JPS6050856B2 - Method for producing metal composite material containing solid lubricant - Google Patents

Method for producing metal composite material containing solid lubricant

Info

Publication number
JPS6050856B2
JPS6050856B2 JP6336282A JP6336282A JPS6050856B2 JP S6050856 B2 JPS6050856 B2 JP S6050856B2 JP 6336282 A JP6336282 A JP 6336282A JP 6336282 A JP6336282 A JP 6336282A JP S6050856 B2 JPS6050856 B2 JP S6050856B2
Authority
JP
Japan
Prior art keywords
powder
solid lubricant
compact
mold
base metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6336282A
Other languages
Japanese (ja)
Other versions
JPS58181465A (en
Inventor
勝蔵 岡田
誠 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OOPATSUKU KK
Original Assignee
OOPATSUKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OOPATSUKU KK filed Critical OOPATSUKU KK
Priority to JP6336282A priority Critical patent/JPS6050856B2/en
Publication of JPS58181465A publication Critical patent/JPS58181465A/en
Publication of JPS6050856B2 publication Critical patent/JPS6050856B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D23/00Casting processes not provided for in groups B22D1/00 - B22D21/00
    • B22D23/06Melting-down metal, e.g. metal particles, in the mould

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

【発明の詳細な説明】 本発明は固体潤滑剤含有金属複合材の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a metal composite containing a solid lubricant.

固体潤滑剤含有金属複合材はアルミニウム(Al)・
銅(Cu)・錫(Sn)・銀(Ag)・鉄(Fe)等の
単体金属又は合金を母材(マトリックス)としてそれ等
に炭素(C)・二硫化モリブデン(MoS0)・二硫化
タングステン(WS0)等の固体潤滑剤を含有させた形
態のもので、摩擦を受けると摩擦面に含有固体潤滑剤の
薄膜層が生じて自己潤滑性を発揮する材料であり、例え
ば軸受部に潤滑油・グリース等の液体潤滑剤を使用する
ことができない、或は使用が好ましくない場合(例えば
食品製造関係機械、化学関係機械、高温・低温・真空な
ど特殊雰囲気中で使用される機器類など)に於けるオイ
ルレス軸受材料、回転電機など各種の電気機器類に於け
る摺動電気接点・相手部材などの構成材料、その他乾式
滑性の要求される金属部品・部材の材料として活用され
ている。
The solid lubricant-containing metal composite material is aluminum (Al).
Using a single metal or alloy such as copper (Cu), tin (Sn), silver (Ag), or iron (Fe) as a base material (matrix), carbon (C), molybdenum disulfide (MoS0), or tungsten disulfide is added to it. (WS0) is a material that contains a solid lubricant such as (WS0), and when subjected to friction, a thin film layer of the solid lubricant is formed on the friction surface and exhibits self-lubricating properties.・In cases where it is not possible or undesirable to use liquid lubricants such as grease (e.g. food manufacturing machinery, chemical machinery, equipment used in special atmospheres such as high temperature, low temperature, vacuum, etc.) It is used as a material for oil-less bearings, as a constituent material for sliding electrical contacts and mating parts in various electrical equipment such as rotating electric machines, and as a material for other metal parts and components that require dry slipperiness.

このような材料は、1 目的特性てある自己潤滑性(低
摩擦性)を、高レベルに且つ各部均等に具備させるため
に、固体潤滑剤成分が母材金属中に分布ムラなく存在す
る各部可及的に均質相肉質のものであること、2長期に
わたる安定な使用を可能にするために、機械的諸強度(
硬度・耐摩耗性・圧縮強さ・せん断強さ・引張り強さな
ど)が可及的に優れたものであること、が望まれる。
1. In order to provide the objective characteristic of self-lubricity (low friction) at a high level and evenly in each part, the solid lubricant component is distributed evenly in the base metal. 2) The mechanical strength (
It is desirable that the material has as good a property as possible (hardness, wear resistance, compressive strength, shear strength, tensile strength, etc.).

上記の1)に関し、選定した母材金属と固体潤滑剤とが
固体潤滑剤の潤滑特性を保有して良好に融合化し合金組
織を作るものであれば比較的容易にホモジニアスなもの
を得ることができるが、実際上はそのようなケースは鋳
鉄などで極く稀れにみられるだけで特殊なケースに属す
る。
Regarding 1) above, if the selected base metal and solid lubricant have the lubricating properties of a solid lubricant and are well fused to form an alloy structure, it is relatively easy to obtain a homogeneous material. It is possible, but in practice such cases are extremely rare and belong to special cases such as cast iron.

母材金属の溶融相に固体潤滑剤の溶融体又は微粉体を機
械的に分散混合させたもの(機械的混合組織合金型)に
することも考えられるが、これは宇宙空間等の無重力環
境下での操作ならともかく重力作用下ては実際上母材金
属相と固体澗滑剤相のぬれ性の悪さと大きな比重差とに
より両相の機械的分散混和は不能であるか、又は強力な
攪拌力によソー時的に分散混和相状態を現出し得たとし
ても攪拌を解除すれは直ちに相分れを生じてしまい、結
局製造不可能であるか、又は製造が極めて困難で良好な
結果は得られない。
It is also possible to mechanically disperse and mix the molten solid lubricant or fine powder into the molten phase of the base metal (mechanically mixed structure alloy type), but this is difficult to achieve in a weightless environment such as outer space. However, under the action of gravity, it is actually impossible to mechanically disperse and mix the two phases due to poor wettability and large specific gravity difference between the base metal phase and solid lubricant phase, or strong stirring force is required. Even if it is possible to create a dispersed mixed phase state during stirring, phase separation will occur immediately after stirring is stopped, making it impossible to produce the product or making it extremely difficult to obtain good results. I can't do it.

そこで従来この種の材料は粉末冶金法により製.造され
ている。
Conventionally, this type of material was manufactured using powder metallurgy. It is built.

即ち、母材金属粉末、固体潤滑剤粉末、及びこれに必要
に応じて結合剤・酸化防止剤などの副材料を配合した全
体均一の混合処理粉末を圧粉成形し、これを母材金属の
融点以下の温度て焼結塊体化させたものである。尚、結
合剤はこ具体的にはピッチ粉●プラスチック粉等の有機
物粉で、原料粉末間バインダとして添加されるもので、
該結合剤は最終的には焼結工程で完全炭化して固体潤滑
剤成分となる。然しながらこの粉末冶金材は目的特性で
ある潤4滑性についてはとも角としても機械的諸強度に
ついては各種金属系統何れもそのレベルが全般に低水準
で、この点が実際の利用上問題となる楊合がある。
That is, a uniformly mixed powder containing base metal powder, solid lubricant powder, and auxiliary materials such as binders and antioxidants as needed is compacted, and this is then molded into base metal powder. It is sintered into a mass at a temperature below the melting point. The binder is specifically an organic powder such as pitch powder or plastic powder, which is added as a binder between raw material powders.
The binder is finally completely carbonized in the sintering process and becomes a solid lubricant component. However, although this powder metallurgy material has the desired property of lubricity, the mechanical strength of various metal systems is generally at a low level, and this point poses a problem in actual use. There is Yang He.

