後の分子洗浄、及び
乾燥である。
<Example> Next, an example of the present invention will be described below with reference to the drawings from FIG. 2 onwards. The object to be cleaned is glass, crystal, quartz, etc., and the embodiment for the object to be cleaned is FDL polishing, for example, before secondary processing such as attaching a film or pickling and etching, and After application, molecular cleaning and drying are performed.

第2〜6図に示ず実施例において、aからjまでは洗浄
工程であり、その後のjは乾燥1稈である。
In the examples not shown in FIGS. 2 to 6, steps a to j are washing steps, and the subsequent step j is one dry culm.

そして、各aからjまでは各工程を表わJと共に各被洗
浄物に対する槽を表わしているものとする。
It is assumed that a to j represent each process, and together with J represent a tank for each object to be cleaned.

第2図に示す実施例にd3いては、上記被洗浄物がピッ
チ、松ヤニ、その他樹脂系の汚れ、或いは、加工途中の
多量の油性汚れを有づ”るものに対J゛る洗浄乾燥の態
様である。
In the embodiment shown in FIG. 2, d3 is a cleaning and drying process for the object to be cleaned which has pitch, pine tar, other resin stains, or a large amount of oil stains during processing. This is the mode.

而して、該第2図に示ず実施例において、第1工程のa
では所定の例えば、トリクロールエチレン等の右(幾溶
剤が槽内に貯溜されており、該有機溶剤に対してガラス
等の被洗浄物を適宜浸漬させ、場合によっては揺動させ
て洗浄に供−46゜当該第1工程aにおいては、該有機
溶剤は濾過器1との間に循環され、被洗浄物の可溶11
の右磯物質汚れを除去剥離する。
Therefore, in the embodiment not shown in FIG.
For example, a predetermined solvent such as trichlorethylene is stored in a tank, and the object to be cleaned, such as glass, is appropriately immersed in the organic solvent and, in some cases, shaken for cleaning. -46° In the first step a, the organic solvent is circulated between the filter 1 and the soluble 11
The right stone material removes dirt and peels.

而して、該第1工程で洗浄作用を受けた被洗浄物は続い
て第2工程のむに移されて該第21程の洗浄液の作用に
より第1工程から持し込まれた有機溶剤は乳化Jると共
に有機質、無磯負、及び、その混合体である複合汚れが
除去される。
The object to be cleaned that has been subjected to the cleaning action in the first step is then transferred to the second step, and the organic solvent brought in from the first step is removed by the action of the cleaning liquid in step 21. As it emulsifies, organic matter, dirt, and composite dirt, which is a mixture thereof, are removed.

而して、該第2王程1)における洗か液は界面活性剤に
ショ糖脂肪酸エステルをビルダー剤にクエン酸3ナトリ
ウム2水和物を混合さUで純水を添加して作製されたも
のである。
Therefore, the washing liquid in the second process 1) was prepared by mixing sucrose fatty acid ester as a surfactant and trisodium citrate dihydrate as a builder agent, and adding pure water in U. It is something.

次いで、第3工程0にお1プる純水内に第2工程すで有
機質、無機質、及び、その複合汚れを除去された被洗浄
物が搬入されて′?l−aぎ作用に供する。
Next, the object to be cleaned, from which organic matter, inorganic matter, and their combined stains have been removed in the second step, is carried into the pure water that is poured into the third step 0. It is subjected to l-agi action.

尚、該ずずぎ水の純水にあっては、適宜の硬水軟化剤を
使用すれば純水に代えて、市水でもよい。
Incidentally, the pure water of Suzugi water may be city water instead of pure water as long as an appropriate water softener is used.

又、被洗浄物の汚れの状態によって(、上、上記第3工
程Cを第2工程すに変更しても良いし、又、該第3工程
のCを省略しても良い。
Further, depending on the state of dirt on the object to be cleaned, the third step C may be changed to the second step, or the third step C may be omitted.

