JPS6051259B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device

Info

Publication number
JPS6051259B2
JPS6051259B2 JP9559975A JP9559975A JPS6051259B2 JP S6051259 B2 JPS6051259 B2 JP S6051259B2 JP 9559975 A JP9559975 A JP 9559975A JP 9559975 A JP9559975 A JP 9559975A JP S6051259 B2 JPS6051259 B2 JP S6051259B2
Authority
JP
Japan
Prior art keywords
silicon
phosphorus
arsenic
type
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9559975A
Other languages
Japanese (ja)
Other versions
JPS5219966A (en
Inventor
勝信 柿崎
祥治 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP9559975A priority Critical patent/JPS6051259B2/en
Publication of JPS5219966A publication Critical patent/JPS5219966A/en
Publication of JPS6051259B2 publication Critical patent/JPS6051259B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 本発明は、半導体装置の製造方法、特に結晶欠陥の少
ないN型導電領域の形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for forming an N-type conductive region with few crystal defects.

従来、シリコン単結晶基板にこれと反対導電型の不純
物を添加して半導体装置を形成する場合、シリコンの原
子半径と不純物原子の原子半径とに差があるためシリコ
ン結晶格子がひずみ、ひずみによる応力を緩和するため
に結晶内に転位や点欠陥などの結晶欠陥が発生し、これ
らの結晶欠陥に重金属が捕獲され、空乏層での再結合中
心になつたり、空乏層の拡がりを妨げたりして接合部り
ーク電流を増加させる原因となつている。例えば、Nチ
ャンネルMOS電界効果トランジスタにおいては、ホウ
素をドープしたP型シリコン基板にリンを拡散してソー
ス領域およびドレイン領域を形成するが、ホウ素とリン
の結合半径はシリコンの結合半径よりも小さいため、ホ
ウ素のドープによりひずんだシリコン結晶格子がリンの
拡散により更にひずみが大きくなる。このように強くひ
ずん た半導体結晶は格子欠陥を発生し、格子欠陥に重
金属などが捕獲され、接合部のリーク電流を増加させて
いた。 このような欠点を解決するため、原子半径の大
きい元素と小さい元素との組合せ、例えばリンとアンチ
モンとの組合せによるN型不純物拡散などが行なわれて
いる。
Conventionally, when semiconductor devices are formed by adding impurities of the opposite conductivity type to a silicon single crystal substrate, the silicon crystal lattice is strained due to the difference between the atomic radius of the silicon and the atomic radius of the impurity atoms, resulting in stress due to the strain. In order to alleviate this, crystal defects such as dislocations and point defects are generated in the crystal, and heavy metals are captured in these crystal defects and become recombination centers in the depletion layer, or prevent the expansion of the depletion layer. This causes an increase in junction leakage current. For example, in an N-channel MOS field effect transistor, phosphorus is diffused into a P-type silicon substrate doped with boron to form a source region and a drain region, but since the bond radius of boron and phosphorus is smaller than the bond radius of silicon, , the silicon crystal lattice, which has been strained due to boron doping, becomes even more strained due to the diffusion of phosphorus. Semiconductor crystals that are highly strained in this way generate lattice defects, which trap heavy metals and other substances, increasing leakage current at the junction. In order to solve these drawbacks, N-type impurity diffusion using a combination of an element with a large atomic radius and an element with a small atomic radius, such as a combination of phosphorus and antimony, has been carried out.

しかし、このような組合せ不純物拡散においては、不純
物の拡散速度が異なるためQ型導電領域形成の制御が困
難であるという欠点があつた。 本発明は、P型シリコ
ン基板のこれらの欠点を改良する為に、あらかじめホウ
素(好ましくは2.8×10″4〜1.2×10″8/
cTl)と一緒にヒ素(好ましくは10’0〜10″”
/d)をドープした基板を用いて半導体装置を製造する
ことを特徴とする、この基板を用いるとリン等の拡散時
の転位や結晶欠陥の発生が防止され、ジャンクションリ
ーク電流も少くなることが認められた。
However, such combined impurity diffusion has a drawback in that it is difficult to control the formation of the Q-type conductive region because the impurity diffusion rates are different. In order to improve these shortcomings of P-type silicon substrates, the present invention provides boron (preferably 2.8 x 10"4 to 1.2 x 10" 8/
cTl) together with arsenic (preferably 10'0-10'')
A semiconductor device is manufactured using a substrate doped with /d). Using this substrate prevents the generation of dislocations and crystal defects during diffusion of phosphorus, etc., and reduces junction leakage current. Admitted.

