JPS6051534A - Removal of nitrogen oxide - Google Patents

Removal of nitrogen oxide

Info

Publication number
JPS6051534A
JPS6051534A JP58157948A JP15794883A JPS6051534A JP S6051534 A JPS6051534 A JP S6051534A JP 58157948 A JP58157948 A JP 58157948A JP 15794883 A JP15794883 A JP 15794883A JP S6051534 A JPS6051534 A JP S6051534A
Authority
JP
Japan
Prior art keywords
exhaust gas
air
combustion
air preheater
honeycomb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58157948A
Other languages
Japanese (ja)
Inventor
Fumihiko Kono
文彦 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP58157948A priority Critical patent/JPS6051534A/en
Priority to DE19843431961 priority patent/DE3431961A1/en
Publication of JPS6051534A publication Critical patent/JPS6051534A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8631Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To perform the heat recovery of exhaust gas while removing NOx in exhaust gas, by performing heat exchange of combustion exhaust gas and combustion air in a rotary heat exchange type air preheater having denitration function, and simultaneously supplying ammonia into combustion gas. CONSTITUTION:Combustion air in an air duct 1 is raised in pressure by a forced blower 2 and heated by the exhaust gas of an exhaust gas duct 4 in an air preheater 3 while heated air is supplied to a boiler 6 from a wind box 5. The exhaust gas burnt in the boiler 6 is denitrated by ammonia from an injection pipe in the exhaust gas duct 4 and denitration thereof is accelerated by the metal catalyst in the air preheater 3. The exhaust gas, from which NOx is removed, is raised in pressure by a draft blower 9 through the air preheater 3 and a dust collector 8 and exhausted. A rotor 11, in which a heat exchanger 10 is assembled, is rotated in the air preheater by a rotary drive mechanism 12 and alternately brought into contact with the combustion exhaust gas 13 and air 14 to perform heat exchange.

Description

【発明の詳細な説明】 本発明は燃fA 4JIガスを利用して空気予熱゛ジる
と同時に該排ガス中の窒素酸化物(以下NOxという)
を除去する窒素酸化物の除去り法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention utilizes fuel fA4JI gas to preheat air and at the same time reduce nitrogen oxides (hereinafter referred to as NOx) in the exhaust gas.
This invention relates to a method for removing nitrogen oxides.

加熱炉等の排ガスの熱回収を回転熱交換式空気予熱器(
以下、空気予熱器という)で行うと燃焼火災の温度上R
をもたらし、NOxの生成を増加さUるという欠点があ
った。
A rotary heat exchange type air preheater (
(hereinafter referred to as an air preheater), the temperature of the combustion fire will be higher than R.
This has the drawback of increasing the production of NOx.

本発明は前記の欠点を解決した燃焼排ガス中のNOXを
除去しつつ、該排ガスの熱回収を空気予熱器で行う窒素
酸化物の除去方法を提供することを目的どするものであ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for removing nitrogen oxides, which solves the above-mentioned drawbacks and which removes NOx from combustion exhaust gas while recovering heat from the exhaust gas using an air preheater.

本発明のこの目的は以下に示す除去方法により達成され
る。
This object of the invention is achieved by the removal method described below.

すなわち本発明は、II9硝機能を右りる金属を担持さ
せた熱交換体を組込んだ回転子を取付【プだ回転熱交換
式空気予熱器で燃焼11ガスと燃カ2用空気どを熱交換
覆ると同時に、該燃焼排ガス中にアンモニアを供給する
ことにより該燃焼4ノ+ガス中の窒素酸化物を該アンモ
ニアと反応させ分解り°ることを特徴と覆る窒素酸化物
の除去方法である。
That is, the present invention installs a rotor incorporating a heat exchanger carrying a metal that performs the function of II9. A method for removing nitrogen oxides characterized by reacting and decomposing nitrogen oxides in the combustion exhaust gas with the ammonia by supplying ammonia into the combustion exhaust gas at the same time as heat exchange. be.

