JPS6050969A - Field effect transistor - Google Patents

Field effect transistor

Info

Publication number
JPS6050969A
JPS6050969A JP15869083A JP15869083A JPS6050969A JP S6050969 A JPS6050969 A JP S6050969A JP 15869083 A JP15869083 A JP 15869083A JP 15869083 A JP15869083 A JP 15869083A JP S6050969 A JPS6050969 A JP S6050969A
Authority
JP
Japan
Prior art keywords
layer
region
impurity concentration
gaas
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15869083A
Other languages
Japanese (ja)
Inventor
Masaki Ogawa
正毅 小川
Toshio Baba
寿夫 馬場
Takashi Mizutani
隆 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP15869083A priority Critical patent/JPS6050969A/en
Publication of JPS6050969A publication Critical patent/JPS6050969A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Abstract

PURPOSE:To obtain an FET which has less parasitic capacity between a source and a gate by providing a laminated region of a region having high impurity density and a region having the same conductive type disposed under the previous portion but slightly lower impurity density, and covering the region with source and drain regions. CONSTITUTION:An N type Al0.3Ga0.7As layer 2 to become a channel is formed on a central surface layer of a high resistance GaAs substrate 1, and a channel layer 3 of the secondary electron layer modulation-doped by the difference of electric anionic degree to between the layer 2 and GaAs is formed under the layer 2 simultaneously. Then, N type Al0.3Ga0.7As regions 5 of 1X10<18>/cm<3> of impurity density are laid at both sides of the layer 2, thereby forming N type GaAs region 4 of 2X10<18>/cm<3> of density is formed. Subsequently, a gate electrode 6 is formed on the layer 2, and source electrode 7 and drain electrode 8 are covered on the region 4. Thus, the voltage applied to the electrode 6 is controlled to set the electric conductivity of the layer 3 to the prescribed value.

Description

【発明の詳細な説明】 本発明は電界効果トランジスタに関する。[Detailed description of the invention] The present invention relates to field effect transistors.

電界効果トランジスタ(FETンの超高速化をはかるに
は、ゲート長短縮と同時に1 ソース・ゲート間の寄生
抵抗の低減が重要である。
In order to achieve ultra-high speed field effect transistors (FETs), it is important to shorten the gate length and reduce the parasitic resistance between the source and gate.

本発明の目的はソース・ゲート間の寄生抵抗が小さくし
かも基板電流の小さなFETを提供するところKある。
An object of the present invention is to provide an FET with low parasitic resistance between source and gate and low substrate current.

本発明では、チャネルに対してその長さ方向に隣接して
第1の半導体よりなる第1の高不純物濃度領域が設けら
れ、Hlの高不純物濃度領域の下方に接して、第1の半
導体より電気陰性度の小さな第2の半導体よりなる高不
純物濃度領域が設けられてお9、電流供給源となる電極
金属層は第1の高不純物濃度領域の表面に形成されてい
る。
In the present invention, the first high impurity concentration region made of the first semiconductor is provided adjacent to the channel in the length direction, and is in contact with the lower part of the high impurity concentration region of Hl, and is made of the first semiconductor. A high impurity concentration region made of a second semiconductor having low electronegativity is provided 9, and an electrode metal layer serving as a current supply source is formed on the surface of the first high impurity concentration region.

本発明の構造では電気陰性度の違いにより第2の高不純
物濃度領域中のキャリアはチャネル方向に接した第1の
高不純物濃度領域中に移動しているため、第1の高不純
物濃度領域のキャリア濃度が不純物のドープ量より増大
する。この結果ソース・ゲート間の寄生抵抗が低減でき
る特長をもっているう第2の高不純物濃度層の厚さを適
当に選べば、第1の高不純物濃度層中に充分なキャリア
を誘起でき、かつ第2の高不純物濃度層中のキャリヤを
ほとんど孕乏化することができる。この結果、本発明の
構造では、チャネル層の形成されている領域よりも深い
領域にも高濃度層を形成したKもかかわらず、チャネル
層下の基板を流れる電流を低減できる。したがって本発
明の電極構造では寄生抵抗の低減と同時に、基板電流も
低減できる特長を有している。
In the structure of the present invention, carriers in the second high impurity concentration region move into the first high impurity concentration region adjacent to the channel direction due to the difference in electronegativity. The carrier concentration increases more than the amount of impurity doped. As a result, if the thickness of the second high impurity concentration layer, which has the feature of reducing the parasitic resistance between the source and gate, is appropriately selected, sufficient carriers can be induced in the first high impurity concentration layer, and Most of the carriers in the high impurity concentration layer of No. 2 can be depleted. As a result, in the structure of the present invention, the current flowing through the substrate under the channel layer can be reduced even though the high concentration layer is formed in a region deeper than the region where the channel layer is formed. Therefore, the electrode structure of the present invention has the advantage of reducing the substrate current as well as reducing the parasitic resistance.