次ぎにすづ゛ぎ作用を受けた被洗浄物は、第4工程のd
に移されて上記第2工程のしの洗浄液と同様の洗浄液の
洗浄作用を受け、〜それまでに残存している有機質、無
癲質、及び、その複合汚れを被洗浄物の表面から除去さ
れ、続いて再び第5工程のCで純水によるすずぎ作用を
再瓜受ける。
Next, the items to be cleaned that have been subjected to the rinsing action are processed in step d of the fourth step.
The object is then transferred to the cleaning agent and subjected to the cleaning action of the same cleaning agent as the cleaning agent in the second step, until the remaining organic matter, non-leprosy, and their combined stains are removed from the surface of the object to be cleaned. Then, in step C of the fifth step, it is subjected to the tinting action of pure water again.

次いで、例えば、β−フルク1〜フラノシグーピを純水
に間合させた高分子触媒剤に被洗浄物を浸漬させC該被
洗浄物表面に微mに配向吸ンiしている上記ショ糖脂肪
酸エステルを短12r間でその親水基において分解する
ことにより界面活性剤としての配向吸竹倣能を失わせ、
1結果的に界面挿性剤吸着膜を完全に除去J゛る。
Next, for example, the object to be cleaned is immersed in a polymeric catalyst prepared by mixing β-fulc 1 to furanosigup in pure water, and the above sucrose fatty acid adsorbed in a finely oriented manner onto the surface of the object to be cleaned. By decomposing the ester at its hydrophilic group in a short 12r period, it loses its ability to imitate orientation sucking as a surfactant,
1. As a result, the interfacial interpolant-adsorbed film is completely removed.

しかも、当該第6エ程のeまでに先)ホしたような従来
技術に基づく被洗浄物にλ・14る一4jfのシミ状の
配向吸着した連続mが除去されることになる。
Moreover, by e of the sixth step, the continuous adsorbed oriented stains of λ·14−4jf on the object to be cleaned based on the prior art described in (e) above are removed.

さりながら、当該第6エ程eにJ3いては、界面活性剤
吸竹股が完全に除去されるために被洗浄物の地肌(気質
)が露早されることになり、このままでは逆には従来問
題点であつノこところのコロイド状微粒子汚れの静電気
的再付着の危険性、が出てくることになる。
However, in the sixth step e, J3, the surfactant suction is completely removed, so the skin (temperament) of the object to be cleaned becomes dewy. Another problem that has arisen in the past is the risk of electrostatic redeposition of colloidal particulate dirt.

而して、当該第61程eにおいI、分解されICショ糖
脂肪酸エステルのショ糖部分は水に溶解づるが、脂肪部
分は水に対して非可溶性であり、当該第6エ程0におけ
る洗浄液の比抵抗(よ低いために表面が親水面の場合、
該脂肪分は静電気的に再付着することは無いものの、逆
に表面が疎水面の場合は水を介して微粒子状になって付
層ツることになる。
Therefore, in the 61st step e, the sucrose part of the decomposed IC sucrose fatty acid ester dissolves in water, but the fat part is insoluble in water, and the cleaning solution in the 6th step 0 specific resistance (if the surface is hydrophilic because it is very low,
Although the fat does not re-deposit electrostatically, on the other hand, if the surface is hydrophobic, it forms a layer through the water in the form of fine particles.

そこぐ、該第61程Cで洗浄された被洗浄物は、続いて
第7エ程のfに移されてエタノール、ブタノール、及び
、市水との混合溶液に浸漬され、上記微量の脂肪部分は
溶解される。
Thereafter, the object to be cleaned washed in the 61st step C is then transferred to the 7th step f, where it is immersed in a mixed solution of ethanol, butanol, and city water to remove the trace amount of fat. is dissolved.

当該第7エ程洗浄槽に貯溜される洗浄液は、被洗浄物に
対する水漏れ性を保証するために、該第7]ニ程fに移
される被洗浄物が親水面、或いは、疎水面、又は両面を
右づる状態で浸漬されても当該洗浄液に浸漬することに
J:り以後の工程での水漏れ性を保証されることが出来
る。
The cleaning liquid stored in the seventh step cleaning tank is used to ensure that the object to be cleaned does not leak to the object to be cleaned. Even if it is immersed with both sides turned to the right, water leakage in subsequent steps can be guaranteed by immersing it in the cleaning liquid.

