US3331700A - Method of coating metals - Google Patents

Method of coating metals Download PDF

Info

Publication number
US3331700A
US3331700A US534831A US53483166A US3331700A US 3331700 A US3331700 A US 3331700A US 534831 A US534831 A US 534831A US 53483166 A US53483166 A US 53483166A US 3331700 A US3331700 A US 3331700A
Authority
US
United States
Prior art keywords
coating
alloy
laves phase
matrix
laves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US534831A
Inventor
Jr William Harrison Severns
Smith Gaylord Darrel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Priority to US534831A priority Critical patent/US3331700A/en
Application granted granted Critical
Publication of US3331700A publication Critical patent/US3331700A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/902Metal treatment having portions of differing metallurgical properties or characteristics
    • Y10S148/903Directly treated with high energy electromagnetic waves or particles, e.g. laser, electron beam
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12458All metal or with adjacent metals having composition, density, or hardness gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12931Co-, Fe-, or Ni-base components, alternative to each other

Definitions

  • This invention relates to novel articles of manufacture comprising a metal body having a protective coating which exhibits outstanding resistance to deterioration from one or more of wear, abrasion, oxidation, and corrosion, and to a method for preparing said articles. More particularly, the invention relates to novel articles of manufacture comprising a metal base to which is bonded a protective metal coating having .a surface layer of al- 10y constituted essentially of 3085 volume percent Laves phase comprising at least two metals in its elemental composition present in 70l5 volume percent of a softer matrix formed of the same elemental components as said Laves phase, said matrix being in quasi equilibrium with said Laves phase.
  • an embodiment of the invention relates to such novel articles of manufacture wherein the metal base is selected either from a ferrous base metal, a nickel base metal, a cobalt base metal, or an alloy containing at least 50 Weight percent of a combination of two or more of iron, nickel, and cobalt, and the surface layer of alloy constituted essentially of 3085 volume percent Laves phase and 70-15 volume percent of a softer matrix in which the Laves phase is present comprises in its elemental composition two or more transition elements.
  • Laves phase as used herein and in the claims means one or more metallographic constituents of an alloy that have the C (hexagonal), C (cubic), or C (hexagonal) crystal structure described in International Tables for X-Ray Crystallography by N. F. M. Henry and K. Lonsdale, International Union of Crystallography, Kynoch Press, Birmingham, England (1952).
  • Prototypes of the Laves phase crystal structures are, respectively, MgZn MgCu and MgNi
  • Such phase structures named after Dr. Fritz Laves, who pioneered their study, are unique crystal structures that permit the most complete occupation of space by assemblages of two sizes of spheres.
  • Laves phase can be represented by the stoichiometric composition AB the large atoms A occupying certain sets of crystallographic sites and the small atoms B occupying other sites, in which the ratio of atomic radii A:B is in a range of about from 1.05 to 1.68.
  • the chemical natures of the component atoms and the electron-atom ratio of a given composition are factors in determining which of the three types of Laves phase will form or the nonexistence of a Laves phase where the size factor is favorable.
  • Laves phases occur as intermediate phases in numerous alloy systems.
  • Laves phases generally have a homogeneity range, i.e., they can have any of a range of elemental compositions while maintaining their characteristic crystal structure.
  • the atom ratio B:A may range from slightly less to slightly more than 2, possibly the result of some vacant sites in the crystal structure. Also, more than one kind of atom can occupy the large-atom sites, the small-atom sites, or both.
  • Laves phases can be represented stoichiometrically by the formula (A C )(B D Where C represents the atoms of one or more kinds that substitute for the large atoms, D represents the atoms of one or more kinds that substitute for the small atoms of the binary Laves structure AB and the quantities x and y have values in the range zero to one.
  • a Laves phase can contain atoms of as many as five or six or even more elements in its crystal structure.
  • the ternary MgCu type of Laves phase in the Nb-Cr-Si system is based on NbCr and has at 1000 C.
  • atom percent will be abbreviated by a/o, weight percent by w/o, and volume percent by v/o.
  • Laves phases have been primarily concerned with their crystal structures and the atomic properties and relation ships favorable to their formation. Such phases are recognized in the prior art as generally hard intermetallic compounds which, depending on their elemental composition, may also exhibit good oxidation or corrosion resistance. Nevertheless, the valuable properties of Laves phases of the various elemental compositions and useful applications thereof in materials of construction have received little recognition since alloys consisting of such phases are invariably brittle and difficult to work.
  • the object of the present invention to greatly improve the ability of metal bodies to resist wear, abrasion, oxidation, and corrosion, while substantially retaining the inherent physical properties of said bodies by providing said bodies with a metal coating containing in its surface layer a relatively high percentage of Laves phase of certain alloy systems present in a softer matrix of the same multiphase alloy.
  • an article of manufacture comprising a metal base selected either from .a ferrous base metal, a nickel base metal, a cobalt base metal, or an alloy containing at least 50 w/o of a combination of two or more of iron, nickel, and cobalt to which is bonded a protective metal coating having a surface layer of alloy consisting essentially of at least two elements, tWo or more of which are heavy transition elements aggregating at least 60 21/0 of said alloy, the CN12 Goldschmidt radii of the largest and the smallest of said heavy transition elements having a ratio in the range 1.051.68, wherein 3()85 v/o of said alloy is present as Laves phase in a matrix composed of the remaining 70-15 We of said alloy, which matrix is softer than said Laves phase.
  • inventions include articles comprising other metal bases such as the reactive metals titanium and zirconium; the refractory metals niobium, tantalum, molybdenum, tungsten, and chromium; copper; and uranium.
  • metal bases such as the reactive metals titanium and zirconium; the refractory metals niobium, tantalum, molybdenum, tungsten, and chromium; copper; and uranium.
  • the novel articles of the invention are formed by means of a novel method involving the steps of (a) forming an alloy consisting essentially of from about 30-85 v/o Laves phase and 70-15 v/o of a matrix, said alloy when in contact with the metal base to be coated having an incipient melting point below the melting point of said metal base, (b) reducing the coating alloy to a powder, (0) depositing the powder on the base metal, (d) melting at least a part of the deposit of powdered alloy by heating in a nonoxidizing atmosphere until the melt wets the unmelted deposit and the underlying surface of the metal body, and (e) cooling the formed article at a rate that leaves the alloy coating with a matrix softer than the Laves phase therein.
  • alloy as used herein and in the claims means a substance having metallic properties and containing in its elemental composition two or more chemical elements of which at least one is a metal.
  • base metal as used herein and in the claims with a designated metal preceding it, such as, for example, ferrous or nicke, means a substance having metallic properties containing the designated metal in a predominant amount, preferably at least 50 w/o.
  • heavy transition metal as used herein and in the claims means a metal selected from the group consisting of Fe, Co, Ni, Ru, Rh, Pd, Os, II, and Pt of Group VIII; Mn and Re of Group VIII-B; Cr.
  • Articles of the invention have coatings in which the surface layer is of a binary or higher alloy system containing at least two metals, the atomic radii ratio of said metals permitting the formation of Laves phase.
  • the inclusion of heavy transition metals as such metals in the alloy coating has been found to provide, when an appreciable content of the alloy is present in the surface layer of the coating as Laves phase, a surprising combination of benefits to a metal base including improved wear, abrasion, and corrosion resistance; and greater service life at elevated temperatures.
  • Many of the Laves phases of such alloy systems melt at a temperature several hundred degrees higher than the metal base itself.
  • the inclusion of silicon in the alloy coating having the novel structure of the invention is particularly preferred since 7 this element often confers outstanding oxidation and corrosion resistance to the coated article and serves as well to stabilize the Laves phase of the alloy system present in the coating.
  • alloys consisting largely or entirely of ternary and higher Laves phases many containing at least two heavy transition elements, are listed below with their melting point i
  • silicon can be replaced with germanium to give additional alloys consisting largely or entirely of Laves phase.
  • the MgZn -type Laves compound Cr Nb Si has at 1000 C. the homogeneity range 22-39 a/o N-b, 41-66 a/o Cr, and 8-27 a/o Si. Such limits represent an approximation to the irregularly shaped phase boundary as it appears in the 1000" C. section of the constitution diagram of the NB-Cr-Si system.
  • Cr Nb Si can be represented by such stoichiometric formulas as (N'bogslg )(clu q5sio z5)2 and (N n -0..)r ms m)z
  • the distribution of the Cr and Si between the large-atom sites and the small-atom sites is not known, although a majority of the Si probably occupies small-atom sites.
  • some of the few published constitution diagrams of other ternary alloy systems which form'Laves phase ofier a phase boundary from which an approximation of the composition of the Laves phase in adjoining multi-phase fields of those alloy systems may be made. 7
  • the relative proportions of Laves phase to softer matrix in the surface layer of the coating is to be maintained in a range of from 3085 v/o Laves phase and from 70-15 v/o softer matrix with the Laves phase content at no levelin the surface layer exceeding v/o.
  • the softer matrix which is formed of the same alloy system as the Laves phase may be a substantially pure metal, a solid solution, one or more intermetallic compounds which may form, or a mixture of solid solution and intermetallic compounds, so long as the matrix is softer than the Laves phase present thereing-Preferably the matrix has less than one-third the Knoop hardness of the Laves phase, especially where a deformable, coating is required. Generally, there will be no substantial mitigation of brittleness obtained Where the matrix has more than about of the Knoop hardness of the Laves 7 from the following detailed'description and the drawings in which:
  • FIG. '1 is photomicrograph (160x) of a nital-etched cross section through the coating on a mild-steel metal base M coated with a 51 w/o W-40 w/oNi-9 w/o Si coating alloy according to the invention.
  • FIG. 2 is photomicrograph (x) of a nital-etched cross section through the coating on a mild steel 'base cross section through the coating on a mild steel base' coated with a 35 w/o M0 55 w/o Ni -IO w/o Si coating I alloy according to the invention.
  • FIG. ,5 is a fragment of a triangular constitution dia-
  • the surface layer of said alloy coating contains from about 30 to 85 W0 Laves phase and from 70 to 15 We softer matrix.
  • i a I
  • the metallographic detail of the novel structure of the articles may vary considerably, especially in the surface layer of the coating S and the layer of the coating Dbetween the surface layer and thebulk of the metal base M.
  • FIGS. 1, 2, and 4 show coatings wherein the surface layer thereof consists of'hypereutectic alloy, i.e.', an alloy consisting essenstructure for artitially of excess Laves phase and a lower melting matrix.
  • the Laves phase occurs mainly as a skeleton structure of interconnected grains interpenetrated by the matrix.
  • FIG. 1 the Laves phase occurs mainly as a skeleton structure of interconnected grains interpenetrated by the matrix.
  • the Laves phase occurs as dispersed grains enveloped by the matrix.
  • the Laves phase occurs partly as dispersed nodular grains and partly as interconnected nodular grains.
  • the nodular Laves phase grains are believed to result from partial solution of Laves phase grains in the deposited coating alloy during formation of the alloy coating; a portion of which apparently interconnect by liquid sintering.
  • FIG. 3 shows a void-free coating wherein the surface layer thereof consists substantially of a eutectic wherein the Laves phase occurs mainly as lamellae or thin grains embedded in a matrix.
  • surface layer as used herein and in the claims is intended to refer to the outermost portion of the coating, constituting at least one-third of the coating, bounded on the outside by the surface of the coating and on the inside by the imaginary surface nearest the surface of the coating and parallel thereto that intersects alloy containing not more than 30 v/o Laves phase.
  • volume percentages of Laves phase and matrix in the surface layer of the coating is made from a photomicrograph, at least 400x, that clearly shows the outlines of the grains of the Laves phase in a representative cross-section of the coating taken generally normal to the surface of the coating.
  • the section photographed is polished and etched.
  • the area of the photomicrograph selected for measurement extends over the full thickness of the surface layer for a distance generally parallel to the coating surface twice this thickness but in no event is said distance less than mils on the actual coating.
  • a thin line generally parallel to the surface of the coating is drawn at the middle of each of three equally wide bands parallel to the surface of the coating into which the surface layer within the measurement area can be divided. The fraction of the length of each of these three lines lying over particles of Laves phase is measured.
  • the three fractions are average arithmetically.
  • the average is multiplied by 100 and taken as being equal to the volume percent of Laves phase present in the surface layer of the coating.
  • the volume percent of Laves phase present in the surface layer of the coating is subtracted from 100, and the remainder is taken as being equal to the volume percent of matrix present in the surface layer of the coating.
  • FIG. 4 an illustration of utilizing the above-described technique may be gained by reference to lines A-A, B-B, and C-C. By averaging the fractions of these lines (0.76, 0.55 and 0.65) transversing Laves phase grains, it is determined that the surface layer of the coating of this article contains 65 We Laves phase and 35 v/o matrix.
  • the layer of coating D between the surface layer and the bulk of the metal base may vary in thickness as may be seen from FIGS. 1, 2, and 3.
  • This portion of the alloy coating is constituted of less than 30 v/o Laves phase and, for the coated articles shown in FIGS. 1-4 formed in accordance with the method of the invention, is a diffusion zone frequently including part of the metal base and as seen in FIG. 2 may contain small amounts of an innate phase.
  • the diffusion zone forms a continuous metallurgical bond between the surface layer of the coating and the underlying base metal.
  • the presence of a softer matrix in the proportions specified for the surface layer of the coatingof the articles of the invention provides multiaxial support for the Laves phase and greatly mitigates the inherent brittleness of the Laves phase.
  • the unique coating structure of the invention present on metal bodies of ferrous base metals, nickel base metals, and cobalt base metals exhibits some definite ductility which is surprisingly superior to what would be available with a continuous layer of Laves phase formed on the same base metal, the actual degree of ductility of articles of the invention obviously will depend in large part on the composition of the alloy coating of the article.
  • alloy coatings of the Mo-Fe-Si system constituted, in the surface layer of the coating, essentially of Laves phase and a softer matrix of solid solution of silicon and molybdenum in alpha iron have definite but limited ability to undergo plastic deformation without fracture. These alloy coatings are used to best advantage on thick, rigid metal bodies and it is found advantageous to not exceed a coating thickness of approximately 5 mils to avoid the appearance of cracks in the coating.
  • alloy coatings of the Mo-Ni-Si system constituted, in the surface layer of the coating, essentially of Laves phase and a softer matrix of solid solution of the other elements in nickel can undergo extensive plastic deformation Without fracture, particularly at low proportions of Laves phase and high proportions of matrix within the range of limits defined for the invention, owing to the exceptionally high ductility of these solid solutions forming the matrix.
  • Nickel confers its ductility on alloy coatings having a nickel-rich solid-solution matrix, for example, in the W-Ni-Si, Mo-Fe-Ni-Si, Mo-Cr-Ni-Si, and other coating alloy systems suitable for the invention.
  • Formable metal bodies having the more ductile alloy coatings metallurgically bonded thereto can be shaped without disruption of the coating even with coating thicknesses up to 20 mils or more. These coatings, therefore, are highly useful on both thick, rigid metal bodies and flexible metal bodies.
  • the ductility of such alloy coatings is enhanced by decreased proportions of Laves phase relative to the softer matrix, by decreased hardness of the matrix relative to the Laves phase, and by occurrence of the Laves phase in discrete nodular grains.
  • such alloy coatings are made less ductile by increased proportion of Laves phase relative to the softer matrix, by increased hardness of the matrix relative to the Laves phase, and by occurrence of the Laves phase as interconnected grains.
  • the coating thickness of the articles of the invention may vary between wide limits depending on various of the considerations discussed hereinabove. Normally, in order to gain a significant degree of improvement in one or more or the properties of wear, abrasion, oxidation, or corrosion resistance, the coating thickness should be at least one mil thick. Coatings in excess of 250 mils normally will not be required or desired for economical reasons although certainly such coatings are contemplated as falling Within the invention.
  • a further characteristic of the coating of the articles of the invention is the ability of the Laves phase and the softer matrix of the alloy coating to coexist indefinitely in their mutal presence at elevated temperatures.
  • elevated temperatures are limited by the decomposition temperature of the Laves phase, they usually extend at least to the incipient melting point of the alloy coating.
  • the surface layer of the alloy coating may contain material derived from such underlying metal base. The degree of dilution from such material is dependent in large part on the technique employed for metallurgically bonding the coating the metal base, more particularly, on the temperatures and time of the coating process and also on the exposure of the finished article to elevated temperature durihg use.
  • Articles of the invention are preferably formed in accordance with the novel method of the invention involving preforming a coating alloy constituted essentially of Laves phase and matrix, said alloy having incipient melting point below the melting point of the metal base; reducing the alloy to a powder, depositing the coating-alloy powder on the metal base; melting at least a part of the deposit of powdered alloy by heating to accomplish a metallurgical bond; and cooling the coated metal body at a rate that leaves the coating with a matrix softer than the Laves phase therein.
  • the elemental components of the coating must be prealloyed prior to deposition on the metal. base and firing, to insure a coating which is pore-free and integrally bonded to the metal base.
  • a coating alloy constituted essentially of about 30-85 We Laves phase and about 75-15 v/o matrix and having 7 an incipient melting point below the melting point of the metal base to be coated is first formed from predetermined proportions of the alloying elements.
  • the present state of the art does not make it possible to reliably predict on purely theoretical grounds the kinds and proportions of elements to form such a coating alloy.
  • refer- V ZrFe and a solid solution of iron in zircomum can be ence to published constitution diagrams, where available, I
  • a Kubaschewski plot (the energy'ratio defined as H (solute)/H (solvent) plotted against the radius ratio) is useful in predicting whether two elements will form a Laves phase. (See O..Kubaschewski, The Physical Chemistry of Metallic Solutions and Intermetallic Compounds, Paper No. 3c, H. M.
  • the composition of an alloy in such two-phase fields of suchalloy systems constituted of about 30-85 We Laves phase and about 15 v/o primary solid solution can be readily selected, recognizing that the ratio of the volume percentages of the two phases are usually roughly equal to the ratio "of the weight percentages and to the ratio of the atom percentages of the two phases constituting the selected alloy. Since Laves phases are generally hard and primarysolidsolutions are generally soft, these two-phase alloys 3 will generally have a matrix softer than the Laves phase present in said matrix. More particularly, the iron-zirconium alloy system contains a Laves phase ZrFe (M.P.
  • iron-tantalum, iron-titanium, and iron-uranium alloy systerns can be formed on an iron base. Alloys of the ironuranium system can also be applied on a uranium base according to the novel method of the invention, The constitution and composition of the surface layer of the finished coated iron base most suited for a particular application will, of course, depend on the requirements of the application and should be determined by appropriate tests of the variously coated metal base.
  • FIG URE 5 shows a two-phase field (kph) occupied by saturated primary solid solutions of molybdenum and silicon in nickel'and by the compound Ni Mo Si, a Laves phase Mo(Ni Si Begin by selecting compositions A, B, and C, each constituted of different proportions of Laves phase and saturated primary solid solution of molybdenum and silicon in nickel, from the, slender triangular two-phase field kpr.
  • compositions are separately arcmelted, reduced to powder, and applied to test pieces of low-carbon steel base, and the resultant composites are fired at a temperature just suflicient to form a melt that Wets the metal base and any unmelted Laves phase, according to the novel method of the invention. Although the firing can be continued until the coating alloy is com:
  • the coating alloy is in,a partly melted, pasty condition, especially where a thick surface layer of coating undiluted by the base metal is, desired.
  • the test pieces are then furnace-cooled, and the coating on each is examined metallographically and by X-ray analysis to determine the structure of the coating. Attention is given to the volume percent and manner of occurrence of the Laves phase and the matrix in the surface layer of the coating, to the continuity of the metallurgical bond between the coating and the metal base, and to the microhardness of the phases present. This examination is necessary becausethe' volume percentages of Laves phase and matrix in the surface layer, the'thickness of the surface layer and of the difiution of the powdered coating alloy onto the metal base,
