JPH02122029A - Manufacture of tungsten sintered alloy - Google Patents

Manufacture of tungsten sintered alloy

Info

Publication number
JPH02122029A
JPH02122029A JP27507088A JP27507088A JPH02122029A JP H02122029 A JPH02122029 A JP H02122029A JP 27507088 A JP27507088 A JP 27507088A JP 27507088 A JP27507088 A JP 27507088A JP H02122029 A JPH02122029 A JP H02122029A
Authority
JP
Japan
Prior art keywords
sintering
liquid phase
tungsten
components
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27507088A
Other languages
Japanese (ja)
Inventor
Nobuyoshi Okato
岡登 信義
Hiroshi Yoshida
裕志 吉田
Masao Nakai
中井 将雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP27507088A priority Critical patent/JPH02122029A/en
Publication of JPH02122029A publication Critical patent/JPH02122029A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To prevent the uneven distribution in the amt. of a mother phase based on the separation of the components in the title alloy by compacting W-Ni-Fe mixed powder of specific compounding ratio and subjecting the material to be heated to liquid phase sintering while it is rotated. CONSTITUTION:Mixed powder constituted of, by weight, 85 to 98% W and the balance Ni and Fe is compacted under hydrostatic pressure. The green compact is heated to a specific temp. in the atmosphere of hydrogen or the like to melt Ni and Fe, is subjected to liquid phase sintering and is fined. During the sintering, the sintering material is rotated in a sintering furnace and the stirring of a liquid phase is executed to uniformly distribute the components in the material. In this way, the deterioration of the toughness based on the uneven distribution of the components in the material is hardly generated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、均一な組成が得られ、じん性を向上させ得る
タングステン焼結合金の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a tungsten sintered alloy that can provide a uniform composition and improve toughness.

〔従来の技術〕[Conventional technology]

一般に、液相焼結合金の場合、その組織は、融点の高い
金属あるいは金属化合物粒子の回りを、延性、じん性に
富んだより低融点の金属又は合金が母相となって取り囲
んだ状態になっている。例えば、高融点成分がタングス
テン(W)、母相成分が一’−7ケル(N i )と鉄
(Fe)であるW−Ni−Fe系焼結体にあっては、W
粒子の周囲をN1−Fe−W合金が囲んだ組織になって
いる。
In general, in the case of liquid phase sintered alloys, the structure is such that metal or metal compound particles with a high melting point are surrounded by a matrix of metal or alloy with a lower melting point that is rich in ductility and toughness. It has become. For example, in a W-Ni-Fe system sintered body in which the high melting point component is tungsten (W) and the parent phase components are 1'-7 Kel (N i ) and iron (Fe), W
It has a structure in which the particles are surrounded by N1-Fe-W alloy.

このタングステン焼結合金全体のしん性は、焼結工程で
液相となり母相を形成するニッケルと鉄のしん性に左右
される。
The toughness of this tungsten sintered alloy as a whole depends on the toughness of nickel and iron, which become a liquid phase during the sintering process and form the matrix.

このため、高融点相であるタングステンの量が増加し、
低融点成分であるニッケル、鉄の量が減少すると、合金
全体のしん性が著しく劣化する。
Therefore, the amount of tungsten, which is a high melting point phase, increases,
When the amount of nickel and iron, which are low melting point components, decreases, the toughness of the entire alloy deteriorates significantly.

又ニッケル、鉄の分布が不均一のときも、合金全体のし
ん性が大きく変化する。
Also, when the distribution of nickel and iron is uneven, the toughness of the entire alloy changes greatly.

ちなみに第1図は、上記W−Ni−Fe系焼結体におい
て、ニッケルと鉄の比を7=3に固定し、タングステン
の量を変化させたときのシャルピー衝撃値の変化を示す
ものである。図から、タングステン量が増加するに従い
、シャルピー衝撃値が低下していることがわかる。
Incidentally, Figure 1 shows the change in Charpy impact value when the nickel to iron ratio is fixed at 7=3 and the amount of tungsten is varied in the above W-Ni-Fe based sintered body. . The figure shows that the Charpy impact value decreases as the amount of tungsten increases.

このようなタングステン量の変化が一定組成の焼結合金
内で生じると、合金中にシャルピー衝撃値が異なる箇所
が存在することになる。したがって合金材料内の成分分
布を均一にすることが極めて重要である。
If such a change in the amount of tungsten occurs within a sintered alloy having a constant composition, there will be locations in the alloy where the Charpy impact values differ. Therefore, it is extremely important to have a uniform distribution of components within the alloy material.