尚、前工程の第6エ程において、前記β−フルクトフラ
ノシダーゼを用いるかわりにリパーゼを使用ずれば疎水
基である脂肪′酸を分解して水に対して可溶性になるた
めに第7エ稈rにおいては、上記エタノール、ブタノー
ル、市水の混合洗浄液を用いる必要はないものの、疎水
面の水漏れ性は低下°する。
In addition, if lipase is used instead of the β-fructofuranosidase in the sixth step of the previous step, the fatty acids, which are hydrophobic groups, will be decomposed and the seventh step will be made soluble in water. Although it is not necessary to use the above-mentioned mixed cleaning solution of ethanol, butanol, and city water for the culm, the water leakage of the hydrophobic surface is reduced.

したがって、いづれにしても第7エ程[で上記エタノー
ル、ブタノール市水の混合洗浄液を使用Jることが極め
て有効である。
Therefore, in any case, it is extremely effective to use the above-mentioned mixed cleaning solution of ethanol and butanol city water in the seventh step.

而して、第8工程のQのずづ゛ぎ工程に被洗浄物は移さ
れるが、純水を用いてずJざり゛る場合は比抵抗が高い
が、該純水中の微粒子にJ:つで生ずる汚れの再付着は
多少あったどして−し次の工程で(イ[実に除去される
Therefore, the object to be cleaned is transferred to the step-by-step step Q of the 8th step, but if pure water is not used and J is not used, the resistivity is high, but the fine particles in the pure water are Although there may be some re-adhesion of the dirt caused by the process, it will be removed in the next step (A).

次に第81稈Qでずづぎ作用を受(〕た被洗浄物が第9
工fi!11に移され、洗浄水に浸される。
Next, the object to be cleaned that has been subjected to the pulsating action in the 81st culm Q is transferred to the 9th culm Q.
Engineering fi! 11 and soaked in wash water.

該第91稈11においては、純水に過酸化水素水と極く
微量の水酸化ナトリウムを加えた洗浄液にされており、
この二つの要素が持つ酸化、還元の作用と、前記第7エ
程の水和性溶剤の11う2作用とにより、第8工程まで
に除去しきれなかった汚れ(主として微粒子複合汚れ)
及び、静電気的に再f1着した微粒子汚れを剥頗1する
効果がある。
In the 91st culm 11, the cleaning liquid is made by adding hydrogen peroxide and a very small amount of sodium hydroxide to pure water,
Due to the oxidation and reduction effects of these two elements and the 11-2 effects of the hydrating solvent in the 7th step, dirt that could not be removed by the 8th step (mainly particulate composite dirt)
It also has the effect of peeling off particulate dirt that has been electrostatically deposited again.

したがって、超音波付与(Ll−8)どの相乗的効果に
よりサブミクロン微粒子も表面からfJJ岨されること
になる。
Therefore, due to the synergistic effect of ultrasonic application (Ll-8), even submicron particles are removed from the surface.

又、該洗浄液の比抵抗を小さくづる微mの水酸化ナトリ
ウムの機能によって微粒子汚゛れの静電気的再付着は抑
制され、この現象は104Ω−cm程度からその傾向が
現れる。
Furthermore, the electrostatic redeposition of particulate contamination is suppressed by the function of a minute amount of sodium hydroxide which reduces the specific resistance of the cleaning liquid, and this tendency appears from about 10@4 Ω-cm onwards.

而して、水酸化ナトリウムは444めて微量であるので
、ナトリウムm度も低くなり、実害は極めて少ないが、
半導体に対しては好ましくない。
Therefore, since the amount of sodium hydroxide is very small, the degree of sodium is also low, and the actual damage is extremely small.
Unfavorable for semiconductors.

尚、am−とは言うものの、ナトリウムを避けたい場合
には上記水酸化ナトリウムの代りにアンモニア水を用い
ても良いが、この場合、ノ7ンモニアが臭気を発生し、
毒性を有しているので洗浄液管理には問題がある。
In addition, although it is called am-, if you want to avoid sodium, ammonia water may be used instead of the above sodium hydroxide, but in this case, ammonia generates an odor,
Since it is toxic, cleaning solution management is problematic.