即ち該粉末冶金材の機械的諸強度は、勿論、母材金属の
種類別系統間で、又同一金属系統でも原料粉未配合割合
、粒度、圧粉成形密度、焼結の温度・時間・雰囲気など
の諸条件の違いにより実際上の諸数値は種々異なるけれ
ども、1粉末冶金材は金属拡散に基づく金属粉同士の結
合で塊体化しており、その金属粉同士の給合力は本来的
に強固なものではないこと、2しかもその金属粉同士の
焼結結合力が固体潤滑剤の配合存在により阻害され弱め
られるこ と、3圧粉成形体はいくら高密度成形体
であつてもミクロ的には金属粉末粒子・固体潤滑剤粉末
粒子間に空孔の存在するポーラス体であるから、この圧
粉成形体を次いで加熱焼結したとき各空孔内空気が膨張
し、又固体潤滑剤粉末粒子周辺に集合し、これが原因で
焼結体はその体内各部にミクロ的な数多のクラックを内
包した肉質となること、4結合剤を配合使用した場合は
その結合剤が金属と結合し、又炭化に至るまでに生じる
燃焼ガスが材料内でのクラック発生の一因となること、
等のことから結果として総じて諸強度水準の低いものと
なる。
In other words, the mechanical strength of the powder metallurgy material varies, of course, depending on the type of base metal, and even within the same metal system, the proportion of raw material powder not mixed, particle size, compaction density, and sintering temperature, time, and atmosphere. Although the actual values vary due to differences in conditions such as 2) Furthermore, the sintering bonding force between the metal powders is inhibited and weakened by the presence of a solid lubricant; 3) No matter how high the density of the compacted compact is, it is microscopically is a porous body with pores between the metal powder particles and the solid lubricant powder particles, so when this powder compact is then heated and sintered, the air in each pore expands, and the solid lubricant powder particles expand. Because of this, the sintered body becomes fleshy with many microscopic cracks in each part of the body, and when 4 binders are used, the binder bonds with the metal, and The combustion gases generated during the process of carbonization contribute to the occurrence of cracks within the material;
As a result, various strength levels are generally low.

従つて該材料をより広範囲に、有効に活用するためには
少なくとも機械的諸強度レベルを全般により高めたもの
を開発することが強く望まれている。本発明は上記の要
望に応えることを目的とするもので、種々の実験研究の
結果、粉末冶金法をベースプロセスとしこれをプロセス
変形した下記の新開発の溶融焼結法によるときは、固体
潤滑剤が母材冶金材中に実質的に均等分布していて、し
かも従来の粉末冶金材よりも機械的諸強度レベルが大幅
に高い固体潤滑剤含有金属複合材を容易に歩留りよく量
産することができることを見出して本発明を完成した。
Therefore, in order to utilize this material more widely and effectively, it is strongly desired to develop a material with at least a generally higher level of mechanical strength. The purpose of the present invention is to meet the above-mentioned demands, and as a result of various experimental studies, it has been found that when using the newly developed melt sintering method described below, which is a process modification of powder metallurgy as a base process, solid lubrication is possible. It is now possible to easily mass-produce solid lubricant-containing metal composites with a high yield, in which the lubricant is substantially evenly distributed in the base metallurgical material, and which also has significantly higher mechanical strength levels than conventional powder metallurgy materials. After discovering what could be done, the present invention was completed.

即ち、母材金属粉末と固体潤滑剤粉末を主成分とする実
質均一混合処理粉末を圧粉成形し、その圧粉成形体を成
形体と略同形のキャビティを有する高耐圧・耐熱性の密
閉型キャビティ内に実質隙間なく嵌め込み封入した状態
となし、その密閉型を圧粉成形体母材金属の融点以上の
温度に加熱して内部の圧粉成形体の母材金属粉末を溶融
化させ、その母材金属粉末の溶融進行に伴なう粘度低下
で、実質的に一様分散状態で存在している固体潤滑剤粉
末が比重差浮上移動を実質的に生じる前に急冷処置をし
て型内の内容物を急速凝固させ、その凝固体を型から取
り出す、ことを特徴とする固体潤滑剤含有金属複合材の
製造方法を要旨とす.る。
That is, a substantially uniformly mixed powder containing base metal powder and solid lubricant powder as main components is compacted, and the compacted body is molded into a high-pressure and heat-resistant closed mold having a cavity of approximately the same shape as the compact. The sealed mold is fitted into the cavity with virtually no gaps and sealed, and the sealed mold is heated to a temperature higher than the melting point of the base metal of the powder compact to melt the base metal powder of the powder compact inside. The solid lubricant powder, which is present in a substantially uniformly dispersed state, is rapidly cooled and cooled in the mold before the viscosity decreases with the progress of melting of the base metal powder. This article summarizes a method for manufacturing a metal composite containing a solid lubricant, which is characterized by rapidly solidifying the contents of a solid lubricant and removing the solidified material from a mold. Ru.

以下プロセスを追つて詳述する。The process will be explained in detail below.

(1)原料粉末 原料たる母材金属粉末(A1・Cu−Sn−N・Fe等
)、固体潤滑剤粉末(C−MOS2・WS2等)の、粒
径、相互配合割合、その他の添加助剤、均一混合方法等
は従来の粉末冶金法に準じる。
(1) Particle size, mutual blending ratio, and other additives and auxiliaries of base metal powder (A1, Cu-Sn-N, Fe, etc.) and solid lubricant powder (C-MOS2, WS2, etc.) that are raw material powder materials , uniform mixing method, etc. are based on conventional powder metallurgy methods.

一般に金属粉末粒径0.1〜100pm程度、固体潤滑
剤粉末は同0.1〜50μm程度のものが用いられ、配
合割合は求める潤滑性能との関係に於て母材金属粉末1
(1)部(重量部)に対して一般に固体潤滑剤粉末は1
〜(イ)部程度の範囲で選定される。(2)圧粉成形 均一混合処理した原料粉末をブレス型の中に充填して圧
迫圧縮(1〜10kg/CIL)して高密度の圧−粉成
形体とする工程で、この工程も従来の粉末冶金法に準じ
る。
Generally, metal powder particles with a particle size of about 0.1 to 100 pm and solid lubricant powders of about 0.1 to 50 μm are used, and the blending ratio is determined based on the relationship with the desired lubricating performance.
(1) parts (parts by weight) of solid lubricant powder
Selected within the range of ~ (A). (2) Powder compaction A process in which the homogeneously mixed raw material powder is filled into a press mold and compressed (1 to 10 kg/CIL) to form a high-density compact.This process is also conventional. Conforms to powder metallurgy method.

この圧粉成形は真空雰囲気で行なうを可とする。This powder compaction can be performed in a vacuum atmosphere.

即ち前述したように圧粉成形体はいくら高密度に成形し
てもミクロ的には原料粉末粒子間に空孔の存在するポー
ラス体てあり、圧粉成形を空気雰囲気で行なうとその各
空孔内には空気が包含され、この包含空気は各空孔が極
めて微細であり、又実質個々独立空孔形態であるから爾
後真空吸引除去処理したとしてもほとんど除去されす残
存する。そしてその包含空気が圧粉成形体を加熱処理し
たとき膨張して製品材料肉質にクラックを生ぜしめる等
悪影響して製品材料特性を低下させる。そこで圧粉成形
を真空雰囲気で行なえば原料粉末粒子間に空孔は存在す
るもその各空孔内には空気を包含しない圧粉成形体を得
ることがてきる。その成形体は爾後空気雰囲気中でスト
ックしても各空孔が極めて微細で又実質個々独立空孔形
態であるから空気侵入はほとんど生ぜず支障はない。第
1図はその真空雰囲気圧粉成形機の一例を示すもので、
1は台盤で、その中央部に原料粉末A1を充填したブレ
ス型2が載置セットされる。3は底を開放した函体で、
プレ型2を載置セットした台盤1に対して図に省略した
上下動機構により上下動され、下降させたとき下部フラ
ンジ4が気密パッキン5を介して台盤面に密着して台盤
1が底盤となり内部が気密化される。
In other words, as mentioned above, no matter how densely compacted the powder compact is, microscopically it is a porous body with pores existing between the raw powder particles, and when compacting is performed in an air atmosphere, each pore is removed. Air is contained therein, and since the air pores are extremely fine and the pores are substantially independent, most of the air contained therein remains even if a vacuum suction removal process is performed afterwards. When the powder compact is heat-treated, the air contained therein expands and causes adverse effects such as cracks in the flesh of the product material, degrading the properties of the product material. Therefore, if compaction is carried out in a vacuum atmosphere, it is possible to obtain a powder compact that does not contain air within each void, although there are voids between the raw powder particles. Even if the molded product is subsequently stored in an air atmosphere, since the pores are extremely fine and the pores are substantially independent, air intrusion hardly occurs and there is no problem. Figure 1 shows an example of the vacuum atmosphere powder compacting machine.
Reference numeral 1 denotes a base plate, in the center of which a press mold 2 filled with raw material powder A1 is placed and set. 3 is a box with an open bottom.
The base plate 1 on which the pre-mold 2 is placed is moved up and down by a vertical movement mechanism (not shown), and when lowered, the lower flange 4 comes into close contact with the base plate surface via the airtight packing 5, and the base plate 1 is moved up and down. It becomes the bottom plate and the inside is made airtight.