  • a tie line is drawn on triangular coordinate plotting paper from the known or assumed composition of the binary Laves phase AB; across the diagram at constant percentage of the A-atom, plotting the compositions in atom percentages.
  • Ternary Laves phases in the ternary alloy system will in general occur along this tie line and have a homogeneity range extending on both sides of it.
  • Ternary Laves phases composed of two metals and a metalloid, such as silicon or germanium usually contain not over about 33 a/o metalloid.
  • a ternary Laves phase, such as Mo (Ni Si may be stabilized by the metalloid, even though a Laves phase, such as MoNi does not occur in the binary edge of the ternary diagram.
  • binary Laves phases composed of metals and having the same type of Laves phase structure, such as ZrFe (both being MgCu -type Laves phases), form a complete series of solid solutions with the result that a ternary Laves phase is present along the entire tie line.
  • binary Laves phases composed of metals and having different types of Laves phase structure such as ZrMn (MgZn type) and YMn (MgCu type) occur in the corresponding binary edges of the ternary diagram and have appreciable mutual solubility that is, however, incomplete.
  • ternary Laves phases occur along the end portions of the tie line but not in the central portion.
  • ternary alloys containing a Laves phase are suitable for application, according to the novel method of the invention, to a metal base having a melting point above the temperature of incipient melting of the selected coating alloy.
  • a second tie line is drawn from the estimated composition of ternary Laves phase to an apex of the ternary diagram, recognizing that the greatest probability of success will result from starting with a ternary Laves phase containing less than about 35 a/o of the third element not found in the binary Laves phase A13 and drawing the tie line to the B-atom apex of the ternary diagram.
  • Preparation of the coating alloy and evaluation of the coating on the metal base is then carried out following the procedure described above.
  • Coated bodies having a surface layer of still more complex alloy constituted of 30-85 v/o Laves phase and 70-15 We matrix can be prepared using as a guide the fact that Laves phases are known in which the large A atom is partly substituted by two or more other kinds of metal atoms of comparable size and the small B atom is partly substituted by two or more other kinds of atoms, at least one kind being a metal atom, of comparable size to the B-atom.
  • the coating alloy is preferably formed by arc-melting the ingredients in a suitable container, such as, on a watercooled copper hearth.
  • the arc-melting is preferably accomplished under an inert atmosphere, such as, argon.
  • an inert atmosphere such as, argon.
  • Ai-in. lumps of silicon are placed on the hearth,
  • tungsten in the form of A x 4in. chips is placed over the silicon, and Vs to A-in. nickle shot are placed over the tungsten.
  • molten nickel and molten nickel-tungsten alloy run through the charge and form a covering that dissolves silicon and minimizes volatilization of the silicon.
  • the charge is solidified, turned over, and remelted as many as six times to insure a homogenous alloy. Good results may also be obtained by melting the starting materials in an inert crucible under an inert gas blanket. The melt is then cooled in the crucible or cast into ingots of convenient size. Excessive temperature rise may result from reacting a large charge of alltoy components containing silicon. This can be avoided, however, by progressive and stepwise addition of the components to an initial melt of the coating alloy in the crucible.
  • the coating alloy is then powdered by crushing and 'ball milling to a particle size suitable for the product being made.
  • a powder passing through a mesh, or even finer, screen is preferred.
  • powder made from coarsegrained coating alloy. and passed through a IO-mesh, or even coarser, screen can be used.
  • the alloy is so tough as to defy crushing, it is converted to chips in a machine tool with a metal carbide cutting tool. Ball milling of the crushed pieces or chips is carried out in a closed ball mill. It is preferable to employ a container made of plain carbon steel and a grinding medium of a metal carbide material, such as tungsten carbide, to avoid any'contamination of the powder.
  • the dry product powder can be handled in the open air without detrimental reaction with oxygen or moisture; however, the powder should be stored in well-filled gas-tight containers.
  • the coating alloy can also be made by other methods known in the art, such as directly from the melt by spray-cooling in an inert gas.
  • the powdered all-oy coating composition is then deposited on the metal base by any suitable technique. Flame-spraying, plasma-jet spraying, and brushing, dipping, or spraying with a slurry of the powder in a solution of a temporary binder are satisfactory techniques. For fiat surfaces it is preferred that the powdered coating composition be deposited on the metal base by means of a commercial plasma-jet gun, such as the Model F-40 gun made by Thermodynamics Corp, Riverside, New Hampshire. Preferably the metal base is cleaned prior to deposition of the coating composition, for example, by grit-blasting.
  • the plasma-jet gun is supplied with dry alloy coating powder preferably in a size range minus 270 mesh plus 325 mesh.
  • a slurry of the powder For deposition on the walls of holes, undercuts, and the like, that are not satisfactorily coated by the plasma-jet gun, it is preferred to employ a slurry of the powder by brushing or spraying with one or more coats.
  • a slurry can be readily formed by mixing the coating-alloy powder having a particle size passing through a 140-mesh screen in a solution of an acrylic temporary binder dissolved in acetone or other inorganic solvent having suitable volatility.
  • Firing of the metal base having a deposit of coating alloy is preferably carried out by heating the work in I 1 argon at a pressure of mm. Hg in an electric furnace.
  • the article can be heated in an electric vacuum furnace at an air pressure of 0.001 mm. Hg.
  • the article may also be fired in an electric furnace filled with hydrogen at a pressure slightly above atmospheric pressure, but in such a procedure the hydrogen should have a low content of water to insure a good metallurgical bond between coating and substrate.
  • the dew point of the hy- V I drogen preferably is reduced to minus 45 F.
  • the deposit of the alloy coating on the metal base be heated until a melt forms and spreads over the surface of both the metal base underlying the deposit and any unmelted part of the coating alloy.
  • the matrix of the preformed coating alloy melts immediately when heated to its incipient melting point, and rapid heating to this temperature level is preferred since it minimizes the time needed to form sufiicient melt for formation of the product article. Furthermore, rapid heating to the incipient melting point of the matrix insures metallurgical bonding of the coating to the base metal With minimum damage to the inherent physical'properties of the metal basecaused by overheating.- It is preferred to discontinue the firing while the coating is a semifiuid mixture of melt and unmelted residue of the deposited powder.
  • the time firing is continued after the first appearance of melt affects the relative thickness of the diffusion zone and the surface layer of the coating. Prolonged firing causes sufficient dilution of the alloy present in the diffusion zone to result in a reduction in the amount of Laves phase'in the diffusion zone, adjoining the surface layer of the coating.
  • the optimum time of firing the product article will obviously vary depending on the coating alloy selected, 'the relative amounts of Laves phase and matrix present in the coating,
  • One such technique which may be successfully adapted to form the articles hereof, particularly clad sheets and slabs, is cladding either by hot-rolling, by high energy impaction, or
  • brazing metal and fiux may be employed; added brazing metal is necessary Where the brazing temperatures used are substantially below the incipient melting point of the cladding alloy incontact with the metal base.
  • V clad metal body is cooled at a rate that leaves the matrix of the protective cladding softer than the Laves phase bond between the base metal and the coating alloy.
  • the Laves phase showed a Knoop hard-.
  • less-ductile coating alloys are preferably formed by casting and machining to the desired shape and size and then brazing the casting to the metal body as described.
  • the finished article formed by this coating technique will contain, in the manner explained hereinabove, a diffusion zone comprising part of the alloy coating intermediate the metal. Formation of articles hereof by cladding is best employed for coating alloys which possess high inherent ductility.
  • V the coated articles of the invention is by hotdipping'the metal base into a molten bath of the coating alloy. This method is particularly adaptable where the metal base to be coated has a uniform cross section such as round wires, rods, and bars.
  • Example 1 i A coating alloy consisting of 51 w/o W-40 w/o Nn-9 W/O Si was formed by arc melting weighed amounts of the component elements in argon at a pressure of 700 powder was deposited by plasma-jet gun on As-in; and A-in. plates of S.A.E. 1020 mild steel. The resulting coated specimens were fired '3 min. at 1180" C. in a vacuum electric furnace at a pressure of about 0.001 mm. Hg and were furnace-cooled. The surface layer of the [finished coating was about 11 mils thick.
  • Laves phase was identified in the surface layer 'of' the coating of the formed article by-X r'ay difiraction, the relative amounts of'Laves phase and matrix being'approximately 48 We r and 52 v/o, respectively.
  • the surface layer ofthe ness of 630 and the matrix showed a Knoop hardness of 240.
  • the coated steel (4 x 4 x fit-in. plates) had excellent resistance to a spray of aqueous 20 w/oNaCl solution at F..during 14 days exposure. 3
  • Example An extrusion die having a 0.1i 57-in. land and a throat diameter of 0.867 in. at the land was madeof H-13 tool steel 'w/o Cr, 1.5 w/o Mo, 1.0 w/o V, 0.35 w/o C, bal. Fe).
  • a coating alloy consisting of 51 w/o W-40 w/o Ni-9 w/o Si was made by arc-melting and was reduced to powder. The powdered alloy was deposited to a depth of 24 mils on the land and working face of the die by plasma-jet gun; The resulting coated die was fired 20 min. at 1180 C. in an electric furnace at a pressure of 10- mm. Hg and was cooled in the furnace. The fired coating was about mils thick.
  • the hardness of the H13 steel was R 49.
  • the throat of the die was then finished to 0.850 in. diameter by Elox machining followed by grinding and polishing.
  • Example 3 A coating alloy consisting of 35 w/o Mo-55 w/o Ni lO w/o Si was formed, reduced to powder, and deposited on S.A.E. 1020 mild steel as in Example 1.
  • the coating alloy contained about 50 v/o Laves phase having a Knoop hardness of 1040 and 50 v/o matrix having a Knoop hardness of 340.
  • the matrix melted incipiently at about 1230 C.
  • the coated base metal specimens were fired 3 min. at 1300 C. in a vacuum electric furnace at a pressure of 0.001 mm. Hg and were furnace cooled.
  • the coating was metallurgically bonded continuously to the surface of the steel.
  • K 200
  • K 2.3 w/o Mo-34.1 w/o Ni-60.6 w/o Fe-3.8 w/o Si
  • 65 v/o Laves phase (K 8l0) composed of 40.5 w/o Mo-21.7 w/o Ni-28.3 w/o Fe-9.2 w/o Si.
  • the coated surface of the specimen was exposed to aqueous 10 w/o HCl at 50 C. for 10 days under static conditions.
  • the coated surface corroded at a rate of 7.2 mils per month, whereas uncoated S.A.E. 1020 steel corro
  • Example 4 A shear-type extrusion die having a 0.184-in. land and a throat diameter of 0.864-in. was made of H-13 steel.
  • a coating alloy consisting of 45 w/o W-40 w/o Co-15 w/o Si was made by arc-melting the elements in argon and was crushed and ball-milled to minus 400-mesh powder.
  • One volume of powdered alloy was slurried in three volumes of 10 w/o solution of acrylic binder in acetone and was sprayed to a depth of about 14 mils onto the land and working face of the die.
  • the resulting coated die was dried, preheated for 10 min. at 1100 C., fired 10 min. at 1200-1210 C.
  • the fired coating was 7 mils thick as determined from the throat dimensions.
  • the hardness of the H-l3 steel was R 47-49.
  • Example 5 An alloy consisting of 51 w/o W-40 w/o Co-9 W/O Si was made by arc-melting 510 g. of tungsten chips, 400 g. /s-in. cobalt shot, and 90 g. of lump silicon, all ingredients being at least 99.9% pure. The alloy was reduced to minus -mesh powder by crushing and ball-milling. One volume of the powder was slurried in three volumes of a 10 w/o solution of acrylic polymer in acetone. The slurry was brushed onto Aa-in. thick pieces of S.A.E. 1020 steel and air-dried, leaving a deposit of about 10 mils thick. The coated pieces were fired 3 min. at 1320 C.
  • the coated steel was bent 15 around a /2-in. diameter pin at room temperature, placing the coating under tension, without cracking the coating.
  • the coated steel was similarly bent 70, but with the coating in compression, without cracking the coating.
  • Example 6 A coating alloy consisting of 35 w/o Mo-55 w/o Co-10 W/O Si was formed by arc-melting weighed amounts of the elements in argon at a pressure of 700 mm. Hg. The alloy contained 90 v/o of Laves phase in a matrix having an incipient melting point of about 1220 C. Laves phase was identified in the alloy by X-ray diffraction. The matrix appeared to be a mixture of phases and melted incipiently at 1220 C. The alloy was crushed and ball-milled in a steel mill to minus 400-mesh powder. A slurry of the powder in an acetone solution of acrylic binder was sprayed onto coupons of S.A.E. 1020 steel.
  • Example 7 A shear-type extrusion die having a 0.186-in. land and a throat diameter of 0.864-in. at the land was made of H-13 tool steel.
  • a coating alloy consisting of 35 w/o Mo-55 W/o Co-l0 w/o Si was made and applied to the die as in Example 2.
  • the hardness of the H-13 steel in the tempered coated die was R 50-51. After the land of the die had been ground to a throat diameter of 0.852-in., the finished die had 6 mils of coating; the surface layer of said coating containing approximately 72 We Laves phase and 28 We of a softer lower melting matrix.
  • Example 8 A coating alloy consisting of 35 w/o Mo-55 w/o Co-lO w/o Si was made by arc-melting molybdenum chips, /sin. cobalt shot, and A to /z-in. silicon lumps, all at least 99.9% pure, and was reduced to powder, as in Example 1.
  • the powder was pressed at room temperature under 50 tons/ sq. in. pressure into a At-in. thick slab.
  • the slab was sintered at 1220 C. for 10 min. in a vacuum electric furnace at a pressure of 10* mm. Hg, cooled in the furnace,
  • Example 10 One hundred fifty grams of Fe powder, 260 g. of Mo powder, and 90 g. of Si powder, all at least 99.9% pure, were arc-melted under argon, making an alloy composed '0f 52 w/o Mo-30 W/o Fe-IS w/o Si. The alloy button was turned over and remelted six times to ensure homogeneity. There was no detectable weight change during the arc- V melting.
  • Laves phase, alpha iron, and a cubic phase with a lattice parameter of 9.09 A. were identified in the button by X-ray diffraction; The button was crushed, passed 7 through a No. 3 /2 U.S. sieve-(0.223-in. opening), and
  • the 17-mil coating thus produced was bright, crackfree, and united to the steel by a continuous metallurgical bond.
  • the nodular phase was identified by X-ray structure analysis and electron-beam microanalysis at MgZn -type Laves phase having the composition 45 w/o Mo-48 w/o Fe-7.3 w/o Si (29 a/o Mo-54 a/o Fe-l7 a/o Si), which is equivalent to the stoichiometric formula (Mo Si (Fe si h.
  • the matrix of the surface layer was identified as alpha iron solid solution having the composition 2.5 w/o Mow/o Fe-6.6 w/o Si (1.4 a/o Mo-86 a/o Fe-12.6 a/o Si).
  • About 5 We of the matrix phase consisted of a dark gray rounded phase containing iron, silicon, .and a light element, prob-ably oxygen. Since the Laves phase contained only 45 w/o Mo and the matrix phase contained only 2.5 W/O Mo whereas the deposited powder contained 52 w/o Mo, the surface layer lost molybdenum during liquid sintering. Likewise, the surface layer lost silicon and gained iron.
  • the calculated over-all composition of the surface layer of the finished coating was 38.8 w/o Mo-53.8 w/o Fe-7.2 w/o Si (25 a/o Mo-59 a/o Fe-16 a/o Si).
  • the alpha iron matrix contained progressively increasing concentrations of silicon and molybdenum up to the surface layer.
  • the matrix phase extended from the steel substrate to the surface of the coating.
  • the interconnected grains of hard Laves phase constitute an inherently rigid structure that is useful for protecting rigid substrates from wear and abrasion.
  • a coating was produced int-he same manner on another S.A.E. 1020 steel plate, excepting that it was fired for 1 hr. at 1200 C.
  • the surface layer contained elongated grains of Laves phase to the extent of about 70 W0 near the surface and about 3'8 v/o near the op posite. side of the surface layerIThe matrix was metallur gically bonded to the steel substrate and extended to.
  • This coating was relatively soft (K composite hardness 350). It is useful to protect the steel frornwear and abrasion where the coated body is subject to small deformation. Both the Laves phase based on MoFe andthe. alpha iron crystal structures were identified in the coating by X-ray diffraction.
  • This coating was integrally bonded to the steel j substrate continuously over the surface of the steel.
  • I Exrtmpl e A coating alloy consisting of 36 w/o Mo-46 w/ o" a dis- 7 Fe-18 w/o Ge was arc-melted, reduced to powder, and.
  • ExampleiS made into a slurry as in ExampleiS. Several coats of the slurry. were applied to b. x /2 x 18-in. coupons of S.A.E. 1020 mild steel. The air-dried coating was about 20 mils thick. The coated coupons were then' fired at 1230 C. for 5 min. in a vacuum electric furnace at a pressure of about 103 mm. Hg and were cooled in the furnace. Total'thickne'ss of the firedcoating was -69.
  • Several coats of the slurry were applied to a coupon of S.A.E. 1020 steel.
  • the air-dried coating was about 20 mils thick.
  • the coated coupon was fired at 1205 C. for one minute in a vacuum furnace at an air pressure of about l mm. Hg and cooled in the furnace.
  • Total thickness of the surface layer of the fired coating was approximately 8 mils; the surface layer of said coating contained 65 v/o Laves phase and 35 v/o matrix.
  • the Knoop (IOO-gram load) microhardness value of the Laves phase was 850, and the hardness value for matrix phase was 400.
  • the lattice parameters of the Laves phase were determined by means of X-ray diffraction using 10 kv.-10 ma. chromium radiation (vanadium filter).
  • Example 13 A coating alloy consisting of 36 w/o Mo, 10 W/o'Cr, 36 W/O Ni, 18 w/o Si was arc-melted, reduced to powder, and made into a slurry as in Example 5.
  • a layer of coating about 20 mils thick was applied to a 1 x 1 x /s-in. coupon of S.A.E. 1020 mild steel and fired in a vacuum of 10 mm. Hg at 1190 C. for 10 minutes.
  • Example 14 A SOD-gram arc-melted button was made from a composition consisting of 27 w/o Ta, 58 w/o Mn, 15 w/o Si. The button was reduced to powder and a 10-mil coating was applied to S.A.E. 1020 mild steel according to the procedure of Example 5. The composite was fired at 1320 C. for 3 minutes in a vacuum furnace at 10* mm. Hg air pressure and furnace cooled. After firing, the surface layer of the coating was 2 mils thick. The surface layer contained 35 W0 Laves phase and 65 v/o matrix phase. The Laves phase Knoop (15 gram load) microhardness value was 400, whereas the matrix microhardness value was 200.
  • the coating was continuously bonded to the substrate.
  • the width of the difiusion zone was approximately mils.
  • FIGURE 3 depicts the microstructure of this coating alloy on S.A.E. 1020 mild steel.
  • Example 16 A coating alloy consisting of 52 w/o Ta, 38 w/o Co, 10 w/o Si was made by arc-melting the elemental constituents according to the procedures of Example 5, reduced to a powder and applied to S.A.E. 1020 mild steel as a SO-mil coating.
  • the 1 x 1 x %-in. thick coupon was fired in vacuum furnace at 1350 C. for 10 seconds under a vacuum of 10' mm. Hg air pressure and was furnace cooled.
  • FIGURE 2 depicts the microstructure of this coating alloy on mild steel.
  • Example 18 A fifty-pound charge of coating alloy consisting of 35 w/o Mo, 58 w/o Ni, 7 w/o Si was induction-melted under an argon atmosphere and atomized into 140 mesh powder by tossing the molten metal from a spinning wheel and quenching the particles by an argon blast such that the particles froze with a generally spherical shape.
  • a 15-mil coating was applied to a sample of pure cobalt plate (approximately A" thick) according to the procedure of Example 5. The composite was then fired in a vacuum furnace at 1220 C. for 3 min. at an air pressure of 10 mm. Hg and furnace-cooled.
  • the Laves phase microhardness value K was 1039, and the matrix microhardness value was 370 under the same indentor load.
  • the diffusion zone between the surface layer and the substrate was approximately one mil thick.
  • Example 19 A coating alloy consisting of 51 W/O W-40 w/o Ni- 9 w/o Si made as described in Example 1 was applied to Udimet 700 (0.13 C, 0.08 Mn, 0.3 Si, 15 Cr, 3.0 M0, 2.4 Ob, 2.2 Ti, 3.0 A1, 0.8 Fe, 29 Co, bal. Ni percent by weight) to a depth of 25 mils.
  • the slurry was prepared and applied as outlined in Example 4.
  • the resultant coating was dried, preheated for 30 min. at 1100 C., fired at 1230 C. for 2 min. in an electric furnace at an air pressure of 10- mm. Hg.
  • the sample was cooled to 1150 C. slowly over a period of 16 min. and then furnace-cooled to room temperature in approximately 2 hrs.
  • the heattreated coating was 15 mils thick as determined metallographically.
  • the thickness of the diffusion zone was less than 10 microns.
  • the coating surface layer consisted of a fine-grained (less than IO-micron particle diameter) Laves phase structure. Microhardness measurement of the individual phases was not feasible, because of the small interconnected grain structure.
  • the composite of deposited coating alloy on molybdenum was then fired in a vacuum furnace at 1450 C. for 1 to 3 min.
  • the resultant coating was 4 to 5 mils thick and was constituted of 85 v/o Laves phase and 15 v/o matrix phase in the surface layer.
  • the diifusion zone between the surface layer of the coating and the bulk of the molybdenum base was less than microns.
  • the coating was metallurgically bonded continuously to the molybdenum base.
  • coated metal bodies having the structure of our invention can also be used to form the coating of coated metal bodies having the structure of our invention.
  • coated metal bodies having the struc: ture of our invention as stated hereinabove can comprise a metal base other. than the metal bases shown in the examples.
  • a process for forming a protective alloy coating on a metal base comprising,
  • ing alloy is reduced to a fine powder in a particle size range below about 140 mesh.
  • said coating alloy consists essentially of the Mo-Ni-Si sytem and said coating alloy is reduced to a fine powder in a particle. size range below l40-mesh.
  • ing alloy is reduced to a fine powder in -a particle size 9.
  • said coating alloy consists essentially of the Mo-Co-Si system and said coating alloy is reduced to a fine powder in a particle size range below about 140-mesh.
  • said coating alloy consists essentially of the Mo-Cr-Ni-Si system and said I coating alloy is reduced to Adjuste powder in a particle size range below about. 140-mesh.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