ところで、こうしたタングステン焼結合金を製造する際
には、主成分であるタングステン粉末と、副成分である
融点のより低いニッケル5〕末および鉄粉末を混合し、
その混合粉を圧縮成形し、得られた圧縮成形体をニッケ
ル5鉄の融点より少し高い温度に焼結炉において加熱す
る。これにより、ニッケル2鉄の粉末だけが融け、液相
が生じる。
By the way, when manufacturing such a tungsten sintered alloy, tungsten powder, which is the main component, and nickel powder, which has a lower melting point, and iron powder, which are subcomponents, are mixed,
The mixed powder is compression molded, and the resulting compression molded body is heated in a sintering furnace to a temperature slightly higher than the melting point of nickel-5 iron. As a result, only the nickel diiron powder is melted and a liquid phase is generated.

液相は表面張力でタングステン粒子のすきまにしみこみ
、粒子を包んで粒子相互をひきつける。その結果、タン
グステン粒子に変化が起こり、タングステン粒子どうし
が焼結して、前記圧縮成形体の焼結後の体積が収縮し緻
密化する。
The liquid phase soaks into the gaps between the tungsten particles due to surface tension, envelops the particles, and attracts them to each other. As a result, changes occur in the tungsten particles, the tungsten particles are sintered together, and the volume of the compression molded body after sintering shrinks and becomes denser.

(発明が解決しようとする課題〕 しかして、従来の液相焼結合金の製造方法にあっては、
シリコニットやモリブデン等の高温用の輻射発熱体を用
いて加熱された焼結炉を用い、圧縮成形体をトレーに乗
せて炉内を移動させるという焼結方法を採用している。
(Problem to be solved by the invention) However, in the conventional method for producing liquid phase sintered alloy,
The sintering method uses a sintering furnace heated with a high-temperature radiant heating element such as siliconite or molybdenum, and the compression molded body is placed on a tray and moved inside the furnace.

その移動手段としては例えば、プッシャー型、ハンプバ
ック型、ベルトコンベア型、ウオーキングビーム型等の
搬送装置が使われている。
For example, a pusher type, humpback type, belt conveyor type, walking beam type or other type of conveyance device is used as the moving means.

しかしながら、このような加熱方法では、母相成分(N
i、Fe)が溶融してできた液相は撹拌されない。した
がって液相中を、高融点成分粒子(W)が重力の作用で
沈降する。あるいは又、固相である高融点成分粒子の表
面を伝わって、液相が重力の作用で沈下する等の現象が
不可避的に発生する。
However, in such a heating method, the matrix component (N
The liquid phase formed by the melting of i, Fe) is not stirred. Therefore, the high melting point component particles (W) settle in the liquid phase under the action of gravity. Alternatively, phenomena such as the liquid phase sinking due to the action of gravity inevitably occur as it travels along the surface of the particles of the high melting point component, which is the solid phase.

この焼結工程において、重力による成分の沈降分離で生
じる液相成分の分布の不均一は、焼結後の材料中にその
ままにもらこまれる。そのため材料内に組成成分の不均
一分布が生じ、タングステン量が相対的に多く、したが
ってじん性の低い部分が存在することになる。材料全体
のしん性が均一でない場合、材料のしん性は最もじん性
の低い部分での値で代表される。その結果、局部的に存
在するしん性の低い部分に影響されて、材料全体のしん
性の劣化が避けられないという問題点があった。
In this sintering process, non-uniformity in the distribution of liquid phase components that occurs due to sedimentation and separation of components due to gravity remains in the material after sintering. This results in a non-uniform distribution of compositional components within the material, resulting in the presence of areas with a relatively high amount of tungsten and therefore low toughness. If the toughness of the entire material is not uniform, the toughness of the material is represented by the value of the part with the lowest toughness. As a result, there is a problem in that the toughness of the entire material inevitably deteriorates due to the influence of locally existing areas with low toughness.

そこで本発明の目的とする所は、焼結工程における成分
の分離に基づく母相量の不均一分布を防止できるタング
ステン焼結合金の製造方法を堤供することにより、上記
従来の問題点を解決することにある。
Therefore, an object of the present invention is to solve the above-mentioned conventional problems by providing a method for manufacturing a tungsten sintered alloy that can prevent uneven distribution of the amount of matrix due to separation of components in the sintering process. There is a particular thing.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明は、タングステン85
〜98重量%、残部がニッケルと鉄の粉末からなる混合
451を圧縮成形し、ついで該圧縮成形体を所定温度に
加熱してニッケルと鉄を溶融して液相となし、前記圧縮
成形体を焼結して緻密化するようにしたタングステン焼
結合金の製造方法において、前記ニッケルと鉄を溶融し
て液相となす工程で、被加熱材料に回転を与えながら焼
結する。
In order to achieve the above object, the present invention provides tungsten 85
A mixture 451 consisting of powder of ~98% by weight and the balance being nickel and iron is compression molded, and then the compression molded body is heated to a predetermined temperature to melt the nickel and iron into a liquid phase, and the compression molded body is In a method for manufacturing a tungsten sintered alloy that is sintered to make it dense, the material to be heated is sintered while being rotated in the step of melting the nickel and iron to form a liquid phase.