以下、本発明を図面に基づき説明する。Hereinafter, the present invention will be explained based on the drawings.

第1図はJ]+2硝(大陸を有づる回転熱交換式空気予
熱器く空気予熱器)3が設置されたボイラーの代表的な
煙用道の概略フローシー1〜′C″ある。空気ダクト1
内の燃焼空気は押込通用1幾2にゲl圧され、空気予熱
器3にて排ガスダク1〜/Iの刊ガスによって加熱され
た後、ウィンドボックス5よりボイラー6へ供給される
Figure 1 shows a schematic flowchart of a typical smoke duct for a boiler equipped with J]+2 nitrate (rotary heat exchange air preheater with continental air preheater) 3.Air ducts 1
The combustion air inside is compressed to a pressure of 1 to 2, heated in an air preheater 3 by exhaust gas from exhaust gas ducts 1 to 1, and then supplied to a boiler 6 from a wind box 5.

一方、ボイラー6内で燃焼したjJlガスは、JJIガ
スダク1−4でアンモニア注入管7からのアンモニアに
よって1112硝されると共に、下流に配置した空気予
熱器3内の触媒においてn<a硝が促進され、排ガス中
のNOXは除去されて空気予熱器3、集塵機8を経て誘
引通風機9で昇圧されC人気へ放出される。
On the other hand, the jJl gas combusted in the boiler 6 is converted into 1112 nitrates by ammonia from the ammonia injection pipe 7 in the JJI gas duct 1-4, and n<a nitrates are promoted in the catalyst in the air preheater 3 located downstream. The NOx in the exhaust gas is removed, passes through an air preheater 3 and a dust collector 8, is pressurized by an induced draft fan 9, and is discharged to the exhaust gas.

本発明における空気予熱器3とは、第2図に正面図、第
3図に側面図および第4図に平面図がそれぞれ示される
ごとく、熱交換体10を組込んだ回転子11を回転駆動
機12で回転さ1IC1燃焼排ガス13ど空気14どに
交互に接触さぼ熱交換を行わ口る装置である。
The air preheater 3 in the present invention rotates a rotor 11 incorporating a heat exchanger 10, as shown in a front view in FIG. 2, a side view in FIG. 3, and a plan view in FIG. This is a device that alternately contacts 1 IC 1, combustion exhaust gas 13, and air 14, and performs heat exchange by rotating the engine 12.

第2図において、高温の燃焼排ガス13と冷温の空気1
4は、相隣り合ったダク1−15および16の中を通過
して83す、回転子11がこのグク1−15.1Gにま
たがって半分ずつが、高温側と低温側にあるように取り
つけられる。
In Figure 2, high temperature combustion exhaust gas 13 and cold temperature air 1
4 passes through the adjacent ducts 1-15 and 16 83, and the rotor 11 is installed astride these ducts 1-15.1G so that each half is on the high-temperature side and half on the low-temperature side. It will be done.

回転子11は円形とし、中心で回転し、片側半分は高温
側、一方の半分は低温側にあり、高温側で加熱された部
分は移動して低温側に入り、ここで熱を放出覆る。
The rotor 11 is circular and rotates at the center, with one half on the high temperature side and the other half on the low temperature side, and the part heated on the high temperature side moves and enters the low temperature side, where it releases heat and is covered.

回転子11は第5図にその斜外観図か示さ−れるように
′、高級ステンレス鋼等の耐食性の鋼4A17で円筒状
の枠組みにしたもので、中心illにl+−i目η軸1
8を設け、さらに側面中央部に回転用ギヤー19を設(
プたものである。この回転子11の回iII/、数1.
116 r D III程度が好ましい。
The rotor 11 has a cylindrical frame made of 4A17 corrosion-resistant steel such as high-grade stainless steel, as shown in a perspective view in FIG.
8 is provided, and a rotating gear 19 is further provided in the center of the side surface (
It is something that has been written. This rotor 11 turns iii/, Equation 1.
116 r D III is preferable.