y 18,1957 W.H.SEVERNS, JR. ETAL 7 3,331,700
METHOD OF COATING METALS Original Filed April 1, 1963 5 Sheets-Sheet l INVENTORS WILLIAM HARRISON SEVERNS, JR. GAYLORD DARREL SMITH 'TTORNEY 1957 w. H. SEVERNS, JR, ETAL 3,331,700
METHOD COATING METALS 3 Sheets-Sheet 2 Original Filed April 1, 1963 y 1957 w. H. SEVERNS, JR. ETAL 3,331,700
METHOD OF COATING METALS Original Filed April 1, 1963 5 sl'meeizs-sheec 3 INVENTORS WILLIAM HARRISON SEVERNS, JR. GAYLORD BARREL SMITH WWW ATTORNEY United States Patent Gil ice 3,331,769 Patented July 18, 1967 3,331,760 METHOD OF COATING METALS William Harrison Severus, Jr., Wilmington, Del., and Gay. lord Darrel Smith, Timoninm, Md., assignors to E. I. du Pont de Nemours and Company, Wilmington, Del., a corporation of Delaware Original application Apr. 1, 1963, Ser. No. 269,818, now Patent No. 3,257,178, dated June 21, 1966. Divided and this application Mar. 16, 1966, Ser. No. 534,831
Claims. (Cl. 117-22) This application is a division of our copending application Serial No. 269,818 filed April 1, 1963, now Patent No. 3,257,178.
This invention relates to novel articles of manufacture comprising a metal body having a protective coating which exhibits outstanding resistance to deterioration from one or more of wear, abrasion, oxidation, and corrosion, and to a method for preparing said articles. More particularly, the invention relates to novel articles of manufacture comprising a metal base to which is bonded a protective metal coating having .a surface layer of al- 10y constituted essentially of 3085 volume percent Laves phase comprising at least two metals in its elemental composition present in 70l5 volume percent of a softer matrix formed of the same elemental components as said Laves phase, said matrix being in quasi equilibrium with said Laves phase. Still more particularly, an embodiment of the invention relates to such novel articles of manufacture wherein the metal base is selected either from a ferrous base metal, a nickel base metal, a cobalt base metal, or an alloy containing at least 50 Weight percent of a combination of two or more of iron, nickel, and cobalt, and the surface layer of alloy constituted essentially of 3085 volume percent Laves phase and 70-15 volume percent of a softer matrix in which the Laves phase is present comprises in its elemental composition two or more transition elements.
The term Laves phase as used herein and in the claims means one or more metallographic constituents of an alloy that have the C (hexagonal), C (cubic), or C (hexagonal) crystal structure described in International Tables for X-Ray Crystallography by N. F. M. Henry and K. Lonsdale, International Union of Crystallography, Kynoch Press, Birmingham, England (1952). Prototypes of the Laves phase crystal structures are, respectively, MgZn MgCu and MgNi Such phase structures, named after Dr. Fritz Laves, who pioneered their study, are unique crystal structures that permit the most complete occupation of space by assemblages of two sizes of spheres. Fundamentally, Laves phase can be represented by the stoichiometric composition AB the large atoms A occupying certain sets of crystallographic sites and the small atoms B occupying other sites, in which the ratio of atomic radii A:B is in a range of about from 1.05 to 1.68. The chemical natures of the component atoms and the electron-atom ratio of a given composition are factors in determining which of the three types of Laves phase will form or the nonexistence of a Laves phase where the size factor is favorable.
Laves phases occur as intermediate phases in numerous alloy systems. Laves phases generally have a homogeneity range, i.e., they can have any of a range of elemental compositions while maintaining their characteristic crystal structure. The atom ratio B:A may range from slightly less to slightly more than 2, possibly the result of some vacant sites in the crystal structure. Also, more than one kind of atom can occupy the large-atom sites, the small-atom sites, or both. Such Laves phases can be represented stoichiometrically by the formula (A C )(B D Where C represents the atoms of one or more kinds that substitute for the large atoms, D represents the atoms of one or more kinds that substitute for the small atoms of the binary Laves structure AB and the quantities x and y have values in the range zero to one. A Laves phase can contain atoms of as many as five or six or even more elements in its crystal structure. For a simple example, the ternary MgCu type of Laves phase in the Nb-Cr-Si system is based on NbCr and has at 1000 C. the homogeneity range 31-37 atom percent Nb, 6369 .atom percent Cr, 02.5 atom percent Si. The distribution of the silicon between the large-atom sites and the small-atom sites is not known. For simplicity, hereinafter, atom percent will be abbreviated by a/o, weight percent by w/o, and volume percent by v/o.
The bulk of the numerous published investigations of Laves phases have been primarily concerned with their crystal structures and the atomic properties and relation ships favorable to their formation. Such phases are recognized in the prior art as generally hard intermetallic compounds which, depending on their elemental composition, may also exhibit good oxidation or corrosion resistance. Nevertheless, the valuable properties of Laves phases of the various elemental compositions and useful applications thereof in materials of construction have received little recognition since alloys consisting of such phases are invariably brittle and difficult to work.
It is, therefore, the object of the present invention to greatly improve the ability of metal bodies to resist wear, abrasion, oxidation, and corrosion, while substantially retaining the inherent physical properties of said bodies by providing said bodies with a metal coating containing in its surface layer a relatively high percentage of Laves phase of certain alloy systems present in a softer matrix of the same multiphase alloy.
In accordance with an embodiment of the present invention, the above and other objects, which will become clear from the following description, are accomplished by providing an article of manufacture comprising a metal base selected either from .a ferrous base metal, a nickel base metal, a cobalt base metal, or an alloy containing at least 50 w/o of a combination of two or more of iron, nickel, and cobalt to which is bonded a protective metal coating having a surface layer of alloy consisting essentially of at least two elements, tWo or more of which are heavy transition elements aggregating at least 60 21/0 of said alloy, the CN12 Goldschmidt radii of the largest and the smallest of said heavy transition elements having a ratio in the range 1.051.68, wherein 3()85 v/o of said alloy is present as Laves phase in a matrix composed of the remaining 70-15 We of said alloy, which matrix is softer than said Laves phase.
Other embodiments of the invention include articles comprising other metal bases such as the reactive metals titanium and zirconium; the refractory metals niobium, tantalum, molybdenum, tungsten, and chromium; copper; and uranium.
As a part of the invention, the novel articles of the invention are formed by means of a novel method involving the steps of (a) forming an alloy consisting essentially of from about 30-85 v/o Laves phase and 70-15 v/o of a matrix, said alloy when in contact with the metal base to be coated having an incipient melting point below the melting point of said metal base, (b) reducing the coating alloy to a powder, (0) depositing the powder on the base metal, (d) melting at least a part of the deposit of powdered alloy by heating in a nonoxidizing atmosphere until the melt wets the unmelted deposit and the underlying surface of the metal body, and (e) cooling the formed article at a rate that leaves the alloy coating with a matrix softer than the Laves phase therein.
The term alloy as used herein and in the claims means a substance having metallic properties and containing in its elemental composition two or more chemical elements of which at least one is a metal. The term base metal as used herein and in the claims with a designated metal preceding it, such as, for example, ferrous or nicke, means a substance having metallic properties containing the designated metal in a predominant amount, preferably at least 50 w/o. The term heavy transition metal as used herein and in the claims means a metal selected from the group consisting of Fe, Co, Ni, Ru, Rh, Pd, Os, II, and Pt of Group VIII; Mn and Re of Group VIII-B; Cr. Mo, W, and U of Group VI-B; V, Nb, and Ta of Group V-B; Ti, Zr, Hf, and Th of Group IV-B; and Sc, Y, La, and Ce of Group III-B of the Periodic Table as shown on page 255 of H. G.
' Demings Fundamental Chemistry, New York, John Wiley & Sons, 2nd ed. (1947).
Articles of the invention have coatings in which the surface layer is of a binary or higher alloy system containing at least two metals, the atomic radii ratio of said metals permitting the formation of Laves phase. The inclusion of heavy transition metals as such metals in the alloy coating has been found to provide, when an appreciable content of the alloy is present in the surface layer of the coating as Laves phase, a surprising combination of benefits to a metal base including improved wear, abrasion, and corrosion resistance; and greater service life at elevated temperatures. Many of the Laves phases of such alloy systems melt at a temperature several hundred degrees higher than the metal base itself. The inclusion of silicon in the alloy coating having the novel structure of the invention is particularly preferred since 7 this element often confers outstanding oxidation and corrosion resistance to the coated article and serves as well to stabilize the Laves phase of the alloy system present in the coating.
Numerous binary and higher Laves phases which are suitable for purposes of the invention, including those containing at least two heavy transition metals, are shown in the prior art. Such binary Laves phases are shown in Alloy Chemistry of Transition Elements, by M. V. Nevitt, Table XIII, pp. 1014-78, appearing in P. A. Beck, Ed., Electronic Structure and Alloy Chemistry of the Transition Elements, New York, Interscience-Wiley, 1963. Such ternary Laves phases are shown in Table XIV of the same reference. Other illustrative examples of alloys consisting largely or entirely of ternary and higher Laves phases, many containing at least two heavy transition elements, are listed below with their melting point i In many of the silicon-containing .alloys shown in Table I, silicon can be replaced with germanium to give additional alloys consisting largely or entirely of Laves phase.
Some ternary and higher Laves phases have a wide.
homogeneity range. For example, the MgZn -type Laves compound Cr Nb Si has at 1000 C. the homogeneity range 22-39 a/o N-b, 41-66 a/o Cr, and 8-27 a/o Si. Such limits represent an approximation to the irregularly shaped phase boundary as it appears in the 1000" C. section of the constitution diagram of the NB-Cr-Si system. Cr Nb Si can be represented by such stoichiometric formulas as (N'bogslg )(clu q5sio z5)2 and (N n -0..)r ms m)z The distribution of the Cr and Si between the large-atom sites and the small-atom sites is not known, although a majority of the Si probably occupies small-atom sites. Similarly, some of the few published constitution diagrams of other ternary alloy systems which form'Laves phase ofier a phase boundary from which an approximation of the composition of the Laves phase in adjoining multi-phase fields of those alloy systems may be made. 7
It is an essential feature of the articles of the invention that in the surface layer of the protective metal coating the Laves phase'be present in a matrix formed of the same alloy system as the Laves phase and that the matrix be softer than the Laves phase. In accordance with the invention, the relative proportions of Laves phase to softer matrix in the surface layer of the coating is to be maintained in a range of from 3085 v/o Laves phase and from 70-15 v/o softer matrix with the Laves phase content at no levelin the surface layer exceeding v/o. The softer matrix which is formed of the same alloy system as the Laves phase may be a substantially pure metal, a solid solution, one or more intermetallic compounds which may form, or a mixture of solid solution and intermetallic compounds, so long as the matrix is softer than the Laves phase present thereing-Preferably the matrix has less than one-third the Knoop hardness of the Laves phase, especially where a deformable, coating is required. Generally, there will be no substantial mitigation of brittleness obtained Where the matrix has more than about of the Knoop hardness of the Laves 7 from the following detailed'description and the drawings in which:
FIG. '1 is photomicrograph (160x) of a nital-etched cross section through the coating on a mild-steel metal base M coated with a 51 w/o W-40 w/oNi-9 w/o Si coating alloy according to the invention.
FIG. 2 is photomicrograph (x) of a nital-etched cross section through the coating on a mild steel 'base cross section through the coating on a mild steel base' coated with a 35 w/o M0 55 w/o Ni -IO w/o Si coating I alloy according to the invention.
FIG. ,5 is a fragment of a triangular constitution dia-,
gram of the molybdenum-nickel-silicon system showing the nickel-rich portion thereof.
The drawings illustrate the preferred cles of the invention involving a metal base, a protective alloy coating metallurgically bonded to said metal'base,
wherein the surface layer of said alloy coating contains from about 30 to 85 W0 Laves phase and from 70 to 15 We softer matrix. i a I As is evident from FIGS. 1-4, the metallographic detail of the novel structure of the articles may vary considerably, especially in the surface layer of the coating S and the layer of the coating Dbetween the surface layer and thebulk of the metal base M. FIGS. 1, 2, and 4 show coatings wherein the surface layer thereof consists of'hypereutectic alloy, i.e.', an alloy consisting essenstructure for artitially of excess Laves phase and a lower melting matrix. In FIG. 1, the Laves phase occurs mainly as a skeleton structure of interconnected grains interpenetrated by the matrix. In FIG. 2, the Laves phase occurs as dispersed grains enveloped by the matrix. In FIG. 4, the Laves phase occurs partly as dispersed nodular grains and partly as interconnected nodular grains. The nodular Laves phase grains are believed to result from partial solution of Laves phase grains in the deposited coating alloy during formation of the alloy coating; a portion of which apparently interconnect by liquid sintering. FIG. 3 shows a void-free coating wherein the surface layer thereof consists substantially of a eutectic wherein the Laves phase occurs mainly as lamellae or thin grains embedded in a matrix.
The term surface layer as used herein and in the claims is intended to refer to the outermost portion of the coating, constituting at least one-third of the coating, bounded on the outside by the surface of the coating and on the inside by the imaginary surface nearest the surface of the coating and parallel thereto that intersects alloy containing not more than 30 v/o Laves phase.
The determination of volume percentages of Laves phase and matrix in the surface layer of the coating is made from a photomicrograph, at least 400x, that clearly shows the outlines of the grains of the Laves phase in a representative cross-section of the coating taken generally normal to the surface of the coating. The section photographed is polished and etched. The area of the photomicrograph selected for measurement extends over the full thickness of the surface layer for a distance generally parallel to the coating surface twice this thickness but in no event is said distance less than mils on the actual coating. A thin line generally parallel to the surface of the coating is drawn at the middle of each of three equally wide bands parallel to the surface of the coating into which the surface layer within the measurement area can be divided. The fraction of the length of each of these three lines lying over particles of Laves phase is measured. The three fractions are average arithmetically. The average is multiplied by 100 and taken as being equal to the volume percent of Laves phase present in the surface layer of the coating. The volume percent of Laves phase present in the surface layer of the coating is subtracted from 100, and the remainder is taken as being equal to the volume percent of matrix present in the surface layer of the coating. Referring to FIG. 4, an illustration of utilizing the above-described technique may be gained by reference to lines A-A, B-B, and C-C. By averaging the fractions of these lines (0.76, 0.55 and 0.65) transversing Laves phase grains, it is determined that the surface layer of the coating of this article contains 65 We Laves phase and 35 v/o matrix.
The layer of coating D between the surface layer and the bulk of the metal base may vary in thickness as may be seen from FIGS. 1, 2, and 3. This portion of the alloy coating is constituted of less than 30 v/o Laves phase and, for the coated articles shown in FIGS. 1-4 formed in accordance with the method of the invention, is a diffusion zone frequently including part of the metal base and as seen in FIG. 2 may contain small amounts of an innate phase. The diffusion zone forms a continuous metallurgical bond between the surface layer of the coating and the underlying base metal.