そして、当該第9工程1)にJjLノる洗浄液は被洗浄
物の気質が親水性の場合、サブミクロンクラスの微粒子
除去に対して特に効果的であり、超音波付与(tJ−3
)は相乗的効果′を発揮する。
In the ninth step 1), the JJL cleaning solution is particularly effective for removing submicron class particles when the object to be cleaned has a hydrophilic temperament, and ultrasonic application (tJ-3
) exerts a synergistic effect.

このにうにして第91程11でサブミクロン微粒子を表
面から除去された被洗浄物は次の第10工程の1に移さ
れ、純水に対して微mの還元性強電解質(水酸化ナトリ
ウム)を添加された洗浄液中に浸漬され、気質が疎水性
の場合のイ」着微粒子を更に有効的に除去し、この場合
、超音波(J’Ei(LJ・S)との協動によってより
効果的に除去される。
In this way, the object to be cleaned from which submicron fine particles have been removed from the surface in step 11 of the 91st step is transferred to step 1 of the next 10th step. ) is added to the cleaning solution to more effectively remove the adhering fine particles when the temperament is hydrophobic. effectively removed.

尚、この場合、当該第10工程1はその前工程の第9工
程11と共に作用することが前提条件となっている。
In this case, it is a prerequisite that the tenth step 1 acts together with the ninth step 11, which is the preceding step.

したがって、当該第101稈iにJJいても前]ニ稈同
様にアンモニアの使用は可Oしである。
Therefore, even if JJ is present in the 101st culm i, ammonia can be used in the same manner as in the second culm.

尚、この工程は前工程と同様に最終洗浄工程である。Note that this step is a final cleaning step similar to the previous step.

尚、上述各工程a−iの洗浄においては、述べなかった
が、各々超音波(LJ−3)をイ・j!jすることによ
り相乗的に効果的に作用1ノることは勿論であり、又、
各洗浄液、及び、ずずざ水は&+’a A器1、精密濾
過器1′により循環使用されることも勿論である。
Although not mentioned in the cleaning steps a-i above, ultrasonic waves (LJ-3) were applied to each step a-i! Of course, by doing so, they act synergistically and effectively, and also,
It goes without saying that each cleaning solution and the water are circulated through the &+'a A unit 1 and the precision filter 1'.

上述の如くして、全洗浄工程を終了した被洗浄物は、次
に第11工程としてのアルコール蒸気、洗浄乾燥工程j
に移され、アルコール蒸気によるリンス、及び、乾燥を
される。
The object to be cleaned that has completed all the cleaning steps as described above is then subjected to an alcohol vapor washing and drying step as the 11th step.
, rinsed with alcohol vapor, and dried.

当該アルコール蒸気洗浄乾燥工程にJJいては、回収分
離のためのアルコール回収装置が付属装置として設けら
れ、当然のことながら、リーブミクロンの固体微粒子が
侵入するのを1lfl止づるための構造が採用される。
In the alcohol vapor cleaning and drying process, an alcohol recovery device for recovery and separation is installed as an accessory device, and as a matter of course, a structure is adopted to prevent the intrusion of solid fine particles of Liebmicron. Ru.

又、漏洩防止構造どされ、アルコール蒸気に対する防火
上の問題から間接加熱方式をとり、自動消火装置を有し
ている。
In addition, it has a leak-proof structure, uses an indirect heating system to prevent fires from alcohol vapor, and is equipped with an automatic fire extinguishing system.

尚、又、前記第2工程b、第41程d、第61程eに使
用した界面活性剤、ビルダー剤、高分子触媒剤等は何れ
も食品添加物であって低公害であり、且つ、前記界面活
性剤の分解生成物も低公害であって、アルコール使用m
は最小限に規制され、発火、引火の危険対策に万全を明
したしのであるので、廃液処理問題や保安上の問題も概
4a解決される。
Furthermore, the surfactant, builder agent, polymeric catalyst agent, etc. used in the second step b, 41st step d, and 61st step e are all food additives and have low pollution, and The decomposition products of the surfactants are also low-pollution and do not require the use of alcohol.
Since the amount of water is regulated to a minimum and all possible measures have been taken to prevent the risk of ignition and ignition, the problem of waste liquid treatment and safety issues can be solved in general.

