JPS6051550B2 - Surface coating method - Google Patents

Surface coating method

Info

Publication number
JPS6051550B2
JPS6051550B2 JP56172836A JP17283681A JPS6051550B2 JP S6051550 B2 JPS6051550 B2 JP S6051550B2 JP 56172836 A JP56172836 A JP 56172836A JP 17283681 A JP17283681 A JP 17283681A JP S6051550 B2 JPS6051550 B2 JP S6051550B2
Authority
JP
Japan
Prior art keywords
wire
electrode
electrode wire
coating layer
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56172836A
Other languages
Japanese (ja)
Other versions
JPS5877564A (en
Inventor
潔 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP56172836A priority Critical patent/JPS6051550B2/en
Publication of JPS5877564A publication Critical patent/JPS5877564A/en
Publication of JPS6051550B2 publication Critical patent/JPS6051550B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Coating By Spraying Or Casting (AREA)

Description

【発明の詳細な説明】 本発明は、対向する電極間の線電極に大電流を流し、い
わゆる放電爆発をさせて所定の加工面に被覆層を形成し
または拡散した表面層を形成する方法であり、特に線電
極用の線として、希土類合金を用いる被覆方法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention is a method of forming a coating layer or a diffused surface layer on a predetermined machined surface by passing a large current through a wire electrode between opposing electrodes and causing a so-called discharge explosion. In particular, it relates to a coating method using a rare earth alloy as a wire for a wire electrode.

従来、線爆発による被覆層を所定の処理表面に形成する
方法、例えば、シリンダー内面に硬質金属を被覆する方
法として、タングステン、チタン、モリブデンなどの金
属またはこれらの炭化物をもつて線とし、シリンダー内
面の所定の個所に一定長の対向間隙の電極を設けて該電
極間に配装し、この両極間に瞬時に大電流を流して、い
わゆる放電爆発させて、噴出する溶解微粒子をシリンダ
ー内面の所定の個所に衝突溶着させて被覆硬質金属層を
形成しまたは拡散した表面層を形成させる方法が公知で
ある。
Conventionally, a method of forming a coating layer by wire explosion on a predetermined treated surface, for example, a method of coating a hard metal on the inner surface of a cylinder, is to make a wire with metals such as tungsten, titanium, molybdenum, or their carbides, and coat the inner surface of the cylinder with a wire. Electrodes with opposing gaps of a certain length are provided at predetermined locations of the cylinder, and a large current is instantaneously passed between the electrodes to cause a so-called discharge explosion, and the ejected dissolved particles are placed at a predetermined location on the inner surface of the cylinder. It is known to form a covering hard metal layer by impact welding or to form a diffused surface layer.

また、導電性と磁気性を生ずる銅、コバルトの合金被覆
も知られている。このような放電爆発によつて、特定の
金属を溶射する方法は、適用材料および適用条件によつ
て、それぞれ適当した要件下で行う必要がある。いま、
溶着した金属被覆または金属拡散をした層が、被溶着層
よりも、耐熱性の向上、摩耗抵抗性の強化、耐食性の増
加、応力腐食抵抗性の改良、硬度の向上、弾性度の増加
を得ることがて・き、必要な触媒体としての活性化付与
とか、放電容易性を付与とかが求められる場合にも達成
することができ、これらのうちの一部または大部におい
て、顕著に効果を示すことができれば、すばらしいこと
であるとの期待が生ずる。しかしなが;ら、在来の提案
によつては、容易に達成できるとはいえない。本発明は
、前記の現状にかんがみ、これらの期待について達成が
でき、現実に、きわめて有効に利用てきる方法の提供を
目的とする。
Additionally, alloy coatings of copper and cobalt that provide conductivity and magnetism are also known. The method of thermally spraying a specific metal using such discharge explosion must be carried out under appropriate requirements depending on the applied material and application conditions. now,
The deposited metal coating or metal-diffused layer has improved heat resistance, enhanced wear resistance, increased corrosion resistance, improved stress corrosion resistance, increased hardness, and increased elasticity over the welded layer. In some cases, it can also be achieved in cases where activation of the necessary catalyst or provision of ease of discharge is required, and in some or most of these, it is possible to achieve remarkable effects. If we can demonstrate this, there will be expectations that it will be a wonderful thing. However, it cannot be said that this goal can be easily achieved using conventional proposals. In view of the above-mentioned current situation, the present invention aims to provide a method that can meet these expectations and can be used very effectively in practice.