以下図面を用いて本発明の詳細な説明する。The present invention will be described in detail below using the drawings.

第1図は、本発明の構造を有した変調ドープFETの断
面構造を示す。高抵抗G a A s基板1上Kn型不
純物濃度I X 10” cm−’ r厚さ500人の
祐、3G aO,? A s層2が形成され、ん/!’
0.30 ao、7 A SとGaA sの電気陰性度
の違いKよる変調ドーグ効果により高抵抗G a A 
s基板1のU。1g ()aO,7As層2IC接する
界面に二次元電子層が形成される。第1図で示されたチ
ャネル層3はこの二次元電子によって形成されたもので
ある。チャネル層3の電気伝導度はAA 、s G a
o、y A s上に設けられたd’電極6に印加される
′電圧によって制御でき、したがってFETとして動作
する。第1図の実施例ではチャネル層3およびAZo、
s GaO,T A s層2に接してn型不純物濃度2
XIO”crn””厚さ100OAのG aA s領域
4が設置され、このG a A s領域4に接してn型
不純物濃度1×10’ ” 儒−” r厚さ300Aの
Aj!o、B G aQ、7 A @領域5が設置され
ている。変調ドープ効果によりM。、3G36.7人S
領域5は空乏化し、これ忙接したGaAs領域4に電子
が誘起される。
FIG. 1 shows a cross-sectional structure of a modulation doped FET having the structure of the present invention. A high-resistance GaAs layer 2 is formed on the substrate 1 with a Kn-type impurity concentration I x 10''cm-' r thickness of 500 people, 3GaO,?As layer 2, n/!'
0.30 ao, 7 A High resistance Ga A due to the modulation Dogg effect due to the difference in electronegativity between S and GaAs
s U of substrate 1. A two-dimensional electronic layer is formed at the interface where 1g ()aO,7As layer 2IC contacts. The channel layer 3 shown in FIG. 1 is formed by these two-dimensional electrons. The electrical conductivity of the channel layer 3 is AA, s Ga
o,yA can be controlled by the 'voltage applied to the d' electrode 6 provided on As, and thus operates as a FET. In the embodiment of FIG. 1, the channel layer 3 and AZo,
s GaO, T A n-type impurity concentration 2 in contact with s layer 2
A GaAs region 4 with a thickness of 100 OA is installed, and in contact with this Ga As region 4, Aj!o, B with an n-type impurity concentration of 1×10' G aQ, 7 A @ region 5 is installed. Due to the modulation doping effect, M., 3G36.7 people S
The region 5 is depleted, and electrons are induced in the GaAs region 4 in contact with it.

このため、チャネル層3に接した高不純物濃度GaAs
領域4の電子濃度はドープされた不純物濃度以上の濃度
となる。Au−Ge合金膜はGa As領域4表面に形
成され、それぞれソース電極7.ドレイン電極8として
写真蝕刻法により整形されている。第1図の実施例では
チャネル層3に接した高不純物濃度G a A s領域
4の電子濃度が、屁。、3GaO,7As 領域5の効
果により高められているため、ソース・ゲート電極間お
よびドレイン・ゲート電極間の寄生抵抗は低減されてい
る。このため本実施例の変調ドープFETけ高速で動作
する。さらに本実施例では高不純物濃度G a A s
領域4の下のAlo、5Gao、yAs領域5は空乏化
しているためソース電極7かも注入された電子は基板1
を通ってドレイン電[8に流れ込むことがない。このた
め、FET(7)飽和特性に優れ、高速動作するという
特徴が発揮される。AI−o、s Gao、? As領
礒5、GaAs領域4を形成するには、膜厚制御性に優
れた分子線エピタキシー法あるいけ有機金属化学気相成
長法による選択成長技術を用いるのが有利である。
Therefore, the high impurity concentration GaAs in contact with the channel layer 3
The electron concentration in region 4 is higher than the doped impurity concentration. An Au-Ge alloy film is formed on the surface of the GaAs region 4, and serves as a source electrode 7, respectively. The drain electrode 8 is shaped by photolithography. In the embodiment shown in FIG. 1, the electron concentration of the high impurity concentration GaAs region 4 in contact with the channel layer 3 is 0.05. , 3GaO, 7As region 5, the parasitic resistance between the source and gate electrodes and between the drain and gate electrodes is reduced. Therefore, the modulation doped FET of this embodiment operates at high speed. Furthermore, in this example, the high impurity concentration G a As
Since the Alo, 5Gao, and yAs regions 5 below the region 4 are depleted, the electrons injected into the source electrode 7 also reach the substrate 1.
It does not flow into the drain current [8] through the drain current. Therefore, the FET (7) exhibits excellent saturation characteristics and high-speed operation. AI-o,s Gao,? In order to form the As layer 5 and the GaAs region 4, it is advantageous to use a selective growth technique such as molecular beam epitaxy or organometallic chemical vapor deposition, which has excellent film thickness controllability.