Other alloy coatings of various compositions suitable for the purposes of the invention on a metal base exhibit a variety of grain shapes, grain sizes, and dilfusion layer thicknesses, depending on the crystal habit and conditions of formation of the coating; it being understood that the foregoing drawings merely illustrate certain structural embodiments of the unique articles of the invention and in no way are to be considered limiting the invention.
The presence of a softer matrix in the proportions specified for the surface layer of the coatingof the articles of the invention provides multiaxial support for the Laves phase and greatly mitigates the inherent brittleness of the Laves phase. Although the unique coating structure of the invention present on metal bodies of ferrous base metals, nickel base metals, and cobalt base metals exhibits some definite ductility which is surprisingly superior to what would be available with a continuous layer of Laves phase formed on the same base metal, the actual degree of ductility of articles of the invention obviously will depend in large part on the composition of the alloy coating of the article. For example, alloy coatings of the Mo-Fe-Si system constituted, in the surface layer of the coating, essentially of Laves phase and a softer matrix of solid solution of silicon and molybdenum in alpha iron have definite but limited ability to undergo plastic deformation without fracture. These alloy coatings are used to best advantage on thick, rigid metal bodies and it is found advantageous to not exceed a coating thickness of approximately 5 mils to avoid the appearance of cracks in the coating. On the other hand, alloy coatings of the Mo-Ni-Si system constituted, in the surface layer of the coating, essentially of Laves phase and a softer matrix of solid solution of the other elements in nickel can undergo extensive plastic deformation Without fracture, particularly at low proportions of Laves phase and high proportions of matrix within the range of limits defined for the invention, owing to the exceptionally high ductility of these solid solutions forming the matrix. Nickel confers its ductility on alloy coatings having a nickel-rich solid-solution matrix, for example, in the W-Ni-Si, Mo-Fe-Ni-Si, Mo-Cr-Ni-Si, and other coating alloy systems suitable for the invention. Formable metal bodies having the more ductile alloy coatings metallurgically bonded thereto can be shaped without disruption of the coating even with coating thicknesses up to 20 mils or more. These coatings, therefore, are highly useful on both thick, rigid metal bodies and flexible metal bodies. The ductility of such alloy coatings is enhanced by decreased proportions of Laves phase relative to the softer matrix, by decreased hardness of the matrix relative to the Laves phase, and by occurrence of the Laves phase in discrete nodular grains. On the other hand, such alloy coatings are made less ductile by increased proportion of Laves phase relative to the softer matrix, by increased hardness of the matrix relative to the Laves phase, and by occurrence of the Laves phase as interconnected grains. An outstanding feature of the invention, therefore, is the adaptability of the articles hereof to the requirements of different end uses. Obviously, the coating thickness of the articles of the invention may vary between wide limits depending on various of the considerations discussed hereinabove. Normally, in order to gain a significant degree of improvement in one or more or the properties of wear, abrasion, oxidation, or corrosion resistance, the coating thickness should be at least one mil thick. Coatings in excess of 250 mils normally will not be required or desired for economical reasons although certainly such coatings are contemplated as falling Within the invention.
A further characteristic of the coating of the articles of the invention is the ability of the Laves phase and the softer matrix of the alloy coating to coexist indefinitely in their mutal presence at elevated temperatures. Although such elevated temperatures are limited by the decomposition temperature of the Laves phase, they usually extend at least to the incipient melting point of the alloy coating. The surface layer of the alloy coating may contain material derived from such underlying metal base. The degree of dilution from such material is dependent in large part on the technique employed for metallurgically bonding the coating the metal base, more particularly, on the temperatures and time of the coating process and also on the exposure of the finished article to elevated temperature durihg use. As with all alloy coatings metallurgically bonded on a metal body of different composition than the alloy coating, sufiiciently long exposure at sufficiently high temperature alters the alloy coating composition by interdiifusion between the coating the 7 metal body. Despite the possibility of interditfusion as explained above, articles or the invention exhibit outstanding useful life at elevated temperature encountered in numerous applications particularly in comparison to the corresponding unprotected base metals.
Articles of the invention are preferably formed in accordance with the novel method of the invention involving preforming a coating alloy constituted essentially of Laves phase and matrix, said alloy having incipient melting point below the melting point of the metal base; reducing the alloy to a powder, depositing the coating-alloy powder on the metal base; melting at least a part of the deposit of powdered alloy by heating to accomplish a metallurgical bond; and cooling the coated metal body at a rate that leaves the coating with a matrix softer than the Laves phase therein.
In carrying out the method of the invention, it has been found that the elemental components of the coating must be prealloyed prior to deposition on the metal. base and firing, to insure a coating which is pore-free and integrally bonded to the metal base. Use of the elemental components of the coating in powder form without being prealloyed'results in coatings which frequently crack or even spall from the metal base.
Accordingly, in executing the method of the invention, a coating alloy constituted essentially of about 30-85 We Laves phase and about 75-15 v/o matrix and having 7 an incipient melting point below the melting point of the metal base to be coated is first formed from predetermined proportions of the alloying elements. The present state of the art does not make it possible to reliably predict on purely theoretical grounds the kinds and proportions of elements to form such a coating alloy. However, refer- V ZrFe and a solid solution of iron in zircomum can be ence to published constitution diagrams, where available, I
will give a first approximation of suitable coating-alloy compositions and serve as a guide for varying the relative proportions of the coating-alloy components to arrive at the volume percentages of Laves phase and of matrix for the coating of the articles of the invention. Usually, some trial and error and testing of the finished coated metal bodies must be practiced to obtain in the coating of the finished coated metal body asurface layer constituted of the desired volume percentages of Laves phase and softer matrix.
As an example of the execution of the invention, let it be desired to form a coating on a pure iron base using a binary coating alloy according to the novel method of the invention. A Kubaschewski plot (the energy'ratio defined as H (solute)/H (solvent) plotted against the radius ratio) is useful in predicting whether two elements will form a Laves phase. (See O..Kubaschewski, The Physical Chemistry of Metallic Solutions and Intermetallic Compounds, Paper No. 3c, H. M. Stationery Oflice, London, 1959.) Reference to published binary constitution diagrams shows many alloy systems containing a Laves phase that forms with the primary solid solution of one element of theLaves phase in the other element of the Laves phase a eutectic melting below the melting point of both iron and the binary Laves phase. An alloy having a composition intermediate the terminal phases of the eutectic, ile., intermediate the composition of the saturated primary solid'solution and the composition of Laves phase nearest the primary solid solution, will, in such alloy systems, lie in a two-phase field constituted of the Laves phaseand the primary solid solution. Using-the well known inverse lever-arm relationship, the composition of an alloy in such two-phase fields of suchalloy systems constituted of about 30-85 We Laves phase and about 15 v/o primary solid solution can be readily selected, recognizing that the ratio of the volume percentages of the two phases are usually roughly equal to the ratio "of the weight percentages and to the ratio of the atom percentages of the two phases constituting the selected alloy. Since Laves phases are generally hard and primarysolidsolutions are generally soft, these two-phase alloys 3 will generally have a matrix softer than the Laves phase present in said matrix. More particularly, the iron-zirconium alloy system contains a Laves phase ZrFe (M.P.
1645 C.) that forms with the saturated. primary solid 7 7 applied on a zirconium base, using a firing. temperature of about 935950 C., since the eutectic of the Laves phase and the primary solid solution of iron in" zirconium melts at 934 C., i.e., below both the melting points of the terminal phases of the eutectic and of the zirconium base (M.P. 1860 C.). Similarly, alloys of the iron-niobium,
iron-tantalum, iron-titanium, and iron-uranium alloy systerns can be formed on an iron base. Alloys of the ironuranium system can also be applied on a uranium base according to the novel method of the invention, The constitution and composition of the surface layer of the finished coated iron base most suited for a particular application will, of course, depend on the requirements of the application and should be determined by appropriate tests of the variously coated metal base.
As a further example of the execution of the invention,-
let it be desired to select the composition of a molybdenum-nickel-silicon alloy for use in coating low-carbon steel according to the novel method. of the invention. Reference to the published constitution diagramof the molybdenum-nickel-silicon system (H. 'Pfautsch, .Zeit-' scrift fur Metalkunde 17, 48-25 (1925)) given in FIG URE 5, shows a two-phase field (kph) occupied by saturated primary solid solutions of molybdenum and silicon in nickel'and by the compound Ni Mo Si, a Laves phase Mo(Ni Si Begin by selecting compositions A, B, and C, each constituted of different proportions of Laves phase and saturated primary solid solution of molybdenum and silicon in nickel, from the, slender triangular two-phase field kpr. The compositions are separately arcmelted, reduced to powder, and applied to test pieces of low-carbon steel base, and the resultant composites are fired at a temperature just suflicient to form a melt that Wets the metal base and any unmelted Laves phase, according to the novel method of the invention. Although the firing can be continued until the coating alloy is com:
pletely melted, it is preferred to discontinue the firing while the coating alloy is in,a partly melted, pasty condition, especially where a thick surface layer of coating undiluted by the base metal is, desired. The test pieces are then furnace-cooled, and the coating on each is examined metallographically and by X-ray analysis to determine the structure of the coating. Attention is given to the volume percent and manner of occurrence of the Laves phase and the matrix in the surface layer of the coating, to the continuity of the metallurgical bond between the coating and the metal base, and to the microhardness of the phases present. This examination is necessary becausethe' volume percentages of Laves phase and matrix in the surface layer, the'thickness of the surface layer and of the difiution of the powdered coating alloy onto the metal base,
and the furnace atmosphere, as will be appreciated by those skilled in the coating arts. Upon completion of theseries of experimental coatings, a set of. curves is made showing such information as the volume percent Laves phase in the surface layer of the coating, the thickness of the surface layer, the microhardness of the Laves phase and of the matrix, etc., plotted against coating-alloy composition. These data are used to match coating characteristics with application requirements.
Where constitution diagrams are not available for a ternary alloy system known to form Laves phase and suitable as an alloy coating for articles of the invention, a guide to the selection of relative proportions of the alloying elements in order to obtain proportions of Laves phase and softer matrix falling within the limits set for the alloy coating may be gained as follows.
A tie line is drawn on triangular coordinate plotting paper from the known or assumed composition of the binary Laves phase AB; across the diagram at constant percentage of the A-atom, plotting the compositions in atom percentages. Ternary Laves phases in the ternary alloy system will in general occur along this tie line and have a homogeneity range extending on both sides of it. Ternary Laves phases composed of two metals and a metalloid, such as silicon or germanium, usually contain not over about 33 a/o metalloid. A ternary Laves phase, such as Mo (Ni Si may be stabilized by the metalloid, even though a Laves phase, such as MoNi does not occur in the binary edge of the ternary diagram. Other binary Laves phases composed of metals and having the same type of Laves phase structure, such as ZrFe (both being MgCu -type Laves phases), form a complete series of solid solutions with the result that a ternary Laves phase is present along the entire tie line. Still other binary Laves phases composed of metals and having different types of Laves phase structure, such as ZrMn (MgZn type) and YMn (MgCu type) occur in the corresponding binary edges of the ternary diagram and have appreciable mutual solubility that is, however, incomplete. Hence, ternary Laves phases occur along the end portions of the tie line but not in the central portion. Still other binary Laves phases composed of metals and having the MgCu -type structure (one in the upper band of stability and one in the lower band of stability discussed by A. E. Dwight, Trans. Am. Soc., Metals 53, 479-500 (1961)), such as HfV and HfCo have incomplete mutual solubility but form in addition a ternary Laves phase in the central portion of the tie line.
Many ternary alloys containing a Laves phase are suitable for application, according to the novel method of the invention, to a metal base having a melting point above the temperature of incipient melting of the selected coating alloy. In order to select the compositions of potentially suitable coating alloys constituted of about 30-85 v/o Laves phase and about 70-15 We matrix for initial coating experiments, a second tie line is drawn from the estimated composition of ternary Laves phase to an apex of the ternary diagram, recognizing that the greatest probability of success will result from starting with a ternary Laves phase containing less than about 35 a/o of the third element not found in the binary Laves phase A13 and drawing the tie line to the B-atom apex of the ternary diagram. Preparation of the coating alloy and evaluation of the coating on the metal base is then carried out following the procedure described above.
Coated bodies having a surface layer of still more complex alloy constituted of 30-85 v/o Laves phase and 70-15 We matrix can be prepared using as a guide the fact that Laves phases are known in which the large A atom is partly substituted by two or more other kinds of metal atoms of comparable size and the small B atom is partly substituted by two or more other kinds of atoms, at least one kind being a metal atom, of comparable size to the B-atom.
The coating alloy is preferably formed by arc-melting the ingredients in a suitable container, such as, on a watercooled copper hearth. The arc-melting is preferably accomplished under an inert atmosphere, such as, argon. As an illustration, for the 51 w/o W-40 w/o Ni-9 w/o Si alloy, found suitable as a coating composition for the invention, Ai-in. lumps of silicon are placed on the hearth,
tungsten in the form of A x 4in. chips is placed over the silicon, and Vs to A-in. nickle shot are placed over the tungsten. When the arc is struck, molten nickel and molten nickel-tungsten alloy run through the charge and form a covering that dissolves silicon and minimizes volatilization of the silicon. The charge is solidified, turned over, and remelted as many as six times to insure a homogenous alloy. Good results may also be obtained by melting the starting materials in an inert crucible under an inert gas blanket. The melt is then cooled in the crucible or cast into ingots of convenient size. Excessive temperature rise may result from reacting a large charge of alltoy components containing silicon. This can be avoided, however, by progressive and stepwise addition of the components to an initial melt of the coating alloy in the crucible.