上述実施例は、被洗浄物がピッチ、松A7二、その他の
樹脂系汚れや油性汚れを有するムのに対する洗浄乾燥で
あるが、次に第3図に示ツー実施例は被洗浄物が潜傷が
出易く、水に融【ノ易いH貿からできた被洗浄物、例え
ば、硝fit!Lak等に対する分子洗浄、及び、乾燥
の実施態様であり、第2工程のむと第3工程のd、及び
、洗浄最終]ニ稈の第9工程iにおいて、洗浄液にアル
コールを添加して洗浄液の作用をソ71−にし、かつ、
浸漬時間J3よび超音波照剣時間を短縮J“ることにに
つて、潜傷の発生を抑制した態様である。
The above-mentioned embodiment is for washing and drying the object to be cleaned which has pitch, pine A72, and other resin-based stains or oil-based stains, but in the second embodiment shown in FIG. Items to be cleaned made from materials that are easily scratched and soluble in water, such as nitrous! This is an embodiment of molecular cleaning and drying for Lak, etc., after the second step, the third step d, and the final cleaning] In the ninth step i of the double culm, alcohol is added to the cleaning solution to remove the action of the cleaning solution. 71-, and
This is an embodiment in which the occurrence of latent scratches is suppressed by shortening the immersion time J3 and the ultrasonic irradiation time.

又、油性汚れが極めて軽微な場合の実施例としては、上
述2つの実施例の第1工程aを省略した第4図に示で実
施例があり、潜傷発生に対りる抑制対策として第1工程
すと第2工程d1及σ、洗浄工程の最終工程の第8工程
iにアルコールを添加した態様が採用可能である。
Further, as an embodiment in which oil stains are extremely slight, there is an embodiment shown in FIG. 4 in which the first step a of the two embodiments described above is omitted, and as a measure to suppress the occurrence of latent scratches, the embodiment shown in FIG. After one step, it is possible to adopt an embodiment in which alcohol is added to the second step d1 and σ and the eighth step i which is the final step of the cleaning step.

又、油性汚れが軽微であり、かつ、指紋もイ」看してい
ない場合の分子洗浄工程の実施例としては、第5図に示
J様な実施例が採用可能であり、2図に示した実施例の
第21程b1第4工程dが、又、第6エ程eが純水によ
る一jt tぎ工程と几に大幅に省略され、実質的に第
1工程aのみが前段の洗浄工程として働き、第2■稈に
はエタノール、ブタノール、市水を混合した洗浄液を用
いて表面の水漏れ性を確保し、第3■程すにおいて、水
ですづぎ以降の工程において微粒子汚れをJJ)除して
再付着を防止づるJ:うにしている。
In addition, as an example of the molecular cleaning process when oily stains are slight and fingerprints are not carefully monitored, an example like J shown in Figure 5 can be adopted, and an example shown in Figure 2 can be adopted. The 21st step b1 and the 4th step d in the example shown in FIG. In the second step, a cleaning solution containing ethanol, butanol, and city water is used to ensure that the surface does not leak, and in the third step, the culm is rinsed with water to remove particulate dirt in the subsequent steps. JJ) to prevent re-adhesion.

又、第6図に示す実施例は、被洗浄物に固体微粒子汚れ
が付いている場合だ1ノである洗浄プロセスの実施例で
あり、実質的にr工程がら第1工程としている。
Further, the embodiment shown in FIG. 6 is an embodiment of a cleaning process in which the cleaning process is carried out in the case where the object to be cleaned has solid particulate dirt, and substantially the r step is the first step.

尚、この発明の実施態様は上述各実施例に限るものでな
いことは勿論であり、種々の態様が採用可OLである。
It goes without saying that the embodiments of the present invention are not limited to the above-mentioned embodiments, and various embodiments can be adopted.