本発明は、この目的の達成のために、電極線として用い
る金属に対して、希土類合金、希土類合金に希土類酸化
物を添加含有したもの、これらの放電爆発による被覆層
または拡散層の形成、さらにこれらの層形成時の雰囲気
活性制御をして、より効果的に行うものである。このよ
うな溶着金属と希土類元素に基づく合金、その線の溶射
層の形成については、十分な提案がなされていない。次
に本発明の概要を説明する。
To achieve this object, the present invention uses rare earth alloys, rare earth alloys containing rare earth oxides, formation of coating layers or diffusion layers by discharge explosion of metals used as electrode wires, and The atmosphere activity during the formation of these layers is controlled to make it more effective. No sufficient proposals have been made regarding the formation of such alloys based on weld metals and rare earth elements, and the formation of thermally sprayed layers of such wires. Next, an outline of the present invention will be explained.

希土類元素としては、丘種を挙げることができる。本発
明は、このうち、特にスカンジウム、イットリウム、ラ
ンタン、セリウム、プラセオジム、ネオジム、サマリウ
ムおよびミツシユメタルを、実用上に利用する。これら
のうちの任意に選択した一種以上の元素を、0.1〜加
幇%の範囲の割合で含有する合金を、溶着したい金属、
例えば前記タングステン、モリブデン、チタンまたはこ
れらの炭化物もしくは窒化物のうちから任意に選択した
一種以上のものを含有させて製造し、所定形状の電極線
として用いる。前記の範囲0.1〜20Wt%について
は、20%以上を含有させれは活性度が高くなり酸化な
どがしやすく、その点で20%が上限である。
Examples of rare earth elements include rare earth elements. Among these, the present invention makes practical use of scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, samarium, and Mitsushi metal. An alloy containing one or more elements arbitrarily selected from these in a proportion in the range of 0.1 to 1% is added to the metal to be welded,
For example, it is manufactured by containing one or more of the above-mentioned tungsten, molybdenum, titanium, or their carbides or nitrides, and used as an electrode wire in a predetermined shape. Regarding the above-mentioned range of 0.1 to 20 Wt%, if the content is 20% or more, the activity becomes high and oxidation is likely to occur, so 20% is the upper limit.

また0.1Wt%以下では効果が認められないので、こ
れが下限である。一般的に、好ましくは、0.5〜15
Wt%の範囲であり、このうちのどの範囲を選ふかは、
用途によつて、また許容コスト費によつて定める。モリ
ブデンとの合金として、ランタン、セリウーム、プラセ
オジム、サマリウム、ネオジムから成るミツシユメタル
の含有量が5〜1?t%、残部がモリブデンの混合体を
滲透拡散させて線にした電極線を用いた。爆発溶射は不
活性雰囲気中て被覆層を形成させた。この場合に、モリ
ブデンの線.による爆発溶射の被覆層に比較して、電子
放出特性として放電電圧が低くてよく、希土類元素の含
有をしたものは、放電しやすくなることを確認できた。
また、耐熱性、耐食性、耐応力腐食性が顕著に向上する
被覆層が得られた。スカンジウム、ランタン、セリウム
を合せて、1.5〜5Wt%を含有し、残部が銅の合金
化したものの電極線を用いて、大気中で線爆発溶射をし
て銅合金板面に形成した拡散被覆層は、放電電圧が低く
てもよく、弾性度を向上し、前記の希土類量の多少によ
つて摩擦抵抗性を制御し得る変化を示した。
Moreover, since no effect is observed below 0.1 Wt%, this is the lower limit. Generally, preferably 0.5 to 15
Wt% range, which range to choose is
Determined based on usage and allowable costs. As an alloy with molybdenum, the content of Mitsushi metal consisting of lanthanum, cerium, praseodymium, samarium, and neodymium is 5 to 1? An electrode wire made by permeating and diffusing a mixture of t% and the balance being molybdenum was used. Explosive thermal spraying formed the coating layer in an inert atmosphere. In this case, the molybdenum wire. It was confirmed that compared to the explosive sprayed coating layer, the electron emission characteristics require a lower discharge voltage, and those containing rare earth elements are easier to discharge.
Furthermore, a coating layer with significantly improved heat resistance, corrosion resistance, and stress corrosion resistance was obtained. Diffusion formed on the surface of a copper alloy plate by line explosion spraying in the atmosphere using an electrode wire of an alloy containing scandium, lanthanum, and cerium in a combined amount of 1.5 to 5 Wt%, with the remainder being copper. The coating layer may require a low discharge voltage, has improved elasticity, and shows changes in frictional resistance that can be controlled depending on the amount of rare earth.