The coating alloy is then powdered by crushing and 'ball milling to a particle size suitable for the product being made. For making smooth coatings, a powder passing through a mesh, or even finer, screen is preferred. For making rough coatings, powder made from coarsegrained coating alloy. and passed through a IO-mesh, or even coarser, screen can be used. Where the alloy is so tough as to defy crushing, it is converted to chips in a machine tool with a metal carbide cutting tool. Ball milling of the crushed pieces or chips is carried out in a closed ball mill. It is preferable to employ a container made of plain carbon steel and a grinding medium of a metal carbide material, such as tungsten carbide, to avoid any'contamination of the powder. Use of a porcelain container and silicious grinding medium produces a debris in the alloy coating powder which is found to result in porous coatings and incomplete metallurgical bonding of the coating to the base metal. It is preferable to limit ball-milling time to about one hour per batch in order to minimize contamination of the alloy coating powder as well as attrition of the equipment. This is made possible by reducing the alloy to pieces in. or less in crosssection, ball-milling the pieces as described, separating the fraction of the charge having the desired size as product, and recycling the over-sized ball-milled material for additional ball-milling. It is a safety precaution to ballmill the alloy under a blanket of inert gas or in the presence of enough liquid hydrocarbon, such as benzene, to thoroughly wet the powder formed. The dry product powder can be handled in the open air without detrimental reaction with oxygen or moisture; however, the powder should be stored in well-filled gas-tight containers. The coating alloy can also be made by other methods known in the art, such as directly from the melt by spray-cooling in an inert gas.
The powdered all-oy coating composition is then deposited on the metal base by any suitable technique. Flame-spraying, plasma-jet spraying, and brushing, dipping, or spraying with a slurry of the powder in a solution of a temporary binder are satisfactory techniques. For fiat surfaces it is preferred that the powdered coating composition be deposited on the metal base by means of a commercial plasma-jet gun, such as the Model F-40 gun made by Thermodynamics Corp, Lebanon, New Hampshire. Preferably the metal base is cleaned prior to deposition of the coating composition, for example, by grit-blasting. The plasma-jet gun is supplied with dry alloy coating powder preferably in a size range minus 270 mesh plus 325 mesh. For deposition on the walls of holes, undercuts, and the like, that are not satisfactorily coated by the plasma-jet gun, it is preferred to employ a slurry of the powder by brushing or spraying with one or more coats. Such a slurry can be readily formed by mixing the coating-alloy powder having a particle size passing through a 140-mesh screen in a solution of an acrylic temporary binder dissolved in acetone or other inorganic solvent having suitable volatility.
Firing of the metal base having a deposit of coating alloy is preferably carried out by heating the work in I 1 argon at a pressure of mm. Hg in an electric furnace. Alternatively, the article can be heated in an electric vacuum furnace at an air pressure of 0.001 mm. Hg. The article may also be fired in an electric furnace filled with hydrogen at a pressure slightly above atmospheric pressure, but in such a procedure the hydrogen should have a low content of water to insure a good metallurgical bond between coating and substrate. The dew point of the hy- V I drogen preferably is reduced to minus 45 F.
It is essential in the above firing technique that the deposit of the alloy coating on the metal base be heated until a melt forms and spreads over the surface of both the metal base underlying the deposit and any unmelted part of the coating alloy. The matrix of the preformed coating alloy melts immediately when heated to its incipient melting point, and rapid heating to this temperature level is preferred since it minimizes the time needed to form sufiicient melt for formation of the product article. Furthermore, rapid heating to the incipient melting point of the matrix insures metallurgical bonding of the coating to the base metal With minimum damage to the inherent physical'properties of the metal basecaused by overheating.- It is preferred to discontinue the firing while the coating is a semifiuid mixture of melt and unmelted residue of the deposited powder. Moreover, the time firing is continued after the first appearance of melt affects the relative thickness of the diffusion zone and the surface layer of the coating. Prolonged firing causes sufficient dilution of the alloy present in the diffusion zone to result in a reduction in the amount of Laves phase'in the diffusion zone, adjoining the surface layer of the coating. The optimum time of firing the product article will obviously vary depending on the coating alloy selected, 'the relative amounts of Laves phase and matrix present in the coating,
and the characteristics of the base metal involved. As an illustration, however, it has been found that the firing of deposits of various powdered coating alloys on chunky 2-lb. steel bodies can be completed at 1250 C. within approximately 5 min. after the first appearance of melt onthe base metal The cooling technique for the fired article is dependent largely'on the intended end use of the finished article as Q I well as the metallurgical characteristics of the'initial base metal. Furnace-cooling of the article provides, in the S111? face layer of the coating, a matrix softer than the Laves phase. Rapid quenching or other heat-treatment techniques, for purposes well appreciated in the prior art, may also be practiced if desired.
Other coating techniques can beoperated, if desired,
to form the noveliarticles of; the invention. One such technique which may be successfully adapted to form the articles hereof, particularly clad sheets and slabs, is cladding either by hot-rolling, by high energy impaction, or
by simply heating a close-fitting'assemhly of a piece of coating alloy and a'metal body in inert atmosphere or dry hydrogen to about theincipient melting point of the coat ing alloy until their contacting surfaces autogenously 'braze together. However, added brazing metal and fiux may be employed; added brazing metal is necessary Where the brazing temperatures used are substantially below the incipient melting point of the cladding alloy incontact with the metal base. In each of the cladding methods, the
V clad metal body is cooled at a rate that leaves the matrix of the protective cladding softer than the Laves phase bond between the base metal and the coating alloy. The
Y surface layer of the alloy coating and the bulk of the base product article, the Laves phase showed a Knoop hard-.
less-ductile coating alloys are preferably formed by casting and machining to the desired shape and size and then brazing the casting to the metal body as described. The finished article formed by this coating technique will contain, in the manner explained hereinabove, a diffusion zone comprising part of the alloy coating intermediate the metal. Formation of articles hereof by cladding is best employed for coating alloys which possess high inherent ductility.
Another technique which maybe employed to form V the coated articles of the invention is by hotdipping'the metal base into a molten bath of the coating alloy. This method is particularly adaptable where the metal base to be coated has a uniform cross section such as round wires, rods, and bars.
Where articles of the invention are not intended for 7 The coating is then bonded to the base metal by means of an adhesive, such as an epoxy resin or a vinyl-acrylic polymeric binder. The article formed in this manner, of course, does not have a diffusion zone and the coating is not metallurgically bonded to the substrate. Nevertheless, the bond between coating and substrate is adequate for nearly a-ll end uses, with the possible exception of uses calling for extended service at high temperatures or exposure of the adhesive to solvent or chemical environments which might cause degradation of the adhesive followed by loss of a good bond between coating and substrate;
The following examples illustrate the preparation of preferred articles hereof. wherein the alloy' coating is metallurgically'bonded to the metalbase both by the novel method of the invention and also by. cladding. In 7 the sake of brevity, the metal, base is largely limited in these examples to ferrous base metalsj It is to be under-- stood, however, that the same coatings and other coatings within the invention can be readily formed on othermetal bases as well.
Example 1 i A coating alloy consisting of 51 w/o W-40 w/o Nn-9 W/O Si was formed by arc melting weighed amounts of the component elements in argon at a pressure of 700 powder was deposited by plasma-jet gun on As-in; and A-in. plates of S.A.E. 1020 mild steel. The resulting coated specimens were fired '3 min. at 1180" C. in a vacuum electric furnace at a pressure of about 0.001 mm. Hg and were furnace-cooled. The surface layer of the [finished coating was about 11 mils thick. Laves phase Was identified in the surface layer 'of' the coating of the formed article by-X r'ay difiraction, the relative amounts of'Laves phase and matrix being'approximately 48 We r and 52 v/o, respectively. In "the surface layer ofthe ness of 630 and the matrix showed a Knoop hardness of 240. The coated steel (4 x 4 x fit-in. plates) had excellent resistance to a spray of aqueous 20 w/oNaCl solution at F..during 14 days exposure. 3
Example An extrusion die having a 0.1i 57-in. land and a throat diameter of 0.867 in. at the land was madeof H-13 tool steel 'w/o Cr, 1.5 w/o Mo, 1.0 w/o V, 0.35 w/o C, bal. Fe). A coating alloy consisting of 51 w/o W-40 w/o Ni-9 w/o Si was made by arc-melting and was reduced to powder. The powdered alloy was deposited to a depth of 24 mils on the land and working face of the die by plasma-jet gun; The resulting coated die was fired 20 min. at 1180 C. in an electric furnace at a pressure of 10- mm. Hg and was cooled in the furnace. The fired coating was about mils thick. After the coated die was tempered for one hour at 610 C. and furnace cooled, which heat-treatment was repeated, the hardness of the H13 steel was R 49. The throat of the die was then finished to 0.850 in. diameter by Elox machining followed by grinding and polishing. In the finished die, the land had 11 mils of coating, including '8-9 mils of surface layer consisting of approximately 50 v/o Laves phase (K =9001000) and 50 We of a softer matrix (K =600), and the coating was free of pits or cracks. The measured lattic parameters of the Laves phase (C-14 hexagonal crystal structure type) were a=4.731 A. and c=7.546 A.
Twenty billets (9 in. diam. x 28 in. long) of cast aluminum alloy AA 6063 (0.7 w/o Mg, 0.4 w/o Si) were extruded through the preheated (400-430' C.) die at speeds up to 325 ft./min. into bars having good commercial finish. Oil dag lubricant was applied to the die before each extrusion. Under comparable conditions, extrusion through conventional uncoated steel dies was limited to about 175 ft./min.
Example 3 A coating alloy consisting of 35 w/o Mo-55 w/o Ni lO w/o Si was formed, reduced to powder, and deposited on S.A.E. 1020 mild steel as in Example 1. The coating alloy contained about 50 v/o Laves phase having a Knoop hardness of 1040 and 50 v/o matrix having a Knoop hardness of 340. The matrix melted incipiently at about 1230 C. The coated base metal specimens were fired 3 min. at 1300 C. in a vacuum electric furnace at a pressure of 0.001 mm. Hg and were furnace cooled. The coating was metallurgically bonded continuously to the surface of the steel. By electron beam microanalysis, the surface layer consisted of 35 v/o matrix (K =200) composed of 2.3 w/o Mo-34.1 w/o Ni-60.6 w/o Fe-3.8 w/o Si and 65 v/o Laves phase (K 8l0) composed of 40.5 w/o Mo-21.7 w/o Ni-28.3 w/o Fe-9.2 w/o Si. The coated surface of the specimen was exposed to aqueous 10 w/o HCl at 50 C. for 10 days under static conditions. The coated surface corroded at a rate of 7.2 mils per month, whereas uncoated S.A.E. 1020 steel corroded at a rate of 396 mils/ mo. under the same conditions.
Example 4 A shear-type extrusion die having a 0.184-in. land and a throat diameter of 0.864-in. was made of H-13 steel. A coating alloy consisting of 45 w/o W-40 w/o Co-15 w/o Si was made by arc-melting the elements in argon and was crushed and ball-milled to minus 400-mesh powder. One volume of powdered alloy was slurried in three volumes of 10 w/o solution of acrylic binder in acetone and was sprayed to a depth of about 14 mils onto the land and working face of the die. The resulting coated die was dried, preheated for 10 min. at 1100 C., fired 10 min. at 1200-1210 C. in an electric furnace at a pressure of about 10- mm. Hg, and cooled in the furnace. The fired coating was 7 mils thick as determined from the throat dimensions. After the coated die was tempered for one hour at 610 C. and furnace cooled, which treatment was repeated, the hardness of the H-l3 steel was R 47-49. The land was then ground to a throat diameter of 0.857-in. In the finished die, the land had 3.5 mils of coating, the surface layer of which contained approximately 38 v/o Laves phase K =530) and 62 We of a softer matrix (K =240). The measured lattice param- 14 eters of the Laves phase (C-14 hexagonal crystal structure type) were a=4.708 A. and 0:7.673 A.
Forty-five billets (9-in. diam. x 28-in. long) of cast aluminum alloy AA 6063 preheated to about 430 C. were extruded through the preheated die (400-430 C.) at speeds up to 250 ft./min. into -ft. bars having good commercial finish and cross-sectional dimensions. Graphite-in-oil lubricant was applied to the die. The die was fit for further use. Extrusion of the same alloy through conventional uncoated steel dies, with an application of caustic solution after each push to clean the die, was limited to about 175 ft./min. when producing bars with comparable surface finish. Extrusion at 250 ft./min. using conventional uncoated steel dies and graphite-in-oil lubricant, instead of caustic solution, produced bars having inferior finish.
Example 5 An alloy consisting of 51 w/o W-40 w/o Co-9 W/O Si was made by arc-melting 510 g. of tungsten chips, 400 g. /s-in. cobalt shot, and 90 g. of lump silicon, all ingredients being at least 99.9% pure. The alloy was reduced to minus -mesh powder by crushing and ball-milling. One volume of the powder was slurried in three volumes of a 10 w/o solution of acrylic polymer in acetone. The slurry was brushed onto Aa-in. thick pieces of S.A.E. 1020 steel and air-dried, leaving a deposit of about 10 mils thick. The coated pieces were fired 3 min. at 1320 C. in a vacuum electric furnace and were cooled in the furnace. Laves phase was identified in both the coating alloy and the surface layer of the coating by X-ray diffraction; the surface layer containing approximately 64 v/o Laves phase (K =800-l040) and 36 v/o of a softer matrix (K =470). The measured lattice parameters of the Laves phase (C-14 hexagonal crystal-structure type) were a=4.721 A. and c=7.599 A. The coated steel was bent 15 around a /2-in. diameter pin at room temperature, placing the coating under tension, without cracking the coating. The coated steel was similarly bent 70, but with the coating in compression, without cracking the coating.
Example 6 A coating alloy consisting of 35 w/o Mo-55 w/o Co-10 W/O Si was formed by arc-melting weighed amounts of the elements in argon at a pressure of 700 mm. Hg. The alloy contained 90 v/o of Laves phase in a matrix having an incipient melting point of about 1220 C. Laves phase was identified in the alloy by X-ray diffraction. The matrix appeared to be a mixture of phases and melted incipiently at 1220 C. The alloy was crushed and ball-milled in a steel mill to minus 400-mesh powder. A slurry of the powder in an acetone solution of acrylic binder was sprayed onto coupons of S.A.E. 1020 steel. When dried in the air, the deposit was 1012 mils thick. The coupons were fired at 1225 C. for 10 min. in a vacuum electric furnace at a pressure of about 10* mm. Hg, and were cooled in the furnace. Laves phase and Co Si, the main constituent of the matrix, were identified in the surface layer of the coating by X-ray diffraction; the surface layer containing approximately 72 v/o Laves phase (K =1100) and 28 v/o of a softer, lower-melting matrix 1m)= Example 7 A shear-type extrusion die having a 0.186-in. land and a throat diameter of 0.864-in. at the land was made of H-13 tool steel. A coating alloy consisting of 35 w/o Mo-55 W/o Co-l0 w/o Si was made and applied to the die as in Example 2. The hardness of the H-13 steel in the tempered coated die was R 50-51. After the land of the die had been ground to a throat diameter of 0.852-in., the finished die had 6 mils of coating; the surface layer of said coating containing approximately 72 We Laves phase and 28 We of a softer lower melting matrix.
Forty-six billets (9-in. diam. x 28-in. long) of cast aluof extrusions.
Under comparable conditions, extrusions through conventional uncoated steel dies, with conventional cleaning Was caustic solution after each push, was limited to about 175 ft./min.
Example 8 A coating alloy consisting of 35 w/o Mo-55 w/o Co-lO w/o Si was made by arc-melting molybdenum chips, /sin. cobalt shot, and A to /z-in. silicon lumps, all at least 99.9% pure, and was reduced to powder, as in Example 1. The powder was pressed at room temperature under 50 tons/ sq. in. pressure into a At-in. thick slab. The slab was sintered at 1220 C. for 10 min. in a vacuum electric furnace at a pressure of 10* mm. Hg, cooled in the furnace,
and machined to a flat plate 0.203 in. thick. The clean platewas set on a fiat clean surface of a piece of H-l3 steel 0.760-in. thick, without added braze metal or flux,