本発明でいう熱交換体10とは、一般に高温のυ[ガス
が平行した多数の均一なガス流路を流れる間に触媒反応
および熱交換等を行わせるものひあり、圧力損失が非常
に小さく、耐熱性が良く、ざらに軽舟である必要がある
。例えばハニカム状セラミック製伝熱素子(以下、伝熱
素子という)が例示できる。該伝熱素子はコージライト
、ムライト、炭化珪素、コーンライ1ヘージルコン等の
飼料を用いて、例えばパネル積層法、ペーパー・ディッ
ピンク法、パイプ結束法、焼成反応法、押出法、プレス
法、鋳型F)i等ににり製造することかぐきる。
The heat exchanger 10 referred to in the present invention is generally one in which a catalytic reaction and heat exchange occur while the high-temperature υ [gas flows through a large number of parallel uniform gas flow paths, and the pressure loss is very small. It needs to have good heat resistance and be fairly light. For example, a honeycomb-shaped ceramic heat transfer element (hereinafter referred to as a heat transfer element) can be exemplified. The heat transfer element is made using feed such as cordierite, mullite, silicon carbide, corn rye 1 haze zircon, etc., for example, panel lamination method, paper dipping method, pipe bundling method, firing reaction method, extrusion method, press method, mold F. ) I, etc., can be manufactured.

該伝熱素子はその断面が、例えば第6図の(a )〜(
C)に示づようなハニカム形状物が均一に分布した集合
体であり、本発明では(C)に示されるハニカム形状物
が好ましく用いられる。該ハニカム形状物は、巾(J)
2.1〜8.401111、高さくm )0.9〜5.
0mm、qさくC) 0.1.’i 〜0.3111m
の範囲のものが好ましく、またハニカム形状物の開口割
合は58〜85%の範囲のものが望ましい。
The cross section of the heat transfer element is, for example, (a) to (a) in FIG.
It is an aggregate in which honeycomb-shaped objects as shown in C) are uniformly distributed, and the honeycomb-shaped object shown in (C) is preferably used in the present invention. The honeycomb shape has a width (J)
2.1~8.401111, height m)0.9~5.
0mm, q Saku C) 0.1. 'i ~0.3111m
It is preferable that the opening ratio of the honeycomb-shaped object is in the range of 58 to 85%.

本発明にJ5いて熱交換体10に担持ツる担持金属は1
1;1硝機能を有づるものであり、元素周明往表第EV
族、第V族、第Vl族金属から選ばれた1種または2種
以上の金属からなるものである。特にT1−W−Vを主
成分とするしのが好ましい。該担持金属の組成割合は酸
化物に換算しで1−iQ250〜99 wt%、WO3
1〜20 WE%、V2O50,5〜10 wt%の範
囲である。金属の111持IJ法は周知の方法でよい。
In the present invention, the supported metal supported on the heat exchanger 10 in J5 is 1
It has a 1;1 function and is listed in the Element Circumstances Table EV.
It is made of one or more metals selected from group metals, group V metals, and group Vl metals. Particularly preferred is one containing T1-W-V as a main component. The composition ratio of the supported metal is 1-iQ250-99 wt% in terms of oxide, WO3
The range is 1 to 20 WE%, V2O50, 5 to 10 wt%. The 111 IJ method for metals may be a well-known method.

例えば、 ■予め成形されたハニカム状セラミックを担持金属成分
を含有する液に浸漬しC金属を含浸させたのち焼成して
IXI!j造する方法。
For example, ■ a preformed honeycomb-shaped ceramic is immersed in a liquid containing a supported metal component to impregnate C metal, and then fired to produce IXI! How to build.

■先にセラミックの粉を担持金属成分を含有する液に浸
漬することにJ:って金属成分を担持させ、その後、成
形、焼成する方法。
(2) A method in which ceramic powder is first immersed in a liquid containing a supported metal component to support the metal component, and then molded and fired.