セリウム、ランタン、サマリウムを合わせて、0.5〜
3Wt%を含み、残部がチタンの混合体の滲透拡散させ
た線を用いて、大気中で線爆発溶射をして形成したアル
ミけい素合金板の表面に形成させた被覆層は、耐熱性と
耐食性が向上し、硬度の増加が認められた。
The total of cerium, lanthanum, and samarium is 0.5~
The coating layer formed on the surface of an aluminum-silicon alloy plate by line explosion spraying in the atmosphere using a wire containing a mixture of 3 Wt% and titanium, the remainder being titanium, has heat resistance. Corrosion resistance was improved and hardness increased.

ノ ミツシユメタル0.5〜1.0Wt%を含有し、残
部がチタンと炭化チタンとから成る混合体を滲透拡散す
る処理をして形成した線電極を用いて、大気中で爆発溶
射して得られた被覆層は、硬度が均一に増加し、摩耗抵
抗性を向上し、しかも弾性が向上・したことが認められ
た。
It is obtained by explosive spraying in the atmosphere using a wire electrode formed by permeating and diffusing a mixture containing 0.5 to 1.0 wt% of metal and the remainder consisting of titanium and titanium carbide. It was observed that the hardness of the coated layer was uniformly increased, the wear resistance was improved, and the elasticity was improved.

ミツシユメタル0.5〜1.0Wt%に、セリウム酸化
物を0.5Wt%とコバルト3%を添加し、残部がタン
グステンの混合物の焼結線を用いて、前記と同様に、た
だし雰囲気を不活性気体中として形成し1た被覆層は、
放電電圧が低く、硬度と摩耗抵抗性を向上させ、耐食性
を良好にした。
Using a sintered wire of a mixture of 0.5 to 1.0 Wt% of Mitsushi metal, 0.5 Wt% of cerium oxide and 3% of cobalt, and the balance being tungsten, the same procedure as above was performed except that the atmosphere was an inert gas. The covering layer formed as a middle layer is
Low discharge voltage, improved hardness and wear resistance, and good corrosion resistance.

ミツシユメタル10Wt%と、ランタンとセリウム酸化
物を5Wt%とを含有し、残部がモリブデンの合金化物
から成る電極線を用いて、不活性気体中で形成した被覆
層は、放電電圧が低下し、硬度を増加し、耐食性を良好
にし、弾性を増大した。
The coating layer formed in an inert gas using an electrode wire containing 10 wt% of Mitsushi metal, 5 wt% of lanthanum and cerium oxide, and the balance being an alloy of molybdenum has a lower discharge voltage and a lower hardness. , improved corrosion resistance, and increased elasticity.

雰囲囲気を大気中でした場合には、一定値が安定しない
例が認められた。いずれの場合についても、共通して導
かれる結.,朱としては、被覆層が緻密であり、放電電
圧が低下し、硬度が増加し、弾性度が向上し、耐食性と
耐熱性と耐磨耗性が向上することてある。
When the atmosphere was air, there were cases where the constant value was not stable. In either case, a common conclusion can be drawn. , Vermilion has a dense coating layer, lowers discharge voltage, increases hardness, improves elasticity, and improves corrosion resistance, heat resistance, and abrasion resistance.

また、ステンレス鋼板面と銅合金板面に形成した被覆層
ては、応力腐食抵抗性が増加することが認められた。
Furthermore, it was observed that the stress corrosion resistance of the coating layer formed on the stainless steel plate surface and the copper alloy plate surface increased.

こられの一連の試験の結果から導かれた所見として、希
土類元素またはミツシユメタルの含有量が20Wt%以
上の場合は活性度が高く、不活性気体中て線爆発溶射を
しないと、酸化によるマイナス面が顕著になる。
The findings derived from the results of these series of tests are that when the content of rare earth elements or Mitsushi metals is 20 Wt% or more, the activity is high, and unless linear explosion spraying is performed in an inert gas, there is a negative effect due to oxidation. becomes noticeable.