6は函体3の天板中央部に形成した貫通孔7に上から嵌
入させたブレスロッドで下降動させると下端が丁度ブレ
ス型2の型孔内に突入する関係になつている。
6 is in such a relationship that when lowered by a breath rod inserted into a through hole 7 formed in the center of the top plate of the box 3 from above, the lower end just projects into the mold hole of the breath mold 2.

8はブレスロッド周面と貫通孔7との間の気密を確保す
べく配設したOリング、9は函体3の側面に内外連通さ
せて取付けた真空ポンプ接続口である。
8 is an O-ring disposed to ensure airtightness between the peripheral surface of the breath rod and the through hole 7, and 9 is a vacuum pump connection port attached to the side surface of the case 3 so as to communicate with the inside and outside.

而して函体3及びブレスロッド6を台盤1から上方へ上
動させて逃した状態にして台盤1の所定位置に原料粉末
を充填したブレス型2を載置セットし、次いで函体3を
下降させて函体3内を気密化させる。この場合必要に応
じて函体3のフランジ4を台盤1に対してしつかりとボ
ルト締め結合10する。次いで真空ポンプPを作動させ
て函体3内を充分に減圧真空化した後ブレスロッド6を
下降動させることにより下端をブレス型2内に突入させ
て原料粉末A1の圧粉成形を行なうものである。成形後
は函体3内を大気圧に戻し、ブレスロッド6を上昇させ
、又函体3を上昇させて型2を取り出し、成形体A2を
型抜きする。(3) 溶融焼結・急冷 上記圧粉成形体A2を第2図示のように成形体A2と略
同形のキャビティ12を有する高耐圧・耐熱性の密閉型
キャビティ内に実質隙間なく嵌め込み封入した状態とな
す。
Then, the box 3 and the breath rod 6 are moved upward from the base plate 1 so that they are released, and the breath mold 2 filled with raw material powder is placed and set at a predetermined position on the base plate 1, and then the case is removed. 3 is lowered to make the inside of the box 3 airtight. In this case, the flange 4 of the box 3 is firmly connected to the base plate 1 with bolts 10 as required. Next, the vacuum pump P is operated to sufficiently reduce the pressure inside the box 3, and then the lower end of the press rod 6 is moved downward into the press mold 2, thereby compacting the raw material powder A1. be. After molding, the inside of the box 3 is returned to atmospheric pressure, the breath rod 6 is raised, the box 3 is also raised, the mold 2 is taken out, and the molded body A2 is punched out. (3) Melting and sintering/quenching The above compacted compact A2 is fitted and sealed with virtually no gaps in a high pressure-resistant and heat-resistant sealed cavity having a cavity 12 of approximately the same shape as the compact A2, as shown in the second diagram. Nasu.

図示例の密閉型11はキャビティとしての透孔12を形
成した中型板13とその中型板をサンドイッチに挾んて
ボルト1ノ6で緊締される上下の蓋板14・15とから
なるもので、鋼鉄製である。中型板13の孔面、蓋体1
4・15の内面には溶融焼結・急冷処理後の製品の型離
れを容易にし、又溶融焼結時の内容物内圧上昇に抗して
中型板13と上下の蓋板14・175との隙間を封塞し
て内容物の過度のはみ出しを防止する、原料金属粉末の
融点よりも高融点で、且つ原料金属粉末と合金化しない
平滑薄板金属板パッキン17を介在又は内張り処理して
おくを可とする(例えばSn粉末の場合はAIパッキン
なフど)。而して圧粉成形体A2を収納し型組みしt:
密閉型11を高温炉に入れて加熱し内部の圧粉成形体A
2の母材金属粉末を溶融化させる。次いで本発明に於て
はこの母材金属粉末の溶融化進行に伴なう粘度低下で、
実質的に一様分散状態で存在している固体潤滑剤粉末が
比重差浮上移動を実質的に生じる前に密閉型1を炉から
取り出して直ちに水中に投入する等の急冷処置をして内
容物を急速凝固させる。即ち、高温炉による加熱により
型11内の圧粉成形体A2の母材金属粉末が溶融化を開
始し、引続く加熱による溶融の進行で粘度低下が進むと
、圧粉成形体時は各部均等一様分散状態で存在する固体
潤滑剤粉末が溶融し粘度低下状態となつた金属溶融相と
の比重差により浮上移動性が生じて相分れし均等分散状
態が崩れるので、本発明は金属粉末の加熱溶融がいまだ
溶融初期段階で比較的高粘度状態て従つて固体潤滑剤粉
末の比重差浮上移動が実質的に今だ生ぜず均等一様分散
状態が実質保持されている段階時(金属粉末の半溶融化
状態も含む)に炉より取り出して急速冷却して内容物を
急速凝固化させるものである。
The illustrated closed mold 11 consists of a medium-sized plate 13 in which a through hole 12 is formed as a cavity, and upper and lower lid plates 14 and 15 that sandwich the medium-sized plate and are tightened with bolts 1 and 6. It is made of steel. Hole surface of medium plate 13, lid body 1
4 and 15 are provided with inner surfaces of the middle plate 13 and the upper and lower lid plates 14 and 175 to facilitate release of the product from the mold after melting and sintering and quenching, and to resist the rise in internal pressure of the contents during melting and sintering. A smooth thin metal plate packing 17 having a melting point higher than the melting point of the raw metal powder and not alloyed with the raw metal powder is interposed or lined to seal the gap and prevent the contents from excessively protruding. (For example, in the case of Sn powder, use AI packing). Then, the powder compact A2 is stored and molded.
The closed mold 11 is placed in a high-temperature furnace and heated to form a powder compact A inside.
2. Melt the base metal powder. Next, in the present invention, due to the decrease in viscosity accompanying the progress of melting of this base metal powder,
Before the solid lubricant powder present in a substantially uniformly dispersed state substantially undergoes levitation due to the difference in specific gravity, the closed mold 1 is taken out of the furnace and immediately cooled down by placing it in water to remove the contents. solidify rapidly. That is, when the base metal powder of the powder compact A2 in the mold 11 starts to melt due to heating in the high-temperature furnace, and the viscosity decreases as the melting progresses due to the subsequent heating, each part of the powder compact becomes uniform. The solid lubricant powder existing in a uniformly dispersed state melts and the difference in specific gravity with the molten metal phase, which has a reduced viscosity, causes floating mobility and phase separation, disrupting the uniformly dispersing state. When the solid lubricant powder is heated and melted, the viscosity is still relatively high at the early stage of melting, and therefore the specific gravity difference of the solid lubricant powder does not substantially occur yet, and the uniformly uniform dispersion state is substantially maintained (metal powder (including a semi-molten state), the contents are taken out from the furnace and rapidly cooled to rapidly solidify the contents.

これにより固体潤滑剤粉末が各部略一様に分散して存在
している固体潤滑剤粉末含有金属複合材Aを得ることが
可能となる。従つて本発明方法に於ては炉に入れた密閉
型11の取出し時期が肝要てあり、密閉型11の形態・
熱容量等、収容圧粉成形体A2の形状・大きさ・組成等
、炉の設定温度等の諸条件の違いにより適正の取出し時
期は種々異なるので、量産に当,つてはケースバイケー
スで予め予備実験により適正取出し時期を設定する。
This makes it possible to obtain the solid lubricant powder-containing metal composite material A in which the solid lubricant powder is distributed substantially uniformly in each part. Therefore, in the method of the present invention, the timing of taking out the closed mold 11 placed in the furnace is important, and the shape and shape of the closed mold 11 are important.
The appropriate timing for unloading varies depending on various conditions such as heat capacity, shape, size, composition of the compacted compact A2, and set temperature of the furnace. The appropriate removal time will be determined through experimentation.