この理由は、あらかじめホウ素と一緒にドープされてい
るヒ素は、シ’リコンよりも結晶半径が大きい事から、
結晶半径がシリコンよりも小さなホウ素やリン等がシリ
コンの結晶格子に与える歪を緩和し、転位や結晶欠陥の
発生が防止されるものと考えられる。また本発明は、ヒ
素原子を10’0〜10’゜原子/dの濃度で・含むP
型シリコン基板を用い、リンをこれに選択することによ
り結晶欠陥の少ないN型導電領域を形成することをも特
徴とする。このように、P型シリコン基板にあらかじめ
ヒ素をドープさせておき、N型導電領域形成にリンを拡
散させると、ヒ素の原子半径はシリコンの原子半径より
大きく、リンの原子半径はシリコンの原子半径よりも小
さいからシリコン結晶の格子ひすみを小さくして結晶欠
陥の発生を抑制し、しかもヒ素はあらかじめシリコン基
板にドープしているのて拡散速度の差による拡散制御の
困難性がない。
The reason for this is that arsenic, which is doped with boron in advance, has a larger crystal radius than silicon.
It is thought that boron, phosphorus, etc., whose crystal radius is smaller than that of silicon, alleviate the strain exerted on the silicon crystal lattice, thereby preventing the generation of dislocations and crystal defects. The present invention also provides P containing arsenic atoms at a concentration of 10'0 to 10'° atoms/d.
Another feature is that an N-type conductive region with few crystal defects is formed by using a type silicon substrate and selecting phosphorus as the substrate. In this way, if a P-type silicon substrate is doped with arsenic in advance and phosphorus is diffused to form an N-type conductive region, the atomic radius of arsenic is larger than the atomic radius of silicon, and the atomic radius of phosphorus is equal to the atomic radius of silicon. Because it is smaller than the lattice strain of the silicon crystal, the occurrence of crystal defects can be suppressed, and since the silicon substrate is doped with arsenic in advance, there is no difficulty in controlling diffusion due to differences in diffusion rates.

以下本発明を実施例により詳細に説明する。The present invention will be explained in detail below using examples.

第1図〜第5図は、本発明の実施例のNチャンネルMO
S電界効果トランジスタの製造工程を説明する断面図で
ある。ヒ素とホウ素をドープした抵抗率0.06〜5叩
aのP型シリコン基板1の表面に二酸化ケイ素膜2を設
ける(第1図)。
FIGS. 1 to 5 show an N-channel MO according to an embodiment of the present invention.
FIG. 3 is a cross-sectional view illustrating the manufacturing process of an S field effect transistor. A silicon dioxide film 2 is provided on the surface of a P-type silicon substrate 1 doped with arsenic and boron and having a resistivity of 0.06 to 5 a (FIG. 1).

次に、ソース及びドレインとなる領域となるの二酸化ケ
イ素膜を選択除去し、700℃〜1100℃でリン拡散
を行ない、更に8000C〜1200℃の酸化ふん囲気
中て酸化押込みを行なつてソース領域3及びドレイン領
域4を形成する(第2図)。
Next, the silicon dioxide film that will become the source and drain regions is selectively removed, phosphorus is diffused at 700°C to 1100°C, and oxidation is pushed in an oxidizing atmosphere at 8000°C to 1200°C to form the source region. 3 and a drain region 4 are formed (FIG. 2).

次に、ソース領域3とドレイン領域4との間のゲートと
なる領域5の二酸化ケイ素膜を選択的に除去する(第3
図)。
Next, the silicon dioxide film in the region 5 that will become the gate between the source region 3 and the drain region 4 is selectively removed (third
figure).

次に、7000C〜1100℃で熱酸化してゲート酸化
膜6を成長させる(第4図)。
Next, a gate oxide film 6 is grown by thermal oxidation at 7000C to 1100C (FIG. 4).

次に、ゲート電極7、ソース電極8、ドレイン電極9を
形成する(第5図)。
Next, a gate electrode 7, a source electrode 8, and a drain electrode 9 are formed (FIG. 5).

このような製造方法により、シリコン基板のホウ素濃度
とヒ素濃度を種種変えてNチャンネルMOS電界効果ト
ランジスタを製造して接合部のリーク電流を測定すると
、ホウ素濃度2.8×1014〜1.2×1018原子
/dにおいて、ヒ素濃度1×1013〜1×1017原
子/Cllを含むP型シリコン基板を用いたものは接合
部のリーク電流が極めて少なく良好な結果を得た。
Using this manufacturing method, N-channel MOS field effect transistors were manufactured by varying the boron and arsenic concentrations of the silicon substrate, and the leakage current at the junction was measured. At 1018 atoms/d, a P-type silicon substrate containing an arsenic concentration of 1.times.10.sup.13 to 1.times.10.sup.17 atoms/Cll was used, and the leakage current at the junction was extremely small, giving good results.