〈発明の効果〉 以上この発明にJ:れば、基本的に6機溶剤にJ:って
被洗浄物に対する油性汚れが除去された後、界面活性剤
によ・ンて更に洗浄精度を1!1め、ぞの結果被洗浄物
表面に配向吸着し1′:界面活性剤の連続膜を高分子触
媒剤の洗浄液によって分解除去処理し、続いて、エタノ
ール、ブタノール、及び、市水等の水和性溶剤に浸漬J
−ることによって分解生酸物質を溶Wiすることは出来
、更に、−ぞれ以降の工程での被洗浄物表面の水濡れ性
を確保づることが出来、したがって、イの後の洗浄にJ
、つ−Cリ−1ミクロン単位の微粒子汚れを除去するこ
とが出)1(る優れた効果が奏される。
<Effects of the Invention> According to the present invention, basically, after the oily stains on the object to be cleaned are removed using a solvent, cleaning accuracy can be further improved by applying a surfactant. !1) As a result, the surface of the object to be cleaned is oriented and adsorbed. 1': The continuous film of surfactant is decomposed and removed using a polymeric catalyst cleaning solution, and then ethanol, butanol, city water, etc. Immersed in a hydrating solvent
- By doing so, it is possible to dissolve the degrading acid substances, and furthermore, it is possible to ensure the water wettability of the surface of the object to be cleaned in the subsequent steps.
The excellent effect of removing particulate dirt on the order of 1 micron is achieved.

更に、該洗浄液浸漬による洗浄後、水づずぎを経て更に
、過酸化水素水に還元1り電II?Y’i液を添加した
純水どの混合洗浄液中に被洗浄物を浸漬させて洗浄ヅる
ようにし、かつ、その比抵抗を5×1030−cm以下
とし、同じく、比抵抗5x103 Ω−cm以下の可及
的清浄な水とによって残存した微粒子汚れを被洗浄物の
表面から完全に除去−Jることが出来、疎水面、親水面
に付着しているミ或いは、両面が共存している而に付着
している微才9子汚れを完全に除去できる優れた効果が
奏される。
Furthermore, after cleaning by immersion in the cleaning solution, it is further diluted with water and then reduced to hydrogen peroxide solution. The object to be cleaned is immersed in a mixed cleaning solution such as pure water to which Y'i solution has been added, and the specific resistance thereof is 5 x 1030-cm or less, and the specific resistance is also 5 x 103 Ω-cm or less. The remaining particulate dirt can be completely removed from the surface of the object to be cleaned by using as clean water as possible, and dirt attached to the hydrophobic surface, hydrophilic surface, or both surfaces coexist. It has an excellent effect of completely removing the microscopic stains adhering to the surface.

従来、10′Ω−cm以上の洗浄液でしかなかった洗浄
液中での洗浄はサブミクロン単位の微粒子汚れを除去で
きなかったのに対してこの発明ににれば、完全に該ナブ
ミクロンl!I!I哀の微粒子?られも除去することが
出来るので、カメラや望j屯鏡、顕微鏡等を生産する精
密機械産業、或いは、精密電子回路を必要とづるエレク
1〜ロニクス産業において、絶対に必要どされる超rr
j畜洗浄、分−r洗浄に対して完全に近い汚れ除去洗浄
が行える優れた効果が奏され、各粘畜産業に貞献するこ
とが出来る効果がある。−
Conventionally, cleaning in a cleaning solution of 10' Ω-cm or more could not remove submicron particle dirt, but with the present invention, the nanoparticle dirt can be completely removed. I! Particles of sadness? It is absolutely necessary in the precision machinery industry that produces cameras, telescopes, microscopes, etc., and in the electronics industry that requires precision electronic circuits.
Compared to J livestock cleaning and minute-r cleaning, this method has an excellent effect of almost completely removing stains, and has the effect of being able to be dedicated to each type of livestock industry. −

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来技術に基づく精密洗浄の説明フローシート
図、第2〜6図はこの発明の各実施例の説明フローシー
1〜図である。 手続補正書(〔」発) 特許庁長官若杉和夫 殿 l 事件の表示 昭和58年特 許願第157905号 2、発明の名称 分子洗浄方法 3、 補正をする者 事件との関係 特許出願人 4、 代 理 人 〒105 06 弁理士(,7585) 富 1)幸 春5、補正
命令の日付 (自 発)
FIG. 1 is an explanatory flow sheet diagram of precision cleaning based on the prior art, and FIGS. 2 to 6 are explanatory flow sheets 1 to 1 of each embodiment of the present invention. Procedural amendment (from []) Kazuo Wakasugi, Commissioner of the Japan Patent Office Indication of the case 1982 Patent Application No. 157905 2 Title of the invention Molecular cleaning method 3 Relationship with the case of the person making the amendment Patent applicant 4, representative Attorney 〒105 06 Patent Attorney (,7585) Tomi 1) Yukiharu 5, Date of amendment order (voluntary)