密閉型11内の圧粉成形体A2の加熱溶融処理は成形体
A2の中心部も外側部も時間差なく略同じ状態で溶融化
を進行させる必要があるが、圧粉.”成形体A2の大き
さが大きい、密閉型11が肉厚・大型である等のため熱
回りに時間差を生じる場合には、圧粉成形A2を封入し
た密閉型11を圧粉成形体母材金属の融点以上の温度て
加熱処理する前に、母材金属の融点よりも低いがそれに
近jい温度に予備加熱処理して型11及ひ内部の圧粉成
形A2の全体を各部その温度状態となしてから引続いて
母材金属の融点以上の温度に加熱処理するようにすれば
よい。
In the heating and melting treatment of the compacted compact A2 in the closed mold 11, it is necessary to proceed with melting in substantially the same state at the center and outside of the compact A2 without any time difference. ``If there is a time difference in heating due to the size of the compact A2 being large or the closed mold 11 being thick and large, etc., the closed mold 11 containing the compacted compact A2 may be replaced with the compact mold base material. Before heat treatment at a temperature higher than the melting point of the metal, preheat treatment is performed to a temperature lower than but close to the melting point of the base metal to bring each part of the mold 11 and the entire compacted powder molding A2 inside to that temperature state. After that, heat treatment may be performed to a temperature higher than the melting point of the base metal.

第3図は上記予備加熱工程を具備させた高温炉1の一構
成例を示すものである。
FIG. 3 shows an example of the configuration of a high temperature furnace 1 equipped with the above-mentioned preheating process.

18は内部に予熱炉室19と本加熱炉室20とを連設し
た電気炉である。
Reference numeral 18 denotes an electric furnace in which a preheating furnace chamber 19 and a main heating furnace chamber 20 are connected.

21は被加熱処理キャリッジで、炉内に押し込み・引き
操作自由の耐熱ロッド22の先端部に一体に取付け保持
させてある。
Reference numeral 21 denotes a carriage to be heated, which is integrally attached and held at the tip of a heat-resistant rod 22 that can be freely pushed and pulled into the furnace.

23は炉口に連設した作業筒部で、ロッド22のハンド
ル221を握つてロッド22を十分に引き操作するとキ
ャリッジ21のロッド先端部との結合部が作業筒23の
盲蓋24の内面に当つてそれ以上のロッドの引き操作が
阻止され、キャリッジ21が作業筒23内に移動位置す
る。
Reference numeral 23 denotes a working cylinder part connected to the furnace opening. When the handle 221 of the rod 22 is grasped and the rod 22 is sufficiently pulled, the connecting part with the rod tip of the carriage 21 will be connected to the inner surface of the blind cover 24 of the working cylinder 23. Upon contact, further pulling of the rod is prevented, and the carriage 21 is moved into the working cylinder 23.

この状態からロッド22を略半分長程度押し込み操作す
るとキャリッジ21は予熱炉室19内に位置し、更に十
分に押し込むノと本加熱炉室20に位置する。25・2
6はキャリッジ21の左右側に配設されキャリッジ21
と共にロッド22の押し込み、引き操作で移動する移動
耐火壁ブロックで、キャリッジ21が作業筒23内に位
置するときは先端のブロック25が予熱炉室19の炉口
27を閉塞して位置して作業筒23内と予熱炉室19と
の連通が遮断される。
If the rod 22 is pushed in by about half its length from this state, the carriage 21 will be located in the preheating furnace chamber 19, and if it is further pushed in sufficiently, it will be located in the main heating furnace chamber 20. 25.2
6 is arranged on the left and right sides of the carriage 21.
It is also a movable refractory wall block that moves by pushing and pulling the rod 22. When the carriage 21 is located in the working tube 23, the block 25 at the tip closes the furnace opening 27 of the preheating furnace chamber 19 and works. Communication between the inside of the cylinder 23 and the preheating furnace chamber 19 is cut off.

キャリッジ21が予熱炉室19に位置するときはブロッ
ク25が予熱炉室19と本加熱炉室20との隔壁の連通
孔28に位置し、他方のブロック26が予熱炉室19の
炉口27に位置して予熱炉室19を実質的に独立窒化す
る。又キャリッジ21が本加熱室20に位置するときは
ブ咄ンク26が室19と室20の連通孔28に位置して
本加熱炉室20を実質的に独立窒化する。29は作業筒
23の上面部に形成した被加熱処理物投入用蓋付き開口
、30は作業筒23の下面側に配設した、或はシユータ
を介して連設した冷却水槽、31は本加熱炉室20に開
口させたN2等の不活性ガス又は非酸化性ガス導入用バ
イブで、ガスは本加熱炉室20→予熱炉室19一作業筒
23→出口バイブ32の経路で流動して炉室20,19
内を常時不活性又は非酸化性雰囲気に保つ。
When the carriage 21 is located in the preheating furnace chamber 19, the block 25 is located in the communication hole 28 of the partition between the preheating furnace chamber 19 and the main heating furnace chamber 20, and the other block 26 is located in the furnace opening 27 of the preheating furnace chamber 19. The preheating furnace chamber 19 is substantially independently nitrided. Further, when the carriage 21 is located in the main heating chamber 20, the bushing tank 26 is located in the communication hole 28 between the chambers 19 and 20, so that the main heating furnace chamber 20 is substantially independently nitrided. 29 is an opening with a lid formed on the upper surface of the working cylinder 23 for introducing the object to be heated; 30 is a cooling water tank provided on the lower side of the working cylinder 23 or connected via a shutter; 31 is a main heating A vibrator for introducing inert gas such as N2 or non-oxidizing gas is opened into the furnace chamber 20, and the gas flows through the main heating furnace chamber 20 -> preheating furnace chamber 19 - working cylinder 23 -> exit vibrator 32 and is then heated to the furnace. Room 20, 19
Maintain an inert or non-oxidizing atmosphere inside at all times.

33は炉室18,19内に設けた、移動耐火壁ブロック
案内台又は案内レール、34は加熱ヒータである。
33 is a movable refractory wall block guide stand or guide rail provided in the furnace chambers 18 and 19, and 34 is a heater.

而してキャリッジ21を作業筒23内に位置させ蓋付き
開口29からキャリッジ21上に被加熱部材たる圧粉成
形体を封入した密閉型11を載置セットして開口27の
蓋を閉じ、ロッド22を押し込み操作してキャリッジ2
1を予熱炉室19内に所定の設定時間保持させて前記の
予熱を行なう。
Then, the carriage 21 is positioned in the working cylinder 23, and the closed mold 11 containing the powder compact as the heated member is placed and set on the carriage 21 through the opening 29 with a lid, and the lid of the opening 27 is closed. Push in 22 to move carriage 2.
1 is kept in the preheating furnace chamber 19 for a predetermined set time to perform the above-mentioned preheating.

次いでロッド22を更に押し込み操作してキャリッジ2
1を本加熱室20に位置させて所定の設定時間保持させ
て型11内の金属粉を溶融化させ、設定時間経過後直ち
にロッド22を引き操作してキャリッジ21を作業筒2
3に戻し、次いでロッド22を半回転操作すると、キャ
リッジ21が天地逆になり型11が水槽30内に落下し
て型11が水槽30内に落下して型11及び内容物の↓
急冷がなされる。冷却された型11はその後水槽30内
から外部へ取り出す。型11の少なくとも本加熱時はロ
ッド22を回転操作しても型11がキャリッジ21から
落ちないように工夫してロッド22を回転状態にするこ
1とにより型11を回転させながら加熱処理するように
すると加熱が万べんなく行なわれ、又固体潤滑剤粉末の
比重差浮上を押える上で有効てある。
Next, push the rod 22 further to move the carriage 2
1 is placed in the main heating chamber 20 and held for a predetermined set time to melt the metal powder in the mold 11. Immediately after the set time has elapsed, the rod 22 is pulled and the carriage 21 is moved to the working cylinder 2.
3 and then operate the rod 22 half a turn, the carriage 21 will turn upside down and the mold 11 will fall into the water tank 30, and the mold 11 and contents will fall into the water tank 30.
Rapid cooling is performed. The cooled mold 11 is then taken out from the water tank 30. At least during the main heating of the mold 11, the rod 22 is rotated so that the mold 11 does not fall from the carriage 21 even if the rod 22 is rotated, so that the heat treatment can be performed while the mold 11 is rotated. By doing so, heating is performed evenly, and it is effective in suppressing the rise of the solid lubricant powder due to the difference in specific gravity.