希土類元素の酸化物添加も改質に良好な結果をもたらす
ことは、前記の一実施例から明白であるが、20%以内
の場合も、用途にてらし必要に応じ不活性気体中で実施
する場合の方が安定した結果が得られる。希土類元素ま
たはミツシユメタルの添加含有量によつて、また実施す
る雰囲気が前記の含有量の多少とともに結果に変化をも
たらす。
It is clear from the above example that the addition of rare earth element oxides also brings about good results in modification, but even if the addition is less than 20%, it can be carried out in an inert gas depending on the application and if necessary. gives more stable results. The results vary depending on the added content of rare earth elements or metals, and the atmosphere in which the process is carried out.

合金化した場合の実施結果と、混合体としこれを滲透拡
散処理をして得た結合体、例えば焼結体、を形成した場
合の実施結果との間における差異は、特に目立つほど明
確ではない。これは、合金電極線を用いなくとも、電極
線としての形体を容易に保持し且つ放電電流を爆発溶射
できる程度に流通し得る電極線が得られれば足りること
を意味する。これらの一連の検討から、耐摩耗度のよう
な複雑な要因が係わる性質も、耐食性、耐熱性、弾性、
耐応力腐食性などの諸性質も、希土類元素またはミツシ
ユメタルの添加量、この中に希土類元素の酸化物の混合
、さらに雰囲気の選択によつて、調整し制御しうること
ができることが期待できる。
The difference between the results of alloying and the results of forming a composite, such as a sintered body, by permeation-diffusion treatment of the mixture is not particularly noticeable. . This means that even if an alloy electrode wire is not used, it is sufficient to obtain an electrode wire that can easily maintain its shape as an electrode wire and can flow a discharge current to the extent that it can be explosively sprayed. From this series of studies, we have found that properties that involve complex factors such as wear resistance, corrosion resistance, heat resistance, elasticity,
It is expected that various properties such as stress corrosion resistance can be adjusted and controlled by adjusting the amount of the rare earth element or Mitsushi metal added, the mixture of the rare earth element oxide therein, and the selection of the atmosphere.

すてに説明したように、本発明は、溶着金属に0.1〜
20Wt%の範囲内で、希土類元素、ミツシユメタルを
含有させて電極線を形成し、被加工面に線爆発大電流を
電極間に瞬時に流して溶射被覆を形成した場合の被覆層
は、きわめて有用な性質を示す。
As explained above, the present invention allows the weld metal to have a
The coating layer is extremely useful when the electrode wire is formed by containing rare earth elements and Mitsushi metal within the range of 20 Wt%, and a thermal spray coating is formed by instantly passing a large wire explosion current between the electrodes on the surface to be processed. It shows a certain characteristic.

放電電圧を低下させる効果、すなわち通電による線爆発
を容易にする。また耐熱性、耐食性、耐応力腐蝕性を良
好にする。硬度を増加さす。弾性を増す。耐摩耗性を向
上さす。そして、これらを、適用雰囲気と希土類元素の
添加含有量の調整により、制御可能なものにできる期待
がもたれる。ミツシユメタルの使用も同じ効果をもたら
す。
The effect of lowering the discharge voltage, that is, making it easier to explode the wire due to energization. It also improves heat resistance, corrosion resistance, and stress corrosion resistance. Increases hardness. Increases elasticity. Improves wear resistance. It is expected that these conditions can be controlled by adjusting the applied atmosphere and the added content of rare earth elements. Using Mitsushi Metal has the same effect.