以上詳細に説明したように、本発明により格子欠陥が少
なく、従つて接合部リーク電流の小さいN型導代領域を
有する半導体装置を容易に得ることができるのでこの分
野における効果は極めて著しい。
As described in detail above, the present invention has extremely significant effects in this field because it is possible to easily obtain a semiconductor device having an N-type conductivity region with few lattice defects and a low junction leakage current.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第5図は本発明の実施例のNチャンネルMOS
電界効果トランジスタの製造工程を説明する断面図てあ
る。 1・・・・・P型シリコン基板、2・・・・・・二酸化
ケイ素膜、3・・・・・・ソース領域、4・・・・・・
ドレイン領域、5・・・・ゲートとなる領域、6・・・
・・・ゲート酸化膜、7・・・・ゲート電極、8・・・
・・・ソース電極、9・・・・・・ドレイン電極。
1 to 5 are N-channel MOSs according to embodiments of the present invention.
1 is a cross-sectional view illustrating a manufacturing process of a field effect transistor. 1...P-type silicon substrate, 2...Silicon dioxide film, 3...Source region, 4...
Drain region, 5...Region to become gate, 6...
...Gate oxide film, 7...Gate electrode, 8...
...Source electrode, 9...Drain electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 あらかじめ2.8×10^1^4〜1.2×10^
1^8原子/cm^3のホウ素と1×10^1^3〜1
×10^1^7原子/cm^3のヒ素とをドープしたP
型のシリコン基板を用意し、しかる後にこのP型のシリ
コン基板にリンを選択拡散することによりN型導電型領
域を形成することを特徴とする半導体装置の製造方法。
1 2.8 x 10^1^4~1.2 x 10^ in advance
1^8 atoms/cm^3 of boron and 1 x 10^1^3~1
P doped with ×10^1^7 atoms/cm^3 of arsenic
1. A method of manufacturing a semiconductor device, comprising: preparing a type silicon substrate; and then selectively diffusing phosphorus into the P-type silicon substrate to form an N-type conductivity type region.
JP9559975A 1975-08-06 1975-08-06 Manufacturing method of semiconductor device Expired JPS6051259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9559975A JPS6051259B2 (en) 1975-08-06 1975-08-06 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9559975A JPS6051259B2 (en) 1975-08-06 1975-08-06 Manufacturing method of semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP9068784A Division JPS59218777A (en) 1984-05-07 1984-05-07 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS5219966A JPS5219966A (en) 1977-02-15
JPS6051259B2 true JPS6051259B2 (en) 1985-11-13

Family

ID=14142011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9559975A Expired JPS6051259B2 (en) 1975-08-06 1975-08-06 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6051259B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6433873U (en) * 1987-08-25 1989-03-02

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6433873U (en) * 1987-08-25 1989-03-02

Also Published As

Publication number Publication date
JPS5219966A (en) 1977-02-15

Similar Documents

Publication Publication Date Title
US4629520A (en) Method of forming shallow n-type region with arsenic or antimony and phosphorus
US4111719A (en) Minimization of misfit dislocations in silicon by double implantation of arsenic and germanium
JPS6051259B2 (en) Manufacturing method of semiconductor device
GB995700A (en) Double epitaxial layer semiconductor structures
JP3145694B2 (en) Semiconductor device
JPH0350771A (en) Semiconductor device
JPS59218777A (en) Semiconductor device
JPS608623B2 (en) Method for manufacturing semiconductor devices
JPS6143858B2 (en)
JPS6157714B2 (en)
JPH0434300B2 (en)
JPS6129537B2 (en)
JPS63144567A (en) Manufacture of semiconductor device
JPH05102173A (en) Manufacture of semiconductor substrate
JPH03198344A (en) Semiconductor device and photoelectric transducer using same
JPS61208235A (en) Manufacture of semiconductor device
GB1503223A (en) Formation of buried layers in a substrate
JPH05259174A (en) Semiconductor device
JPS61136267A (en) Bipolar semiconductor device
JPH03244133A (en) Semiconductor device
JPH0137856B2 (en)
JPS58212175A (en) Manufacture of semiconductor device
JPH0244732A (en) Manufacture of semiconductor device
JPH01117362A (en) Manufacture of semiconductor integrated circuit device
JPS605554A (en) Manufacture of semiconductor integrated circuit device