(4)型開き上記(3)の処理後型開きして製品材料A
を取り出1す。
(4) Opening the mold After the treatment in (3) above, open the mold and product material A
Take out 1.

この製品材料Aは従来の粉末冶金材よりも機械的緒強度
に優れるからブロック体を熱間加工法等て板状に展延加
工したり、或は基体金属板に重ねて全体を圧延して所謂
クラッド板を製造する等の成形加工処理を支障なく行な
うことができる。2以上本発明方法に依れば、 a前記(3)の工程で説明したように、固体潤滑剤粉末
が溶融金属母体内に圧粉成形体時の良好な一様分散状態
が実質保たれて存在した形態の、言うなれば機械的混合
組織合金タイプの複合材!を重力作用下にも拘らず容易
に歩留りよく量産することが可能てある。
This product material A has better mechanical strength than conventional powder metallurgy materials, so the block body can be rolled into a plate shape using a hot processing method, or it can be stacked on a base metal plate and rolled as a whole. Molding processing such as manufacturing a so-called clad plate can be performed without any problem. 2 or more According to the method of the present invention, a. As explained in step (3) above, the solid lubricant powder is substantially maintained in a good uniform dispersion state in the molten metal matrix during the compacting process. Existing form, so to speak, a mechanical mixed structure alloy type composite material! It is possible to easily mass-produce with good yield even under the influence of gravity.

b従来の粉末冶金材のような金属粉末同士の単なる焼結
結合と異なり、母材金属粉末は全体に溶融して結合し、
又加熱溶融時の密閉型内膨張.による強力な内部圧力作
用により金属間拡散が迅速良好に行なわれること、同じ
く強力な内部圧力作用により内容物の各部にミクロ的に
存在する空孔は全てその空孔内に空気を包含しない場合
(真空雰囲気ての圧粉成形処理物)は勿論、空気を包含
する場合でも上記強力な内圧力により押し潰されて実質
消減し成形体Aは内部クラックなどのない極めて緻密な
充実肉質のものとなること、から後述の実施例・比較例
に示すように従来の粉末冶金材よりも機械的諸強度に格
段に優れた固体潤滑剤含有金属複合材を得ることができ
る。
b Unlike the simple sintered bonding of metal powders as in conventional powder metallurgy materials, the base metal powder is melted and bonded throughout,
Also, expansion inside the closed mold during heating and melting. Due to the strong internal pressure of Of course, even when air is included (powder compacting processed product in a vacuum atmosphere), it is crushed by the above-mentioned strong internal pressure and virtually disappears, and the compact A becomes an extremely dense and solid flesh with no internal cracks. As shown in the Examples and Comparative Examples described below, it is possible to obtain a solid lubricant-containing metal composite material that has much better mechanical strength than conventional powder metallurgy materials.

c原料混合粉末の圧粉成形性が悪くても一旦成形した圧
粉成形A1を密閉型11内に納めて上記の溶融焼結を行
なうから溶融焼結時の型崩れ・破れは考慮外となり、圧
粉成形性は一旦成形した圧粉成形体A1を型11内に納
めるまでの扱い過で型崩れ・破れを生じない程度の保形
力が得られるものであれば足り、結合剤の使用は不要で
ある。
c Even if the powder compaction properties of the raw material mixed powder are poor, the compacted compact A1 that has been compacted is placed in the closed mold 11 and the above-mentioned melting and sintering is performed, so deformation and tearing during melting and sintering are not taken into consideration. The compacting property is sufficient as long as it has enough shape-retaining power to prevent the compacted compact A1 from losing its shape or tearing due to excessive handling until it is placed in the mold 11, and the use of a binder is not required. Not necessary.

従つて従来の粉末冶金材に於ける結合剤使用による前述
4のような弊害も生じ得ない。d原料の母材金属粉末表
面を覆つている酸化物が本発明方法の溶融焼結法に依る
ときは製品材料の緻密充実肉質内各部に均一に分散して
存在することになり、これが製品材料の機械的諸強度の
増大の一助となる。
Therefore, the disadvantages mentioned in 4 above due to the use of binders in conventional powder metallurgy materials cannot occur. d When the oxide covering the surface of the base material metal powder of the raw material is applied to the melting and sintering method of the method of the present invention, it will exist uniformly dispersed in various parts of the dense, solid flesh of the product material, and this will be present in the product material. This helps increase the mechanical strength of the material.

実施例1(Sn−C複合材) (1)原料 の均一混合粉末。Example 1 (Sn-C composite material) (1) Raw materials uniformly mixed powder.

゛″一゛゜゛−(2)圧粉成形 上記の混合粉末をブレス型に充填して真空雰囲気にて6
トン/dの圧縮力て直径2礪X厚さ0.8Gの円盤体に
圧粉成形した。
゛''1゛゜゛-(2) Powder compacting Fill a press mold with the above mixed powder and press in a vacuum atmosphere for 6
The material was compacted into a disk with a diameter of 2 cm and a thickness of 0.8 G using a compression force of tons/d.

得られた圧粉成形体の密度は約5.9y/CTlてあつ
た。(3)溶融焼結・急冷 上記の圧粉成形体を該成形体が実質隙間なく収納される
キャビティを有する第2図例のような中型板13、上下
の蓋板14,15、緊締ボルト16とからなる鋼鉄製の
高耐圧性・耐熱性密閉型11内に収納し、平均圧力30
k9/d程度となるまでボルト16を十分に緊締して型
組みした。
The density of the obtained compact was approximately 5.9y/CTl. (3) Melting and sintering/quenching A medium-sized plate 13, upper and lower cover plates 14 and 15, and a tightening bolt 16 as shown in FIG. It is housed in a high pressure and heat resistant sealed mold 11 made of steel, with an average pressure of 30
The bolts 16 were sufficiently tightened and the mold was assembled to about k9/d.

尚、中型板13の型孔内周面、及び蓋板14,15の内
面には離形及ひ閉蓋パッキン17としてタンタルの薄板
を介在又は内張り処置した。而して上記の成形体を収納
した密閉型11を400℃の高温炉に入れて加熱し、炉
に入れてから・約1紛経過後に炉から取り出して直ちに
水中に投入して急冷処理した。
The inner peripheral surface of the mold hole of the medium-sized plate 13 and the inner surfaces of the lid plates 14 and 15 were interposed or lined with a tantalum thin plate as a release/closing lid packing 17. The closed mold 11 containing the above-mentioned molded body was placed in a high-temperature furnace at 400° C. and heated, and after approximately one powder had elapsed after being put into the furnace, it was taken out of the furnace and immediately put into water for quenching.

上記の炉に入れてから取り出すまての時間は予め予備実
験により設定したもので、予備実験に依れば本例の場合
は密閉型11の炉内投入後約1粉経過時点で型11内の
圧粉成形体のSn粉末の溶融が実質的に終了し、その後
約2分半経過時点までならばその溶融金属相の粘度が未
だ高粘度状態にあつて固体潤滑剤粉末の溶融金属相との
比重差による浮上移動相分れを生せす固体潤滑剤粉末の
均一分散分布状態が実質保持されるが、それ以上炉内で
加熱を続行した場合には溶融金属相の低粘化により固体
潤滑剤粉末の浮上移動相分れを生じて均一分散分布状態
がくずれる。
The above-mentioned time from putting it into the furnace to taking it out was set in advance through preliminary experiments.According to the preliminary experiments, in this example, after about one powder elapsed after the closed mold 11 was put into the furnace, the inside of the mold 11 After the melting of the Sn powder in the compacted compact is substantially completed, until about two and a half minutes have elapsed, the viscosity of the molten metal phase is still in a high viscosity state and the molten metal phase of the solid lubricant powder is mixed with the molten metal phase of the solid lubricant powder. The solid lubricant powder is substantially maintained in a uniformly dispersed distribution state, which causes floating mobile phase separation due to the difference in specific gravity of The floating mobile phase of the lubricant powder separates, and the uniform dispersion distribution state is disrupted.