and the couple was fired in the same furnace at 1195 C. for 10 min., and then cooled in the furnace. Although the sharp corners of the silicon-alloy cladding were retained, sufiicient liquid formed autogenously at the interface between the clad metal and the H-13 substrate to bond the two materials together. The'materials were metallurgically bonded continuously over their entire contacting surface into an integral piece. This cladding material had exhibited a transverse rupture strength of 75,000 lb./ sq. in. at room temperature and 99,000 lb./sq. in. at 800 C. When exposed to still air for 100 hrs. at 850 C., it changed 0.012 mg./sq. cm. in weight, indicating good resistance to oxidation. The product article had 203 mils of coating; the surface layer of said coating containing approximately 80 v/o Laves phase (K =10401230) and 20 v/o of a softer, lower-melting matrix (K =230340) Example 9 Example 10 One hundred fifty grams of Fe powder, 260 g. of Mo powder, and 90 g. of Si powder, all at least 99.9% pure, were arc-melted under argon, making an alloy composed '0f 52 w/o Mo-30 W/o Fe-IS w/o Si. The alloy button was turned over and remelted six times to ensure homogeneity. There was no detectable weight change during the arc- V melting. Laves phase, alpha iron, and a cubic phase with a lattice parameter of 9.09 A. were identified in the button by X-ray diffraction; The button was crushed, passed 7 through a No. 3 /2 U.S. sieve-(0.223-in. opening), and
then ground with a steel mortar and pestle to minus 100 mesh. A mixture of the ground material and 25 g. of powdered ZrO was milled for 15 min. at 85 rev./min. in an S-in. diam. cylindrical steel ball mill containing /2 x /2 x A-in. pieces of tungsten carbide as the grinding medium. Ninety weight percent of the charge to the ball mill was recovered in the minus 230-mesh fraction of the ballmilled product. Powder passed by a 270-mesh screen but 7 held by a 325-rnesh screen was deposited on grit-blasted S.A.E. 1020 steel plates x /2 XM: -in.), using a plasma torch supplied with 104 cu. ft./hr."of argon, 5 cu. ft./ hr. of hydrogen, and 15 kw. of electrical power; The resulting coated plates were heatedat 1250 C. for 1hr. in a vacuum furnace containing argon at 10 mm. Hg pressure and were cooled in the furnace.
The 17-mil coating thus produced was bright, crackfree, and united to the steel by a continuous metallurgical bond. Interconnected nodular grains of a hard phase (K =1100), which are characteristic of liquid sintering, constituted We of the 6-mil surface layer of the coating and were interpenetrated and embedded in a softer matrix (K =340). The nodular phase was identified by X-ray structure analysis and electron-beam microanalysis at MgZn -type Laves phase having the composition 45 w/o Mo-48 w/o Fe-7.3 w/o Si (29 a/o Mo-54 a/o Fe-l7 a/o Si), which is equivalent to the stoichiometric formula (Mo Si (Fe si h. The matrix of the surface layer was identified as alpha iron solid solution having the composition 2.5 w/o Mow/o Fe-6.6 w/o Si (1.4 a/o Mo-86 a/o Fe-12.6 a/o Si). About 5 We of the matrix phase consisted of a dark gray rounded phase containing iron, silicon, .and a light element, prob-ably oxygen. Since the Laves phase contained only 45 w/o Mo and the matrix phase contained only 2.5 W/O Mo whereas the deposited powder contained 52 w/o Mo, the surface layer lost molybdenum during liquid sintering. Likewise, the surface layer lost silicon and gained iron. The calculated over-all composition of the surface layer of the finished coating was 38.8 w/o Mo-53.8 w/o Fe-7.2 w/o Si (25 a/o Mo-59 a/o Fe-16 a/o Si).
Underlying the surface layer of the coating was persion of a fine acicular phase (25 w/o Mo-25 w/o Fe-50 w/o Si) in the solid solution matrix. Still nearer the steel substrate, the matrix was free of the fine acicular phase. The matrix was metallungically bonded to the steel substrate and contained negligible amounts of silicon and molybdenumin the two mils adjacent the;
substrate. At greater distance from the substrate, the alpha iron matrix contained progressively increasing concentrations of silicon and molybdenum up to the surface layer. The matrix phase extended from the steel substrate to the surface of the coating. The interconnected grains of hard Laves phase constitute an inherently rigid structure that is useful for protecting rigid substrates from wear and abrasion.
A coating was produced int-he same manner on another S.A.E. 1020 steel plate, excepting that it was fired for 1 hr. at 1200 C. The surface layer contained elongated grains of Laves phase to the extent of about 70 W0 near the surface and about 3'8 v/o near the op posite. side of the surface layerIThe matrix was metallur gically bonded to the steel substrate and extended to.
the surface of the coating. This coating was relatively soft (K composite hardness 350). It is useful to protect the steel frornwear and abrasion where the coated body is subject to small deformation. Both the Laves phase based on MoFe andthe. alpha iron crystal structures were identified in the coating by X-ray diffraction.
Further firing of this specimen for 17 /2 hrs. at 1000 C. reduced the Laves phase in'the surface of the coating to about26 v/ouThe proportion of'soft matrix in the surface layer, as well as the thickness of the Laves-free matrix between the surface layer and the steel body, was
increased. This coating was integrally bonded to the steel j substrate continuously over the surface of the steel. I Exrtmpl e A coating alloy consisting of 36 w/o Mo-46 w/ o" a dis- 7 Fe-18 w/o Ge was arc-melted, reduced to powder, and.
made into a slurry as in ExampleiS. Several coats of the slurry. were applied to b. x /2 x 18-in. coupons of S.A.E. 1020 mild steel. The air-dried coating was about 20 mils thick. The coated coupons were then' fired at 1230 C. for 5 min. in a vacuum electric furnace at a pressure of about 103 mm. Hg and were cooled in the furnace. Total'thickne'ss of the firedcoating was -69.
mils; the surface layer of said coating containing 55 W0 Laves phase (K =770) and 45 v/o of a softer, lower- A coating alloy consisting of 3 6 w/o Mo, 10 w/o Ni, 36 w/o Fe, 18 w/o Si was arc-melted, reduced to powder, and made into a slurry as in Example 5. Several coats of the slurry were applied to a coupon of S.A.E. 1020 steel. The air-dried coating was about 20 mils thick. The coated coupon was fired at 1205 C. for one minute in a vacuum furnace at an air pressure of about l mm. Hg and cooled in the furnace. Total thickness of the surface layer of the fired coating was approximately 8 mils; the surface layer of said coating contained 65 v/o Laves phase and 35 v/o matrix. The Knoop (IOO-gram load) microhardness value of the Laves phase was 850, and the hardness value for matrix phase was 400.
The lattice parameters of the Laves phase were determined by means of X-ray diffraction using 10 kv.-10 ma. chromium radiation (vanadium filter). The measured lattice parameters for the Laves phase were a=4.740i0.002 Angstroms and c=7.718i0.002 Angstroms (C14 hexagonal crystal structure type).
Example 13 A coating alloy consisting of 36 w/o Mo, 10 W/o'Cr, 36 W/O Ni, 18 w/o Si was arc-melted, reduced to powder, and made into a slurry as in Example 5. A layer of coating about 20 mils thick was applied to a 1 x 1 x /s-in. coupon of S.A.E. 1020 mild steel and fired in a vacuum of 10 mm. Hg at 1190 C. for 10 minutes. The measured thickness of the surface layer was 11 mils after firing and contained 63 v/o Laves phase (K -=9501200) and 37 V70 matrix (Km =253). Measured lattice parameters of the Laves phase crystal structure were a=4.732 A. and c=7.624 A. (C-14 hex agonal crystal structure type).
Example 14 A SOD-gram arc-melted button was made from a composition consisting of 27 w/o Ta, 58 w/o Mn, 15 w/o Si. The button was reduced to powder and a 10-mil coating was applied to S.A.E. 1020 mild steel according to the procedure of Example 5. The composite was fired at 1320 C. for 3 minutes in a vacuum furnace at 10* mm. Hg air pressure and furnace cooled. After firing, the surface layer of the coating was 2 mils thick. The surface layer contained 35 W0 Laves phase and 65 v/o matrix phase. The Laves phase Knoop (15 gram load) microhardness value was 400, whereas the matrix microhardness value was 200. By X-ray diffraction, the measured Laves phase lattice parameters were a=4.774 A., o= 7.742 A. (C'14 hexagonal crystal structure type). The coating was continuously bonded to the substrate. The width of the difiusion zone was approximately mils.
Example 15 A coating alloy consisting of 40 w/o Nb, 45 w/o Ni, 15 w/o Si was arc-melted, reduced to powder, and applied as a 20-mil coating to S.A.E. 1020 mild steel according to the procedures of Example 5. The composite was then fired in a vacuum furnace at 1300 C. for minutes at an air pressure of 10- mm. Hg and was furnace cooled. The resultant coating was 12 mils thick and was constituted of 33 v/o Laves phase (a=4.821 A.; c=7.758 A.; C-14 hexagonal crystal structure type) and 67 W0 matrix phase. The Laves phase microhardness 18 value (K was 400, and the matrix microhardness value was 185 under the same indentor load. FIGURE 3 depicts the microstructure of this coating alloy on S.A.E. 1020 mild steel.
Example 16 A coating alloy consisting of 52 w/o Ta, 38 w/o Co, 10 w/o Si was made by arc-melting the elemental constituents according to the procedures of Example 5, reduced to a powder and applied to S.A.E. 1020 mild steel as a SO-mil coating. The 1 x 1 x %-in. thick coupon was fired in vacuum furnace at 1350 C. for 10 seconds under a vacuum of 10' mm. Hg air pressure and was furnace cooled. The resultant crackand pore-free coating was 30 mils thick. Examination of the coating revealed that the microstructure contained. 35 v/o Laves phase (K =530) and 65 W0 matrix phase (K =175). X-ray difiraction analysis substantiated the presence of Laves phase of the C-14 hexagonal crystal structure type (a=4.789 A., c=7.679 A.). FIGURE 2 depicts the microstructure of this coating alloy on mild steel.
Example 17 A coating alloy of 30 w/o Ti, 60 w/o Co, 10 w/o Si was arc-melted, reduced to powder, and made into a slurry as in Example 5. Several coats of the slurry were applied to a 1 x 1 x As-in. S.A.E. 1020 mild steel coupon; the air dried coating was 60 mils thick. The coated coupon was then fired at 1400 C. for 10 seconds in a vacuum electric furnace at a pressure of about 10 mm. Hg and was cooled in the furnace. The fired coating had a surface layer 40 mils thick which contained about 25 v/o Laves phase (K =237) and about 75 W0 matrix phase (K =160). X-ray diffraction data revealed the presence of the Laves phase (a=4.795 A.; c=7.692 A.; C-l4 hexagonal) in the coating.
Example 18 A fifty-pound charge of coating alloy consisting of 35 w/o Mo, 58 w/o Ni, 7 w/o Si was induction-melted under an argon atmosphere and atomized into 140 mesh powder by tossing the molten metal from a spinning wheel and quenching the particles by an argon blast such that the particles froze with a generally spherical shape. A 15-mil coating was applied to a sample of pure cobalt plate (approximately A" thick) according to the procedure of Example 5. The composite was then fired in a vacuum furnace at 1220 C. for 3 min. at an air pressure of 10 mm. Hg and furnace-cooled. The resultant coating was 8 mils thick and was constituted of W0 Laves phase (a=4.732 A.; c=7.622 A.; C-l4 hexagonal crystal structure type) and 20 W0 matrix phase. The Laves phase microhardness value (K was 1039, and the matrix microhardness value was 370 under the same indentor load. The diffusion zone between the surface layer and the substrate was approximately one mil thick.
Example 19 A coating alloy consisting of 51 W/O W-40 w/o Ni- 9 w/o Si made as described in Example 1 was applied to Udimet 700 (0.13 C, 0.08 Mn, 0.3 Si, 15 Cr, 3.0 M0, 2.4 Ob, 2.2 Ti, 3.0 A1, 0.8 Fe, 29 Co, bal. Ni percent by weight) to a depth of 25 mils. The slurry was prepared and applied as outlined in Example 4. The resultant coating was dried, preheated for 30 min. at 1100 C., fired at 1230 C. for 2 min. in an electric furnace at an air pressure of 10- mm. Hg. The sample was cooled to 1150 C. slowly over a period of 16 min. and then furnace-cooled to room temperature in approximately 2 hrs. The heattreated coating was 15 mils thick as determined metallographically. The thickness of the diffusion zone was less than 10 microns. The coating surface layer consisted of a fine-grained (less than IO-micron particle diameter) Laves phase structure. Microhardness measurement of the individual phases was not feasible, because of the small interconnected grain structure. The composite microhardness value was K =889-1039 and the matrix Example 20 Part of the coating alloy described in Example 18 was applied to unalloyed molybdenum (99.9+% Mo) using a plasma torch according to the procedure described in Example 10. The thickness of the unfired deposit of coating alloy was 10 mils. The composite of deposited coating alloy on molybdenum was then fired in a vacuum furnace at 1450 C. for 1 to 3 min. at a pressure of 10* mm. Hg and was furnace-cooled. The resultant coating was 4 to 5 mils thick and was constituted of 85 v/o Laves phase and 15 v/o matrix phase in the surface layer. Microhardness of the Laves phase was K =870-965 and K =700, while the microha-rdness of the matrix was K :2l0. The molybdenum base was not recrystallized; its microhardness was K =253. The diifusion zone between the surface layer of the coating and the bulk of the molybdenum base was less than microns. The coating was metallurgically bonded continuously to the molybdenum base.
It will be understood that many additional combinations of elements comprising at least two'metals in the ele- .mental composition of each can also be used to form the coating of coated metal bodies having the structure of our invention. Likewise, coated metal bodies having the struc: ture of our invention as stated hereinabove can comprise a metal base other. than the metal bases shown in the examples.
.As many apparently widely different embodiments of this invention can be made without departing from the spirit and scope thereof, the invention is intended to include all such embodiments as may be comprised within the following claims.
We claim:
1. A process for forming a protective alloy coating on a metal base comprising,
(a) forming a coating alloy consisting essentialily of at leastf two elements, at least two of which are heavy transition elements aggregating at last 60 atom percent of said alloy, the ratio of the atomic V radii of the largest to the smallest of said heavy transition elements being in the range of from 1.05
' to 1.68; wherein 30-85 volume percent of said alloy is present as Laves phase in a matrix composed of the remaining 70-15 volume percent of said alloy,- said matrix being softer than said Laves phase,
(b) reducing said coating alloy to a powder,
(c) depositing the powdered coating alloy on said metal base to form a composite article,
((1) heating said composite article in a nonoxidizing atmosphere to the incipent melting point of said coating alloy and maintaining the temperature at this level for a time to cause the melt to wet the .un-
melted portions of the coating alloy and the underlying surface of the metal base, and
. preponderantly' cobalt.
51A process for forming a protective alloy coating on a ferrous base metal base comprising,
(a) forming a coating alloy consisting essentially of at least three elements including silicon and two heavy transition metals, aggregating at least 60 atoms per-. c'ent'of said alloy, the ratio of the atomic radii of the largest to the smallest of said heavy transitionelements being in the range of from 1.05 to 1.68; wherein 30-85 volume percent ofjsaid alloy is present as ing softer than said Laves phase (b) reducing said coating alloy to a powder,
70-15 volume percent of said alloy, said matrix be-.
(c) depositing the powdered coating alloy on-said metal base to form a composite article,
((1) heating said composite articlein a nonoxidizing atmosphere to the incipient melting point of said coating alloy and maintaining the temperature at this level fora time to cause the melt to wet the unmelted portion of the coating alloy and the under-,
lining surface of the metal base, and
(e) cooling said composite article at a rate that leaves 7 said coating alloy with a matrix softer, than the Laves phase therein. r
6. A process'as in claim 5 wherein said coating alloy consists essentially of the W-Ni-Si system and said coat-.
ing alloy is reduced to a fine powder in a particle size range below about 140 mesh.
7. A process as in claim 5 whereln said coating alloy consists essentially of the Mo-Ni-Si sytem and said coating alloy is reduced to a fine powder in a particle. size range below l40-mesh. I
8. A process as in claim 5 wherein consists essentially of the W-Co-Si system and said coatrange below about -mesh.
ing alloy is reduced to a fine powder in -a particle size 9. A process as in claims wherein said coating alloy consists essentially of the Mo-Co-Si system and said coating alloy is reduced to a fine powder in a particle size range below about 140-mesh.
10. A process as in claim 5 wherein said coating alloy consists essentially of the Mo-Cr-Ni-Si system and said I coating alloy is reduced to afine powder in a particle size range below about. 140-mesh.
References Cited UNITED STATES PATENTS 2,878,554 3/1959 Long 117-22 X 3,231,971 2/1966 McFarland et a1. 1l7-22 X 7 WILLIAM D. MARTIN, Primary Examiner.
P. ATTAGUILE, Assistant Examiner.
Laves phase in a matrix composed of the remaining.
said coating alloy