第2図は本発明の第2の実施例であるショットキゲート
型電界効果トランジスタ(MESFET)の断面構造を
示す、高抵抗G a A s基板1上Kn型不純物濃度
2xlO”crn−’ +厚さ200OAのGaAs層
が形成され、その表面にMゲート電極6が設置されてい
る。MとGaAs間のショットキ障壁特性により該G 
a A sは空乏層9とチャネル層31に分割されてい
る。ゲート電極6に印加する電圧によりこの分割比が変
化し、チャネル層31の電気伝導度は制御され、ME8
FET として動作する。第2図の実施例では、チャネ
ル層31に隣接してn型不純物濃度2 ×10” Cr
n−” +厚さ2000AのGaAs領域4が設置され
、G a A s領域4に接して、n型不純物濃度lx
loI8cm−” *厚さ300Aの’o、5Gao、
yAs領域5が設置されている。変調ドープ効果により
”O,5Gao、yAs領域5は空乏化しこれに接した
GaAs領域4に電子が誘起される。
FIG. 2 shows a cross-sectional structure of a Schottky gate field effect transistor (MESFET) which is a second embodiment of the present invention, and shows a high resistance GaAs substrate 1 with Kn-type impurity concentration 2xlO"crn-' + thickness A 200OA GaAs layer is formed, and an M gate electrode 6 is placed on its surface.The Schottky barrier property between M and GaAs allows the G
aA s is divided into a depletion layer 9 and a channel layer 31. This division ratio changes depending on the voltage applied to the gate electrode 6, and the electrical conductivity of the channel layer 31 is controlled.
Operates as a FET. In the embodiment shown in FIG. 2, an n-type impurity concentration of 2×10” Cr
A GaAs region 4 with a thickness of 2000A is provided, and is in contact with the GaAs region 4, with an n-type impurity concentration lx.
loI8cm-" *Thickness 300A 'o, 5Gao,
A yAs area 5 is installed. Due to the modulation doping effect, the O, 5 Gao, yAs region 5 is depleted, and electrons are induced in the GaAs region 4 in contact with it.

このため、チャネル層3に接した高不純物濃度(L+A
s領域4の電子濃度はドーグされ几不純物濃度以上の濃
度と々ろ。AIl Ge合金膜はGaA−s BN域4
表面に形成され、それぞれソース電極7.ドレイン電極
8として写真蝕刻法により整形されている。第2図の実
施例ではチャネル層31に接した高不純物濃度QaAs
領域4の電子濃度かり。、3Ga(、、。
Therefore, the high impurity concentration (L+A
The electron concentration in the s-region 4 is higher than the impurity concentration. AIl Ge alloy film is GaA-s BN region 4
A source electrode 7. is formed on the surface, respectively. The drain electrode 8 is shaped by photolithography. In the embodiment shown in FIG. 2, the high impurity concentration QaAs in contact with the channel layer 31 is
Calculate the electron concentration in region 4. , 3Ga(,,.

As 領域5の効果により高められているため、ソース
−ゲート電極間およびドレイン・ゲート電極間の寄生抵
抗は低減されている。このため本実施例のMESFET
は高速で動作するうさらに本実施例では高不純物濃度0
aAs領域4の下のA、3Gy、7As 領域5は空乏
化しているためソース環・甑7から注入された電子は基
板1を通ってドレイン電極8に流れ込むことがない。こ
のため、FETの飽和特性に優れ、高速動作するという
特長が発揮される。
The parasitic resistance between the source and gate electrodes and between the drain and gate electrodes is reduced because of the effect of the As region 5. Therefore, the MESFET of this example
operates at high speed, and in this example, the impurity concentration is 0.
Since the A, 3Gy, 7As region 5 below the aAs region 4 is depleted, electrons injected from the source ring/soil 7 do not flow into the drain electrode 8 through the substrate 1. Therefore, the FET exhibits the characteristics of excellent saturation characteristics and high-speed operation.

以上本発明の実施例として、変調ドープFET。The above embodiments of the present invention are modulation doped FETs.