従つて本例の場合は密閉型11の炉内取出し適正時期は
炉内投入から約1粉経過後で約1紛経過する前までの範
囲で設定すればよい。尚本例の場合は炉内投入後約1紛
経過時点で内部の溶融金属が熱膨張による内圧高上昇に
より中型板13と薄板パッキン17を介入させた蓋板1
4,15との接合隙間からはみ出し漏れを生じはじめる
。そこでこのはみ出し漏れを炉窓から視認してそれを目
安に取出し時期を知るようにしてもよい。又場合によつ
ては約14分経過前のSn粉末が未だ半溶融状態の時点
で取リヤ8出して急冷し製品材料を得るようにしてもよ
い。而して急冷処理した密閉型11を分解して製品材料
(インゴット)Aを取り出す。この製品材料の密度は圧
粉成形体時の約5.9y/dから約6.2y/CTIに
上昇したもので、又肉質はSnの溶融金属相中に固体潤
滑剤粉末が実質均一分散分布して含有されたものである
。又該製品材料Aの諸特性を測定し、その結果を、下記
比較例1の従来の粉末冶金材Bの諸特性測定値と対象さ
せて表1に示した。比較例1 (1)原料粉末:実施例1の(1)と同じ。
Therefore, in the case of this example, the appropriate timing for taking out the closed mold 11 from the furnace may be set within the range from the time of introduction into the furnace until about one powder has elapsed and before about one powder has elapsed. In the case of this example, the lid plate 1 with the medium-sized plate 13 and the thin plate packing 17 intervened due to the increase in internal pressure due to thermal expansion of the molten metal inside the furnace after about one melting point after being put into the furnace.
4 and 15, and leakage begins to occur. Therefore, this protruding leakage may be visually observed from the furnace window and used as a guide to know when to take out the material. In some cases, the Sn powder may be taken out from the picker 8 before about 14 minutes have passed and is still in a semi-molten state to be rapidly cooled and obtain a product material. Then, the rapidly cooled sealed mold 11 is disassembled and the product material (ingot) A is taken out. The density of this product material has increased from approximately 5.9 y/d in the powder compact to approximately 6.2 y/CTI, and the solid lubricant powder is substantially evenly distributed in the Sn molten metal phase. It is contained as follows. The various properties of the product material A were also measured, and the results are shown in Table 1 in comparison with the measured values of the conventional powder metallurgy material B of Comparative Example 1 below. Comparative Example 1 (1) Raw material powder: Same as (1) of Example 1.

(2)圧粉成形:空気中ブレス、他は実施例1の(2)
と同要領。(3)焼結:不活性ガス(AO雰囲
気中、200℃、 12扮。
(2) Powder compaction: Air press, others are (2) of Example 1
Same point. (3) Sintering: 200°C in an inert gas (AO atmosphere), 12 times.

これで得られた粉末冶金材Bの密度は約5.7y/dで
あつた。
The density of the powder metallurgical material B thus obtained was approximately 5.7 y/d.

尚、摩擦係数は、試験機として鈴木式摩擦試験機を用い
、相手材:軟鋼(Hv2O6)、試験接触面積2cd(
外形20r!Rm、内径12?のリング状回転面接!触
)、回転数200r′Pm(摩擦速度100TL,/M
in)、付加荷重10k9、大気中・室温下、摩擦時間
6紛の条件で測定される摩擦時間10〜6紛に於ける平
均の摩擦係数てある。
The coefficient of friction was determined using a Suzuki friction tester as a tester, with a mating material: mild steel (Hv2O6) and a test contact area of 2cd (
External size 20r! Rm, inner diameter 12? Ring-shaped rotating interview! friction), rotation speed 200r'Pm (friction speed 100TL,/M
In), the average friction coefficient is measured under the conditions of an additional load of 10k9, in the atmosphere/room temperature, and a friction time of 6 powders, at a friction time of 10 to 6 powders.

又摩耗量は上記6紛間の摩擦係数測定過程で生5じた摩
耗量である。
Further, the amount of wear is the amount of wear that occurred during the process of measuring the friction coefficient of the six powders mentioned above.

第4図グラフは本例実施例に於て、固体潤滑剤たる黒鉛
の配合量を0〜20%の範囲で種々変えて製造した各製
品材料の圧粉成形体時の密度(プレスカは各場合何れも
6トン/c!i)と、最終材料4(溶融凝固後)の密度
との関係測定グラフである。
The graph in Figure 4 shows the density of each product material when compacted (presca is in each case 6 tons/c!i) and the density of the final material 4 (after melting and solidification).

第5図グラフは同じく黒鉛配合量を種々変えた場合の圧
粉成形体時の空孔率と、最終材料での空孔率の関係測定
グラフである。
The graph in FIG. 5 is a measurement graph of the relationship between the porosity of the powder compact and the porosity of the final material when the amount of graphite mixed is varied.

第6図は同じく本実施例に於て黒鉛配合量を種々変えて
製造した各製品材料の摩擦係数と、比較例1で同じく黒
鉛配合量を種々変えて製造した各粉末冶金材の摩擦係数
の関係グラフである。
Figure 6 shows the friction coefficients of each product material manufactured with various amounts of graphite mixed in this example, and the friction coefficient of each powder metallurgy material manufactured with various amounts of graphite mixed in Comparative Example 1. It is a relationship graph.

ここで、15%以上黒鉛を含む従来の粉末冶金材は摩擦
時間6扮以内に崩壊するため、同図に示してない。第7
図乃至第11図は夫々同じく黒鉛配合量を種々変えた場
合に於ける硬さ(第7図)、比摩耗率(第8図)、圧縮
強さ(第9図)、せん断強さ(第10図)、引張り強さ
(第11図)に関する関係測定グラフである。
Here, the conventional powder metallurgy material containing 15% or more of graphite is not shown in the figure because it disintegrates within 6 hours of friction time. 7th
Figures 11 to 11 show the hardness (Figure 7), specific wear rate (Figure 8), compressive strength (Figure 9), and shear strength (Figure 9) when the graphite content was varied. Figure 10) and tensile strength (Figure 11).

以上から明らかなように本発明方法で得られる材料は従
来の粉末冶金材との比較に於て、摩擦係数に関しては略
同水準を保ち(本発明方法によるものは第6図から解る
ように特に固体潤滑剤たる黒鉛配合量を比較的少量(約
8%以下)に押えても粉末冶金材よりも小さい摩擦係数
のものを得ることができる。
As is clear from the above, the material obtained by the method of the present invention maintains approximately the same level of friction coefficient when compared with conventional powder metallurgy materials (as can be seen from Figure 6, the material obtained by the method of the present invention is particularly Even if the amount of graphite, which is a solid lubricant, is kept to a relatively small amount (approximately 8% or less), it is possible to obtain a material with a coefficient of friction smaller than that of powder metallurgy materials.

)、しかも機械的諸強度は何れも粉末冶金材よりもレベ
ルが格段に高いものであることが解る。実施例2(A1
−MOS2複合材) (1)原料 金属粉末N粉末 95% 平均粒形40pm 融点660℃ 固体潤滑剤粉末MOS2粉末 5% 平均粒径7pm 融点1800℃ の均一混合粉末。
), and it can be seen that the mechanical strengths are all at a much higher level than powder metallurgy materials. Example 2 (A1
-MOS2 composite material) (1) Raw metal powder N powder 95% Average particle size 40pm Melting point 660°C Solid lubricant powder MOS2 powder 5% Average particle size 7pm Melting point 1800°C Uniform mixed powder.

(2)圧粉成形:圧縮力6トン/d1他は実施例H8の
(2)と同要領。
(2) Powder compaction: Same procedure as Example H8 (2) except for compression force of 6 tons/d1.