Claims (2)

  1. 5. A PROCESS FOR FORMING A PROTECTIVE ALLOY COATING ON A FERROUS BASE METAL BASE COMPRISING, (A) FORMING A COATING ALLOY CONSISTING ESSENTIALLY OF AT LEAST THREE ELEMENTS INCLUDING SILICON AND TWO HEAVY TRANSITION METALS, AGGREGATING AT LEAST 60 ATOMS PERCENT OF SAID ALLOY, THE RATIO OF THE ATOMIC RADII OF THE LARGEST TO THE SMALLEST OF SAID HEAVY TRANSITION ELEMENTS BEING IN THE RANGE OF FROM 1.05 TO 1.68; WHEREIN 30-85 VOLUME PERCENT OF SAID ALLOY IS PRESENT AS LAVES PHASE IN A MATRIX COMPOSED OF THE REMAINING 70-15 VOLUME PERCENT OF SAID ALLOY, SAID MATRIX BEING SOFTER THAN SAID LAVES PHASE (B) REDUCING SAID COATING ALLOY TO A POWDER, (C) DEPOSITING THE POWDERED COATING ALLOY ON SAID METAL BASE TO FORM A COMPOSITE ARTICLE, (D) HEATING SAID COMPOSITE ARTICLE IN A NONOXIDIZING ATMOSPHERE TO THE INCIPIENT MELTING POINT OF SAID COATING ALLOY AND MAINTAINING THE TEMPERATURE AT THIS LEVEL FOR A TIME TO CAUSE THE MELT TO WET THE UNMELTED PORTION OF THE COATING ALLOY AND THE UNDERLINING SURFACE OF THE METAL BASE, AND
  2. 6. A PROCESS AS IN CLAIM 5 WHEREIN SAID COATING ALLOY CONSISTS ESSENTIALLY OF THE W-NI-SI SYSTEM AND SAID COATING ALLOY IS REDUCED TO A FINE POWDER IN A PARTICLE SIZE RANGE BELOW ABOUT 140 MESH.
US534831A 1963-04-01 1966-03-16 Method of coating metals Expired - Lifetime US3331700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US534831A US3331700A (en) 1963-04-01 1966-03-16 Method of coating metals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US26981863A 1963-04-01 1963-04-01
US534831A US3331700A (en) 1963-04-01 1966-03-16 Method of coating metals