MESFETについて説明したが、他のFET例えば接
合グー) mF E T、絶縁ゲート型FET等にも適
用できることは云うまでもない。また半導体材料として
InGaAs混晶とIn〜■s混晶、あるいはInGa
As混晶とInP等の組み合わせでつくられた種々のF
ETにも適用可能である。
Although MESFET has been described, it goes without saying that the present invention can also be applied to other FETs such as a junction type FET, an insulated gate type FET, and the like. In addition, as semiconductor materials, InGaAs mixed crystal, In~■s mixed crystal, or InGaAs mixed crystal,
Various F made from combinations of As mixed crystal and InP, etc.
It is also applicable to ET.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例である変調ドープFET
の断面構造を示す図、第2図は第2の実施例であるME
SFETの断面構造を示す図7図中1は高抵抗G ;I
A s基板、2はn型υ。、3Ga6.7AS ’l、
3は高抵抗G a A s基板界面に形成されたチャネ
ル層、31はn型GaAs層中に形成されたチャネル層
、4は高不純物濃度のG a A s領域、5は高不純
物濃度のAl2n、3 Gan、7AsFG、6けゲー
トAJ!電極、7はソースAu−Ge電極、8−ドレイ
ンAu−Ge[極、9けn壓G a A s層中に形成
された空乏層である。 代J!I!A、 4r理士 内 原 晋オ 1 図
FIG. 1 shows a modulation doped FET which is a first embodiment of the present invention.
FIG. 2 is a diagram showing the cross-sectional structure of ME, which is the second embodiment.
Figure 7 shows the cross-sectional structure of SFET. In the figure, 1 indicates high resistance G; I
A s substrate, 2 is n-type υ. ,3Ga6.7AS'l,
3 is a channel layer formed at the interface of a high-resistance GaAs substrate, 31 is a channel layer formed in an n-type GaAs layer, 4 is a GaAs region with a high impurity concentration, and 5 is an Al2n layer with a high impurity concentration. , 3 Gan, 7AsFG, 6 gate AJ! 7 is a source Au-Ge electrode, 8 is a drain Au-Ge electrode, and 9 is a depletion layer formed in the GaAs layer. Dai J! I! A, 4r Physician Shino Hara 1 Figure

Claims (1)

【特許請求の範囲】[Claims] 電界効果トランジスタのチャネルに対してその長さ方向
に隣接して@iの半導体よりなる第1の高不純物濃度領
域が設けられ、第1の高不純物濃度領域の下方に接して
第1の半導体より電気陰性度の小さな第2の半導体より
なる第2の高不純物濃度領域が設けられ、該第1の高不
純物濃度領域表面上に金属層が設置されていることを特
徴とした電界効果トランジスタ。
A first high impurity concentration region made of a semiconductor of @i is provided adjacent to the channel of the field effect transistor in the length direction thereof, and is in contact with the lower part of the first high impurity concentration region and is closer to the first semiconductor than the first high impurity concentration region. A field effect transistor characterized in that a second high impurity concentration region made of a second semiconductor having low electronegativity is provided, and a metal layer is provided on the surface of the first high impurity concentration region.
JP15869083A 1983-08-30 1983-08-30 Field effect transistor Pending JPS6050969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15869083A JPS6050969A (en) 1983-08-30 1983-08-30 Field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15869083A JPS6050969A (en) 1983-08-30 1983-08-30 Field effect transistor

Publications (1)

Publication Number Publication Date
JPS6050969A true JPS6050969A (en) 1985-03-22

Family

ID=15677220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15869083A Pending JPS6050969A (en) 1983-08-30 1983-08-30 Field effect transistor

Country Status (1)

Country Link
JP (1) JPS6050969A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02267328A (en) * 1989-03-20 1990-11-01 General Electric Co <Ge> Controller of gas turbine engine and controlling method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57197869A (en) * 1981-05-29 1982-12-04 Fujitsu Ltd Semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57197869A (en) * 1981-05-29 1982-12-04 Fujitsu Ltd Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02267328A (en) * 1989-03-20 1990-11-01 General Electric Co <Ge> Controller of gas turbine engine and controlling method

Similar Documents

Publication Publication Date Title
US4471366A (en) Field effect transistor with high cut-off frequency and process for forming same
US4249190A (en) Floating gate vertical FET
JPH0573055B2 (en)
JPH024140B2 (en)
JP2689057B2 (en) Static induction semiconductor device
JPS61147577A (en) Complementary semiconductor device
JPS6050969A (en) Field effect transistor
JPS6242569A (en) Field effect transistor
US7208777B1 (en) Field-effect semiconductor device
JPS59181069A (en) Semiconductor device
JPH0797638B2 (en) Field effect transistor
JP2500459B2 (en) Heterojunction field effect transistor
JPH0261149B2 (en)
JPS6012773A (en) Manufacture of semiconductor element
JPS6052062A (en) Field-effect transistor
JP2000208754A (en) High electric-charge mobility transistor and its manufacture
JPH01257372A (en) Insulated gate field effect transistor
JPS60136380A (en) Semiconductor device
JP2834172B2 (en) Field effect transistor
JPH084141B2 (en) Field effect transistor
JPH04233241A (en) High breakdown strength field-effect transistor
JPS60210879A (en) Field effect transistor
JPH06295926A (en) Semiconductor device including field-effect transistor
JPH03129835A (en) Field-effect transistor
JPH04276630A (en) Semiconductor device