得られた圧粉成形体の密度約2.72y/CTlO(3
)溶融焼結・急冷:炉温度700゜C、加熱処理時間1
紛、他は実施例1の(3)と同要領。
The density of the obtained green compact is approximately 2.72y/CTlO(3
) Melting sintering/quenching: Furnace temperature 700°C, heat treatment time 1
The other details were the same as in Example 1 (3).

得られた製品材料をAとする。比較例2 従来の粉末冶金材(Bとする)。The obtained product material is referred to as A. Comparative example 2 Conventional powder metallurgy material (referred to as B).

(1)原料粉末:実施例2の(1)と同じ。(1) Raw material powder: Same as (1) of Example 2.

(2)圧粉成形:空気中ブレス、他は実施例2の(2)
と同じ。(3)焼結:不活性ガス(AI′)雰囲気中、
400′C、12紛。
(2) Powder compaction: air press, others are (2) of Example 2
Same as. (3) Sintering: in an inert gas (AI') atmosphere,
400'C, 12 pieces.

上記実施例2て得た製品材料Aと比較例2て得た粉末冶
金材Bとの諸特性測定値を表2に対象さ・せて示す。
Table 2 shows the measured values of various properties of the product material A obtained in Example 2 and the powder metallurgy material B obtained in Comparative Example 2.

実施例3(CU−C複合材) (1)原料 金属粉末C中末 95% 平均粒形70pm 融点1098 C 固体潤滑剤粉末 黒鉛粉末 5% 平均粒径75μm 融点3500′C の均一混合粉末。Example 3 (CU-C composite material) (1) Raw materials Metal powder C medium powder 95% Average particle size 70pm Melting point 1098C Solid lubricant powder graphite powder 5% Average particle size 75μm Melting point 3500'C uniformly mixed powder.

(2)圧粉成形:圧縮力6トン/d、他は実施例1の(
2)と同要領。
(2) Powder compaction: compression force 6 tons/d, other settings were as in Example 1 (
Same as 2).

得られた圧粉成形体の密度約7.08y/DO(3)溶
融焼結・急冷:炉温度1150℃、加熱処理時間1吟、
他は実施例1の(3)と同要領。
Density of the obtained green compact is approximately 7.08y/DO (3) Melting sintering/quenching: Furnace temperature 1150°C, heat treatment time 1g,
The rest is the same as in Example 1 (3).

得られた7 製品材料をAとする。比較例2 従来の粉末冶金材(Bとする)。The obtained 7 product materials are referred to as A. Comparative example 2 Conventional powder metallurgy material (referred to as B).

(1)原料粉末:実施例3の(1)と同じ。(1) Raw material powder: Same as (1) of Example 3.

(2)圧粉成形:空気ブレス、他は実施例3の(2)と
同じ。(3)焼結:不活性ガス(Ar)雰囲気中、80
0℃、12紛。
(2) Powder compacting: Air press, other details are the same as in Example 3 (2). (3) Sintering: In an inert gas (Ar) atmosphere, 80
0℃, 12 powder.

上記実施例3で得た製品材料Aと、比較例3で得た粉末
冶金材Bとの諸特性測定値を表3に対象5させて示す。
The measured values of various properties of the product material A obtained in Example 3 and the powder metallurgy material B obtained in Comparative Example 3 are shown in Table 3 for subject 5.

実施例4(Ag−MOS2・WS2複合材)(1)原料
金属粉末 〜粉末 95% 平均粒形
70pm 融点9600C 固体潤滑剤粉末MOS2とWS2の1:1混合
粉末5% 平均粒径75μm 融 点MOS2l8OO′Cの均一混
合粉末。
Example 4 (Ag-MOS2/WS2 composite) (1) Raw metal powder ~ Powder 95% Average particle size 70pm Melting point 9600C 1:1 mixture of solid lubricant powder MOS2 and WS2
Uniform mixed powder with 5% powder, average particle size 75μm, and melting point MOS218OO'C.

(2)圧粉成形:圧縮力6トン/d1他は実施例1の(
2)と同要領。
(2) Powder compaction: Compressive force 6 tons/d1 and others were as in Example 1 (
Same as 2).

得られた圧粉成形体の密度約8.4y/d*(3)溶融
焼結・急冷:炉温度1000℃、加熱処理時間1紛、他
は実施例1の(3)と同要領。
Density of the obtained green compact is about 8.4 y/d* (3) Melting sintering/quenching: Furnace temperature 1000°C, heat treatment time 1 powder, otherwise the same procedure as in Example 1 (3).

得られた製品材料をAとする。比較例2 従来の粉末冶金材(Bとする)。The obtained product material is referred to as A. Comparative example 2 Conventional powder metallurgy material (referred to as B).

(1)原料粉末:実施例4の(1)と同じ。(1) Raw material powder: Same as (1) of Example 4.

(2)圧粉成形:空気ブレス、他は実施例4の(2)と
同じ。(3) 焼結:不活性ガス(Ar)雰囲気中、7
00℃、 12紛。
(2) Powder compaction: Air press, other details are the same as in Example 4 (2). (3) Sintering: In an inert gas (Ar) atmosphere, 7
00℃, 12 pieces.

上記実施例4で得た製品材料Aと、比較例4で得た粉末
冶金材Bとの諸特性測定値を表4に対象させて示す。
Table 4 shows the measured values of various properties of the product material A obtained in Example 4 and the powder metallurgy material B obtained in Comparative Example 4.

尚実施例2〜4については実施例1について第4〜11
図に示したような固体潤滑剤の配合量の違いによる諸特
性の変化グラフの提示は省略したけれども、何れの場合
にも母材金属粉末を同じくする粉末冶金材よりも機械的
諸強度レベルが実施例1の場合と同様に格段に高いもの
となる。
In addition, for Examples 2 to 4, 4th to 11th for Example 1
Although I have omitted the presentation of graphs of changes in various properties due to differences in the amount of solid lubricant blended as shown in the figure, in both cases the mechanical strength levels are higher than powder metallurgy materials made of the same base metal powder. As in the case of Example 1, it is significantly higher.

尚、密閉型11は繰返し使用せず、内部の溶融焼結凝固
材(製品材料)は型11を破壊することにより取り出す
ようにしてもよく、この場合は離,形層17は不必要と
なる。密閉型11としてバイブ材を利用しそのバイブ材
内に圧粉成形体を詰めてバイブ両端を閉塞し加熱処理す
るようにしてもよい。この場合の製品材料の取り出しは
バイブを破壊することにより行なう。又圧粉成形体A2
は原料の金属粉末・固体潤滑剤の種類によつては加熱に
より体積に収縮がみられるものである。
Note that the closed mold 11 may not be used repeatedly, and the molten sintered solidified material (product material) inside may be taken out by destroying the mold 11. In this case, the molding layer 17 is unnecessary. . A vibrator material may be used as the closed mold 11, and a compacted powder body may be stuffed into the vibrator material to close both ends of the vibrator and heat treatment may be performed. In this case, the product material is removed by destroying the vibrator. Also, powder compact A2
Depending on the type of raw metal powder or solid lubricant, the volume may shrink when heated.