Publications (1)

Publication Number Publication Date
US3331700A true US3331700A (en) 1967-07-18

Family

ID=26953914

Family Applications (1)

Application Number Title Priority Date Filing Date
US534831A Expired - Lifetime US3331700A (en) 1963-04-01 1966-03-16 Method of coating metals

Country Status (1)

Country Link
US (1) US3331700A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3447912A (en) * 1967-11-02 1969-06-03 Vitro Corp Of America Sulfidation corrosion-resistant coating containing rare earth metal aluminides
US3839024A (en) * 1973-02-15 1974-10-01 Du Pont Wear and corrosion resistant alloy
US20040057863A1 (en) * 2002-07-17 2004-03-25 Wu James B. C. Wear-Resistant, Corrosion-Resistant Cobalt-Based Alloys
US20050142026A1 (en) * 2003-12-29 2005-06-30 Wu James B.C. Ductile cobalt-based Laves phase alloys
WO2006065939A1 (en) * 2004-12-15 2006-06-22 Deloro Stellite Holdings Corporation Imparting high-temperature degradation resistance to components for internal combustion engine systems

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2878554A (en) * 1955-09-16 1959-03-24 Rand Dev Corp Method and coating for protection of molybdenum and its alloys
US3231971A (en) * 1961-01-19 1966-02-01 Inland Steel Co Method of producing fusion coated metal base

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2878554A (en) * 1955-09-16 1959-03-24 Rand Dev Corp Method and coating for protection of molybdenum and its alloys
US3231971A (en) * 1961-01-19 1966-02-01 Inland Steel Co Method of producing fusion coated metal base

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3447912A (en) * 1967-11-02 1969-06-03 Vitro Corp Of America Sulfidation corrosion-resistant coating containing rare earth metal aluminides
US3839024A (en) * 1973-02-15 1974-10-01 Du Pont Wear and corrosion resistant alloy
US20040057863A1 (en) * 2002-07-17 2004-03-25 Wu James B. C. Wear-Resistant, Corrosion-Resistant Cobalt-Based Alloys
US6852176B2 (en) 2002-07-17 2005-02-08 Deloro Stellite Holdings Corporation Wear-resistant, corrosion-resistant cobalt-based alloys
US20050142026A1 (en) * 2003-12-29 2005-06-30 Wu James B.C. Ductile cobalt-based Laves phase alloys
US7572408B2 (en) 2003-12-29 2009-08-11 Deloro Stellite Holdings Corporation Ductile cobalt-based Laves phase alloys
WO2006065939A1 (en) * 2004-12-15 2006-06-22 Deloro Stellite Holdings Corporation Imparting high-temperature degradation resistance to components for internal combustion engine systems
US20060134455A1 (en) * 2004-12-15 2006-06-22 Deloro Stellite Holdings Corporation Imparting high-temperature degradation resistance to components for internal combustion engine systems
US8383203B2 (en) 2004-12-15 2013-02-26 Kennametal Inc. Imparting high-temperature degradation resistance to components for internal combustion engine systems
US8668959B2 (en) 2004-12-15 2014-03-11 Kennametal Inc. Imparting high-temperature degradation resistance to metallic components

Similar Documents

Publication Publication Date Title
US3257178A (en) Coated metal article
Wadsworth et al. Recent advances in aerospace refractory metal alloys
Shin et al. Effect of molybdenum on the microstructure and wear resistance of cobalt-base Stellite hardfacing alloys
US4507151A (en) Coating material for the formation of abrasion-resistant and impact-resistant coatings on workpieces
Gessinger et al. Powder metallurgy of superalloys
Kumar et al. Wear properties of 5083 Al–W surface composite fabricated by friction stir processing
US5352538A (en) Surface hardened aluminum part and method of producing same
US3752655A (en) Sintered hard metal product
US4359352A (en) Nickel base superalloys which contain boron and have been processed by a rapid solidification process
US3767385A (en) Cobalt-base alloys
US3096160A (en) Vapor diffusion coating process
EP0505172A1 (en) Wear-resistant copper-base alloy
US3524744A (en) Nickel base alloys and process for their manufacture
JPS63109151A (en) High hardness composite material
US3361560A (en) Nickel silicon and refractory metal alloy
US5966585A (en) Titanium carbide/tungsten boride coatings
JPH0428761B2 (en)
Feng et al. Laser cladding of Ni-Cr/Al2O3 composite coatings on AISI 304 stainless steel
EP3814543B1 (en) Copper-based hardfacing alloy
US3839024A (en) Wear and corrosion resistant alloy
Loria Niobium-base superalloys via powder metallurgy technology
US3331700A (en) Method of coating metals
US3664889A (en) TERNARY, QUATERNARY AND MORE COMPLEX ALLOYS OF Be-Al
US4671932A (en) Nickel-based hard alloy
JP3091690B2 (en) Method for producing TiB2-based coating