■予め成形されたハニカム状セラミックに活性アルミナ
等をコーティングした後、コーディング面に金属成分を
担持ゼしめるh法等が例示できる。
(2) An example is the h method, in which a preformed honeycomb-shaped ceramic is coated with activated alumina or the like, and then a metal component is supported on the coating surface.

本発明にJ5いてNOXを分解するために、アンモニア
(NH3)を供給する。そのためにt′モ温の燃焼排ガ
スの上流側には、アンモニアを均一に吹込むノズルを設
ける。アンモニアは、触媒上でJJIガス中のNOxを
反応し、NO3を分解する。この場合、02が反応に関
与していることが知られているが、低温側から戻ってく
る熱交換体中には受註の空気を含んでいるので、02の
小戻をもたらすことはない。アンモニアの供給量は4J
1万ス中のNOxの0.5倍モル以上、好ましくは 1
.05〜1.10倍モルが適当である。
In the present invention, ammonia (NH3) is supplied to J5 in order to decompose NOX. For this purpose, a nozzle is provided upstream of the combustion exhaust gas at temperature t' to uniformly inject ammonia. Ammonia reacts with NOx in the JJI gas on the catalyst and decomposes NO3. In this case, it is known that 02 is involved in the reaction, but since the heat exchanger returning from the low temperature side contains sensitive air, a small return of 02 will not occur. . Ammonia supply amount is 4J
0.5 times the mole or more of NOx in 10,000 gas, preferably 1
.. 05 to 1.10 times the molar amount is appropriate.

次に実施例に基づき本発明を説明覆る。Next, the present invention will be explained based on examples.

実 施 例 酸化物に換算しテT! Ox 92 wt%、V2O5
7wt%、WO31wt%よりなる触媒活性金属混合物
を担持させたコーラライ1〜製ハニカム伝熱素子(直径
2.5+11 、長さ0.5mの円筒状)を紺込んだ回
転子を取付りた空気予熱器を加熱炉に設(プ、20.0
00〆/1」rのJ)Fガスに対して熱回収、脱硝反応
を行った。排カス中に加えるアンモニjノの供給mはJ
JIガス中のNOxに対して1.05(Qモルである。
Example Converted to oxide! Ox 92 wt%, V2O5
An air preheater equipped with a rotor containing a honeycomb heat transfer element (cylindrical shape with a diameter of 2.5 + 11 and a length of 0.5 m) made from Coralai 1 to which supports a catalytically active metal mixture consisting of 7 wt% and 31 wt% of WO. Place the container in the heating furnace (P, 20.0
00〆/1''r J) Heat recovery and denitrification reactions were performed on the F gas. The supply m of ammonia J added to the waste waste is J
It is 1.05 (Q mol) for NOx in JI gas.