このような場合にはその圧粉成形体を一旦予備加熱して
体積収縮を生じさせた後、それを実質的に隙間なく収容
する密閉型に収・納しして溶融焼結加熱するようにすれ
ばよい。
In such a case, the powder compact is first preheated to cause volumetric contraction, and then stored in a closed mold that accommodates it with virtually no gaps, and then heated for melting and sintering. do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は真空雰囲気圧粉成形装置の一例の構造−を示す
横断側面図、第2図は圧粉成形を高耐圧性・耐熱性密閉
型に収容した状態の密閉型の断面図、第3図は加熱炉装
置の一例構造を示す縦断側面図、第4図は実施例1に於
いて固体潤滑剤たる黒鉛の配合量を種々変えた場合に於
ける各材料の圧粉成形体時の密度と最終材料との関係測
定グラフ、第5図は同じく圧粉成形体時の空孔率と最終
材料での空孔率の関係測定グラフ、第6図乃至第11図
は夫々実施例1と比較例1の材料に於て固体濶滑剤たる
黒鉛の配合量を種々変えた場合に於ける材料の摩擦係数
、硬さ、比摩耗率、圧縮強さ、せん断強さ、引張り強さ
変化に関する測定グラフである。 11は高耐圧性・耐熱性密閉型、A1はそれに収納した
圧粉成形体。
Fig. 1 is a cross-sectional side view showing the structure of an example of a vacuum atmosphere powder compacting device, Fig. 2 is a sectional view of the closed mold in which compacting is housed in a high pressure and heat resistant closed mold, and Fig. 3 The figure is a vertical side view showing an example structure of a heating furnace device, and Figure 4 shows the density of each material in a compacted compact when the blending amount of graphite, which is a solid lubricant, is varied in Example 1. Figure 5 is a measurement graph of the relationship between the porosity of the powder compact and the final material, and Figures 6 to 11 are comparisons with Example 1. Measurement graphs of changes in friction coefficient, hardness, specific wear rate, compressive strength, shear strength, and tensile strength of the material of Example 1 when the blending amount of graphite as a solid lubricant was varied. It is. 11 is a high pressure resistant/heat resistant sealed type, and A1 is a powder compact housed therein.

Claims (1)

【特許請求の範囲】 1 母材金属粉末と固体潤滑剤粉末を主成分とする実質
均一混合処理粉末を圧粉成形し、その圧粉成形体を成形
体と略同形のキャビティを有する高耐圧・耐熱性の密閉
型キャビティ内に実質隙間なく嵌め込み封入した状態と
なし、その密閉型を圧粉成形体母材金属の融点以上の温
度に加熱して内部の圧粉成形体の母材金属粉末を溶融化
させ、その母材金属粉末の溶融進行に伴なう粘度低下で
、実質的に一様分散状態で存在している固体潤滑剤粉末
が比重差浮上移動を実質的に生じる前に急冷処置をして
型内の内容物を急速凝固させ、その凝固体を型内から取
り出す、ことを特徴とする固体潤滑剤含有金属複合材の
製造方法。 2 母材金属粉末と固体潤滑剤粉末を主成分とする実質
均一混合処理粉末の圧粉成形処理を真空雰囲気で行なう
こと、を特徴とする特許請求の範囲1項に記載の固体潤
滑剤含有金属複合材の製造方法。 3 圧粉成形体を封入した密閉型を圧粉成形体母材金属
の融点以上の温度に加熱する前に、母材金属の融点より
も低いがそれに近い温度に予備加熱して圧粉成形体の全
体をその温度状態となしてから引続いて母材金属の融点
以上の温度に加熱処置すること、を特徴とする特許請求
の範囲1項に記載の固体潤滑剤含有金属複合材の製造方
法。 4 圧粉成形体の予備加熱、及び母材金属の融点以上の
加熱処理を不活性または非酸化性雰囲気にて行なうこと
、を特徴とする特許請求の範囲1項に記載の固体潤滑剤
含有金属複合材の製造方法。 5 圧粉成形体の加熱処理をそれを封入した密閉型を回
転させた状態で行なうこと、を特徴とする特許請求の範
囲1,3,又は4項に記載の固体潤滑剤含有金属複合材
の製造方法。
[Scope of Claims] 1. A substantially uniformly mixed powder containing a base metal powder and a solid lubricant powder as main components is compacted, and the compacted body is formed into a high-pressure-resistant mold having a cavity approximately the same shape as the compacted body. The mold is fitted into a heat-resistant closed mold cavity with virtually no gaps and sealed, and the sealed mold is heated to a temperature higher than the melting point of the base metal of the powder compact to release the base metal powder of the compact inside. The solid lubricant powder, which is present in a substantially uniformly dispersed state, is rapidly cooled before it substantially undergoes levitation due to the viscosity reduction as the base metal powder melts. A method for producing a metal composite material containing a solid lubricant, comprising: rapidly solidifying the contents in the mold, and then taking out the solidified material from the mold. 2. The solid lubricant-containing metal according to claim 1, characterized in that a substantially uniformly mixed powder containing a base metal powder and a solid lubricant powder is compacted in a vacuum atmosphere. Method of manufacturing composite materials. 3. Before heating the closed mold containing the compacted compact to a temperature higher than the melting point of the base metal of the compact, preheat to a temperature lower than but close to the melting point of the base metal to form the compact. The method for producing a solid lubricant-containing metal composite material according to claim 1, characterized in that the whole of the solid lubricant-containing metal composite material is brought to that temperature state and then heated to a temperature higher than the melting point of the base metal. . 4. The solid lubricant-containing metal according to claim 1, wherein the preheating of the powder compact and the heat treatment above the melting point of the base metal are performed in an inert or non-oxidizing atmosphere. Method of manufacturing composite materials. 5. The solid lubricant-containing metal composite material according to claim 1, 3, or 4, characterized in that the heat treatment of the compacted compact is performed while the closed mold containing the compact is rotated. Production method.
JP6336282A 1982-04-16 1982-04-16 Method for producing metal composite material containing solid lubricant Expired JPS6050856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6336282A JPS6050856B2 (en) 1982-04-16 1982-04-16 Method for producing metal composite material containing solid lubricant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6336282A JPS6050856B2 (en) 1982-04-16 1982-04-16 Method for producing metal composite material containing solid lubricant

Publications (2)

Publication Number Publication Date
JPS58181465A JPS58181465A (en) 1983-10-24
JPS6050856B2 true JPS6050856B2 (en) 1985-11-11

Family

ID=13227074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6336282A Expired JPS6050856B2 (en) 1982-04-16 1982-04-16 Method for producing metal composite material containing solid lubricant

Country Status (1)

Country Link
JP (1) JPS6050856B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02122029A (en) * 1988-10-31 1990-05-09 Nippon Yakin Kogyo Co Ltd Manufacture of tungsten sintered alloy
US9475118B2 (en) * 2012-05-01 2016-10-25 United Technologies Corporation Metal powder casting

Also Published As

Publication number Publication date
JPS58181465A (en) 1983-10-24

Similar Documents

Publication Publication Date Title
US6933531B1 (en) Heat sink material and method of manufacturing the heat sink material
US3356496A (en) Method of producing high density metallic products
US20100183471A1 (en) Metal injection moulding method
US8329093B2 (en) Method for preparing metal-matrix composite and device for implementing said method
JPH0347903A (en) Density increase of powder aluminum and aluminum alloy
US6927421B2 (en) Heat sink material
JP6370595B2 (en) Method for producing magnesium powder metallurgy sintered body, magnesium powder metallurgy sintered body and magnesium powder metallurgy material
JP2001339022A (en) Heat sink material and its manufacturing method
JP2542091B2 (en) Powder densification method
US3573204A (en) Method of fabricating high strength,self-lubricating materials
US3359095A (en) Sintering of loose particulate aluminum metal
JPS6050856B2 (en) Method for producing metal composite material containing solid lubricant
JPS5937339B2 (en) Method for manufacturing high silicon aluminum alloy sintered body
US5590388A (en) Molded ceramic articles and production method thereof
US6355207B1 (en) Enhanced flow in agglomerated and bound materials and process therefor
JPH1068004A (en) Compacting method for titanium alloy
KR20110110179A (en) Composition of particulate materials for forming self- lubricating products in sintered steel, product in self- lubricating sintered steel and process for obtaining self-lubricating products in sintered steel
US5951737A (en) Lubricated aluminum powder compositions
AU2010284750B2 (en) A process for producing a metal-matrix composite of significant deltaCTE between the hard base-metal and the soft matrix
WO2016208839A1 (en) Copper-carbon combined powder and pressed article and slide material manufactured using same
KR101650173B1 (en) A manufacturing method of Cu-Carbon binded powder and powder manufactured thereby
RU2808763C1 (en) Method for producing aluminum matrix composite products by lost wax casting technique
JPS6111282B2 (en)
JPS6353252B2 (en)
JP2004221605A (en) Heat sink material and method of manufacturing same