Claims (1)

【特許請求の範囲】[Claims] 溶媒に界面活性剤を添加して被洗浄物に対J°る洗浄を
行い次いでJ゛すぎを行つノζ後高分子触媒剤の洗浄液
で処理して法被洗浄物の表面に配向吸容した界面活性剤
の膜を分解除去り″るようにした洗・浮力法において、
上記高分子触媒剤にJ、る被洗浄物を水和性溶剤に浸漬
して分解生成物質を溶解すると共に水濡れ性を確保し、
次いで水によるt −Jぎ後、過酸化水素水に還元性電
解質液を添加して清浄な水とによって残存した微粒子汚
れを被洗浄物の表面から除去し、その後無塵水和性蒸気
によってずずぎ乾燥を行うようにしたことを特徴とする
分子洗浄方法。
Add a surfactant to the solvent and wash the object for a while, then rinse it, and then treat with a polymeric catalyst cleaning solution to absorb the oriented material on the surface of the object to be washed. In the washing/buoyancy method, which decomposes and removes the surfactant film,
immersing the object to be cleaned in the polymer catalyst in a hydratable solvent to dissolve decomposition products and ensure water wettability;
Next, after t-J with water, a reducing electrolyte solution is added to the hydrogen peroxide solution, and the remaining particulate dirt is removed from the surface of the object with clean water, and then it is washed with dust-free hydrating steam. A molecular cleaning method characterized by performing drying.
JP15790583A 1983-08-31 1983-08-31 Molecule washing method Granted JPS6051582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15790583A JPS6051582A (en) 1983-08-31 1983-08-31 Molecule washing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15790583A JPS6051582A (en) 1983-08-31 1983-08-31 Molecule washing method

Publications (2)

Publication Number Publication Date
JPS6051582A true JPS6051582A (en) 1985-03-23
JPS6348597B2 JPS6348597B2 (en) 1988-09-29

Family

ID=15659998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15790583A Granted JPS6051582A (en) 1983-08-31 1983-08-31 Molecule washing method

Country Status (1)

Country Link
JP (1) JPS6051582A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59173104A (en) * 1983-02-28 1984-10-01 アライド・コ−ポレ−シヨン Water removing composition of solvent

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59173104A (en) * 1983-02-28 1984-10-01 アライド・コ−ポレ−シヨン Water removing composition of solvent

Also Published As

Publication number Publication date
JPS6348597B2 (en) 1988-09-29

Similar Documents

Publication Publication Date Title
US5977040A (en) Cleaning compositions
US4711256A (en) Method and apparatus for removal of small particles from a surface
KR950010446B1 (en) Cleaning method
JPH09111483A (en) Degreasing washing fluid and method for degreasing washing
JPS6051582A (en) Molecule washing method
JP2007214412A (en) Semiconductor substrate cleaning method
JP2002131889A (en) Cleaning method and cleaning device of quartz substrate for photomask
JPS6092621A (en) Precision washing method
US20070163624A1 (en) Method for cleaning of articles
JP3189288B2 (en) Cleaning method
JPH06132267A (en) Foreign matter adhesion preventive solution, and cleaning method using it, and cleaner
JPH0684866A (en) Prevention of adhesion of foreign matters
JPH06220671A (en) Oil deposit cleaning device
JPH09263791A (en) Cleaning method
CN117327543A (en) Probe card cleaning solution
JP3454533B2 (en) Cleaning method
JPH07216569A (en) Cleaning method
Reinhardt et al. An automated approach to the ever increasing demand of mask cleanliness
JPH06232105A (en) Washing liquid and washing method
KR20090021429A (en) Cleaning solution
JPH06269748A (en) Washer
CN106094449A (en) Dry plate abluent and dry plate cleaning method
JPH07148472A (en) Washing method
JP2003176500A (en) Cleanser for removing stain
JPH0971799A (en) Cleaner for optical component