その結果、20°Cの冷温空気は空気予熱器を経テ20
0℃となり、他方、350℃T”NOX溌度1,501
111+11の排ガスは空気予熱器を経て180℃とな
り、そのNOXm度は80ppmに減少した。
As a result, the cold air at 20°C passes through the air preheater for 20 minutes.
0℃, and on the other hand, 350℃T” NOx intensity 1,501
The exhaust gas of 111+11 passed through an air preheater and became 180°C, and its NOXm degree was reduced to 80ppm.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、脱硝機能を有する回転熱交換式空気予熱器が
設置されたボイラーの煙F11道の1■略フローシート
、 第2図、第3図J3よび第4図は、それぞれ空気予熱器
の正面図、側面図および平面図、第5図は回転子の斜外
観図、J3よび 第6図(a)(b)(c)は、それぞれハニカム状セラ
ミック伝熱素子の断面図である。 1:空気ダクト、2:押込通風1幾、 3:回転熱交換式空気予熱器(空気予熱器)、4:排ガ
スダクト、 5:ウィンドボックス、6:ボイラー、 
7:アンモニア注入管、8:集M機、 9:誘引通風機
、 10:熱交換体、 11:回転子、 12二回転駆動機、13:燃焼排ガス、14:空気、 
15.16:グク1〜.17:#!材、 18:回転q
111.19:回転用ギヤー。 特許出願人 11本石油株式会社 代理人 弁理士 伊東辰雄 代理人 弁理士 17′1束哲也 第6 (0) (C) (b)
Figure 1 is a schematic flow sheet of the smoke F11 path of a boiler equipped with a rotary heat exchange air preheater with a denitrification function. Figures 2, 3, and 4 are air preheaters, respectively. FIG. 5 is a perspective external view of the rotor, and FIGS. J3 and 6 (a), (b), and (c) are sectional views of the honeycomb-shaped ceramic heat transfer element, respectively. 1: Air duct, 2: Forced ventilation, 3: Rotary heat exchange air preheater (air preheater), 4: Exhaust gas duct, 5: Wind box, 6: Boiler,
7: Ammonia injection pipe, 8: M collector, 9: Induced draft fan, 10: Heat exchanger, 11: Rotor, 12 Two-rotation drive machine, 13: Combustion exhaust gas, 14: Air,
15.16: Guku 1~. 17:#! material, 18: rotation q
111.19: Rotating gear. Patent Applicant: 11 Honno Oil Co., Ltd. Agent Patent Attorney: Tatsuo Ito Agent Patent Attorney: 17'1 Tetsuya Tsuka No. 6 (0) (C) (b)

Claims (1)

【特許請求の範囲】 1、脱硝機能を右づる金属を担持さゼた熱交換体を組込
んだ回転子を取(=Iけた回転熱交換式空気予熱器で燃
焼排ガスと燃焼用空気とを熱交換すると同時に、該燃焼
排ガス中にアンモニ)7を供給することにJ:り該燃焼
排ガス中の窒素酸化物を該アンモニアど反応さけ分解す
ることを特徴とづる窒素酸化物の除去方法。 2、面記熱交換体がハニカム形状物を均一に分布した集
合体からなるハニカム状しラミックス製伝熱素子である
前記特許請求の範囲第1 Jl記載の窒素酸化物の除去
方法。 3、前記ハニカム形状物が幅2.1〜8 、41+ I
l+、高さ 0.’J−5,001m、厚さ 0.15
〜0,30111でif)す、がつハニカム形状物の開
口割合が58〜85%である前記特許請求の範囲第2項
記載の窒素酸化物の除去方法。 4、前記脱硝ぼ能を有する熱交換体に担持さゼる金属が
Ti −W−Vを土成分とする前記特許請求の範囲第1
項、第2項または第3項記載の窒素酸化物の除去ブ)法
。 5、前記B(2硝傭能を有Jる熱交1灸体に担持させる
金属の割合が、酸化物に換算してTlO2!!0〜99
 wt%、WO21〜20 wt%、V2O50,5〜
10W[%である前記特許請求の範囲第4項記載の窒S
酸化物の除去方法。
[Claims] 1. A rotor incorporating a metal-supported heat exchanger that performs the denitrification function (=I-order rotary heat exchange type air preheater is used to connect combustion exhaust gas and combustion air) A method for removing nitrogen oxides, which comprises supplying ammonia into the combustion exhaust gas at the same time as heat exchange, and decomposing the nitrogen oxides in the combustion exhaust gas through the ammonia reaction. 2. The method for removing nitrogen oxides as set forth in claim 1, wherein the planar heat exchanger is a honeycomb-shaped ramix heat transfer element comprising an aggregate of honeycomb-shaped objects uniformly distributed. 3. The honeycomb shaped object has a width of 2.1 to 8, 41+I
l+, height 0. 'J-5,001m, thickness 0.15
~0,30111 if) The method for removing nitrogen oxides according to claim 2, wherein the open area ratio of the honeycomb-shaped object is 58 to 85%. 4. Claim 1, wherein the metal supported on the heat exchanger having denitrification ability is Ti-W-V as a soil component.
b) Method for removing nitrogen oxides according to item 2, item 3 or item 3. 5. The proportion of the metal supported on the heat exchanger 1 moxibustion body having B (2 nitric acid capacity) is TlO2!!0 to 99 in terms of oxide.
wt%, WO21~20 wt%, V2O50,5~
Nitrogen S according to claim 4, which is 10W [%
How to remove oxides.
JP58157948A 1983-08-31 1983-08-31 Removal of nitrogen oxide Pending JPS6051534A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58157948A JPS6051534A (en) 1983-08-31 1983-08-31 Removal of nitrogen oxide
DE19843431961 DE3431961A1 (en) 1983-08-31 1984-08-30 Process for separating out nitrogen oxides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58157948A JPS6051534A (en) 1983-08-31 1983-08-31 Removal of nitrogen oxide