Claims (1)

【特許請求の範囲】 1 対向する電極線間に電極線を装着し両電極間に大電
流を流し瞬時に線爆発をさせて電極線金属を被加工面に
溶射接着させて被覆層を形成するものにおいて、前記の
電極線であつて被覆層を形成する金属の主成分金属と全
組成中の0.1〜20wt%の希土類元素またはミツシ
ユメタルを含有せしめて、合金化しもしくは混合して滲
透拡散の処理によつて結合一体化し、これから電極線を
形成して電極間に固着し所定の大電流を流して電極線爆
発溶射による被覆層もしくは拡散被覆層を被加工面に形
成する表面被覆方法。 2 全組成中に含有せしめる希土類元素もしくはミツシ
ユメタルの0.1〜20wt%にこれらの酸化物の適量
を添加した組成の電極線を用いる特許請求の範囲の第1
項に記載の表面被覆方法。 3 電極線の線爆発を大気中で行うものである特許請求
の範囲の第1項に記載の表面被覆方法。 4 電極線の線爆発を不活性雰囲気中で行うものである
特許請求の範囲の第1項に記載の表面被覆方法。
[Claims] 1. An electrode wire is attached between opposing electrode wires, a large current is passed between both electrodes, the wire is instantly exploded, and the electrode wire metal is thermally sprayed and adhered to the workpiece surface to form a coating layer. In the above-mentioned electrode wire, the main component metal of the metal forming the coating layer and 0.1 to 20 wt% of the total composition of rare earth elements or metals are alloyed or mixed to prevent percolation and diffusion. A surface coating method in which electrode wires are bonded and integrated through processing, and then electrode wires are formed and fixed between the electrodes, and a predetermined large current is passed to form a coating layer or a diffusion coating layer on the workpiece surface by electrode wire explosive spraying. 2. The first aspect of claim 1 using an electrode wire having a composition in which an appropriate amount of these oxides is added to 0.1 to 20 wt% of rare earth elements or metals contained in the entire composition.
The surface coating method described in Section. 3. The surface coating method according to claim 1, wherein the wire explosion of the electrode wire is performed in the atmosphere. 4. The surface coating method according to claim 1, wherein the wire explosion of the electrode wire is performed in an inert atmosphere.
JP56172836A 1981-10-30 1981-10-30 Surface coating method Expired JPS6051550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56172836A JPS6051550B2 (en) 1981-10-30 1981-10-30 Surface coating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56172836A JPS6051550B2 (en) 1981-10-30 1981-10-30 Surface coating method

Publications (2)

Publication Number Publication Date
JPS5877564A JPS5877564A (en) 1983-05-10
JPS6051550B2 true JPS6051550B2 (en) 1985-11-14

Family

ID=15949234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56172836A Expired JPS6051550B2 (en) 1981-10-30 1981-10-30 Surface coating method

Country Status (1)

Country Link
JP (1) JPS6051550B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19609647A1 (en) * 1996-03-12 1997-09-18 Univ Sheffield Hard coating

Also Published As

Publication number Publication date
JPS5877564A (en) 1983-05-10

Similar Documents

Publication Publication Date Title
EP0960954B2 (en) Powder of chromium carbide and nickel chromium
DE3152549C2 (en) Powder coating material for thermal coating
US4411936A (en) Sprayed alloy layer and method of making same
CA2267621A1 (en) Method of manufacturing porous electrode wire for electric discharge machining and structure of the electrode wire
JP6804982B2 (en) Methods and Compositions for Preparing Overlays Containing Titanium Carbide
JPWO2002055748A1 (en) Wear-resistant copper-based alloy
EP0062173B1 (en) Method of manufacturing an aluminium piston with a hard oxide coated head
USRE29547E (en) Nickel silicon and refractory metal alloy
JPS6051550B2 (en) Surface coating method
JPH0524993B2 (en)
KR101631233B1 (en) Cored wire for welding and thermal spraying and method for manufacturing the same
Islak et al. Microstructure and Microhardness Characterization of Cr3 C2-SiC Coatings Produced by the Plasma Transferred Arc Method
CN112095070A (en) Aluminum-containing metal powder applied to plasma spraying
Nowotny et al. Microstructure and wear properties of laser clad carbide coatings
US3331700A (en) Method of coating metals
St Węglowski et al. A comprehensive study on the microstructure of plasma spraying coatings after electron beam remelting
EP3947571B1 (en) Thermal spray iron-based alloys for coating engine cylinder bores
JP3355199B2 (en) Arc spraying wire
JP3460968B2 (en) Spray method
JPS55156691A (en) Gas shielded arc welding wire and its production
US3330934A (en) Flux-coated carbide welding rod
JPH08253853A (en) Composite powder for thermal spraying
JPS62179891A (en) Ni welding material for hard facing
JP2929515B2 (en) Solid wire for gas shielded arc welding
SU1759956A1 (en) Compound for complex saturation of cast iron products