Publications (1)

Publication Number Publication Date
JPS6051534A true JPS6051534A (en) 1985-03-23

Family

ID=15660962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58157948A Pending JPS6051534A (en) 1983-08-31 1983-08-31 Removal of nitrogen oxide

Country Status (2)

Country Link
JP (1) JPS6051534A (en)
DE (1) DE3431961A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62250118A (en) * 1986-04-22 1987-10-31 Kawasaki Steel Corp Method for determining extraction pitch of material for continuous heating furnace
JPH07242953A (en) * 1994-03-07 1995-09-19 Nkk Corp Method and device for controlling autocombustion in continuous type heating furnace
CN106378008A (en) * 2016-08-30 2017-02-08 光大置业有限公司 Toilet cleaning device
CN113019121A (en) * 2021-04-12 2021-06-25 萍乡学院 Low-temperature SCR (selective catalytic reduction) flue gas denitration device for household garbage incineration plant

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61291026A (en) * 1985-06-17 1986-12-20 Hitachi Ltd Method for simultaneously removing nitrogen oxide and carbon monoxide
ATE45295T1 (en) * 1985-08-19 1989-08-15 Siemens Ag PROCESS FOR MANUFACTURING A CATALYST FOR SELECTIVE REDUCTION OF NITROUS OXIDES IN EXHAUST GASES.
GB8607810D0 (en) * 1986-03-27 1986-04-30 Stordy Combustion Eng Ltd Operating burners
JP2583911B2 (en) * 1987-10-26 1997-02-19 バブコツク日立株式会社 Nitrogen oxide removal catalyst
DE3823575A1 (en) * 1988-07-12 1990-01-18 Rothemuehle Brandt Kritzler METHOD FOR REDUCING NITROGEN OXIDES (NO (DOWN ARROW) X (DOWN ARROW)) FROM FIRE EXHAUST GASES
DE3871795D1 (en) * 1988-10-18 1992-07-09 Balcke Duerr Ag DEVICE FOR DENICKING POWER PLANT EXHAUST GASES.
DE4038054A1 (en) * 1990-11-29 1992-06-04 Man Technologie Gmbh METHOD AND DEVICE FOR SELECTIVE CATALYTIC NO (DOWN ARROW) X (DOWN ARROW) REDUCTION IN OXYGEN-BASED EXHAUST GASES
DE4123377A1 (en) * 1991-07-15 1993-01-21 Neumann Siegmar Flue gas purificn. for combustion plant or refuse incinerator - waste gas classification uses cooling cells at continually decreasing temp., with flue gas passed downwards through cells
DE102007022678A1 (en) 2007-05-11 2008-11-13 Hydraulik-Ring Gmbh Ammonia based exhaust gas re-treatment unit feeds gaseous ammonia directly into exhaust gas flow of internal combustion, preferably diesel, engine; exhaust gas flows through exhaust tract free of urea-water vapor and urea-water solution
CN105944542A (en) * 2016-06-30 2016-09-21 华东理工大学 High-efficiency hydrogen sulfide gas absorption device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5451969A (en) * 1977-09-30 1979-04-24 Kobe Steel Ltd Method of removing nox in exhaust gas
JPS5456072A (en) * 1977-10-13 1979-05-04 Kawasaki Heavy Ind Ltd Denitrating method for exhaust combustion gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5451969A (en) * 1977-09-30 1979-04-24 Kobe Steel Ltd Method of removing nox in exhaust gas
JPS5456072A (en) * 1977-10-13 1979-05-04 Kawasaki Heavy Ind Ltd Denitrating method for exhaust combustion gas

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62250118A (en) * 1986-04-22 1987-10-31 Kawasaki Steel Corp Method for determining extraction pitch of material for continuous heating furnace
JPH07242953A (en) * 1994-03-07 1995-09-19 Nkk Corp Method and device for controlling autocombustion in continuous type heating furnace
CN106378008A (en) * 2016-08-30 2017-02-08 光大置业有限公司 Toilet cleaning device
CN106378008B (en) * 2016-08-30 2019-04-23 光大置业有限公司 Toilet cleaning apparatus
CN113019121A (en) * 2021-04-12 2021-06-25 萍乡学院 Low-temperature SCR (selective catalytic reduction) flue gas denitration device for household garbage incineration plant

Also Published As

Publication number Publication date
DE3431961A1 (en) 1985-03-21

Similar Documents

Publication Publication Date Title
JPS6051534A (en) Removal of nitrogen oxide
US7438876B2 (en) Multi-stage heat absorbing reactor and process for SCR of NOx and for oxidation of elemental mercury
JPH0714457B2 (en) Method for purifying waste gas containing nitrogen and sulfur oxides from a combustion device
JP2010510049A (en) NOx forming catalyst with little or no ammonia and carbon monoxide double oxidation catalyst
CN207680368U (en) A kind of equipment for denitrifying flue gas based on temperature-compensating
CN210814723U (en) High-temperature dust removal, desulfurization and denitrification device for cement kiln
JPH09507656A (en) Catalyst for reducing nitrogen oxides in fluidized medium and method for producing the same
WO2009134419A1 (en) Emission control system internal to a boiler
WO2006025900A2 (en) Multi-stage heat absorbing reactor and process for scr of nox and for oxidation of elemental mercury
AU594528B2 (en) Method of removing SOx and NOx from effluent gas
FI81504B (en) FOERFARANDE OCH ANORDNING, MED VILKA KVAEVEOXIDER SELEKTIVT OCH KATALYTISKT AVLAEGSNAS UR AVGASER FRAON VAERMEVERK.
CN107866227A (en) Prepare the method and denitration method for flue gas of denitration catalyst composition
CN209476008U (en) A kind of low-temperature denitration of flue gas catalytic reaction system
CN215539839U (en) Flue gas treatment system
JPS60168538A (en) Catalyst for combustion and conversion of gas and higher hydrocarbon,nitrogen oxide reducing apparatus and exhaust gas post-burning apparatus equipped with said catalyst
CN109847578A (en) A kind of various pollutants of fume cooperation-removal method
CN207137657U (en) A kind of coal-fired flue-gas dust-removing denitrification integrated device
CN207401357U (en) A kind of denitrification apparatus suitable for carbon industry
JP2001079346A (en) Method and device for treating gas and method for regenerating honeycomb activated carbon
JP4864231B2 (en) Denitration catalyst structure and exhaust gas denitration method using the same
JPH08150336A (en) Waste gas purification material and method for purifying waste gas
JPH08257363A (en) Exhaust gas treatment method
CN206597459U (en) The system of glass furnace fume accumulation of heat denitration
JP3775761B2 (en) Exhaust gas denitration system and exhaust gas denitration method
CN106766955A (en) The system of glass furnace fume accumulation of heat denitration and its application