〔作用〕[Effect]

圧縮成形体を所定温度に加熱しニッケル、鉄成分を)8
融して液相となす工程で、被加熱材料に回転を与えなが
ら焼結するから、液相の撹拌が行われて、材料成分は均
一に分布する。したがって、従来のような材料成分の不
均一分布に基づくしん性の低下は殆ど生じない。
Heat the compression molded body to a predetermined temperature to remove nickel and iron components)8
In the process of melting into a liquid phase, the material to be heated is sintered while being rotated, so the liquid phase is stirred and the material components are uniformly distributed. Therefore, the deterioration in toughness due to non-uniform distribution of material components as in the conventional case hardly occurs.

〔実施例〕〔Example〕

以下、本発明の実施例を図とともに説明する。 Embodiments of the present invention will be described below with reference to the drawings.

タングステン粉95wt%−ニッケルFA 3.5 w
L%−鉄わ)1.5wt%の組成に配合し、■型混合機
を用いて20時間以上混合した。各粉末の粒度は1〜5
μmである。
Tungsten powder 95wt%-nickel FA 3.5w
L%-iron weight) was blended to a composition of 1.5 wt% and mixed for more than 20 hours using a type mixer. Particle size of each powder is 1-5
It is μm.

得られた混合粉を2.5t、on/cMの静水圧下に圧
縮成形し、その圧縮成形体を被加熱材料として水素雰囲
気中で1530°Cで40分間液相焼結した。
The obtained mixed powder was compression molded under a hydrostatic pressure of 2.5 t, on/cM, and the compression molded body was subjected to liquid phase sintering at 1530° C. for 40 minutes in a hydrogen atmosphere as a material to be heated.

本発明の液相焼結にあっては、焼結炉内において、被加
熱材料である焼結材が回転される。
In the liquid phase sintering of the present invention, a sintered material, which is a material to be heated, is rotated in a sintering furnace.

第1図は、その回転装置の要部構成を示すもので、図示
されない炉床に、多数のハースロールlが回転可能に取
付けられている。各ハースロール1は、鼓形状の胴部を
有しており、後述の加熱される焼結材2が収納された筒
体5の進行方向に対し、ある一定の角度θを付けて炉床
に平行に配設されている。ロール材質は、炉内温度分布
の均−性並びに熱効率を考慮し、セラミックス耐火物又
は高融点金属など、冷却せずに使える材質を用いるのが
良い。
FIG. 1 shows the main structure of the rotating device, in which a large number of hearth rolls 1 are rotatably attached to a hearth (not shown). Each hearth roll 1 has a drum-shaped body, and is attached to the hearth at a certain angle θ with respect to the traveling direction of a cylinder 5 containing a sintered material 2 to be heated, which will be described later. are arranged in parallel. The roll material is preferably a material that can be used without cooling, such as a ceramic refractory or a high melting point metal, in consideration of the uniformity of the temperature distribution in the furnace and thermal efficiency.

加熱される焼結材2は、第2図に示すように、高融点金
属外皮3にセラミンク層4を内張すした筒体5に、Af
fi、 O,粒等のセラミック粉末6を充填し、その中
に埋めである。
The sintered material 2 to be heated is, as shown in FIG.
Filled with ceramic powder 6 such as fi, O, grains, etc., and buried therein.

この筒体5を、通常のプツシヤニタイプ炉と同様に矢符
号イ方向に押し進めると、ハースロール1と金属外皮3
との摩擦で、ハースロール1が矢符号口方向に回転し、
このハースロール1の回転により筒体5が矢符号ハのよ
うな回転運動をする。
When this cylindrical body 5 is pushed in the direction of the arrow A in the same way as in a normal Pushyani type furnace, the hearth roll 1 and the metal shell 3
Due to the friction, the hearth roll 1 rotates in the direction of the arrow mark,
The rotation of the hearth roll 1 causes the cylinder 5 to rotate as indicated by the arrow C.

かくして、焼結材2内で、溶融したニッケルと鉄からな
る液相は十分に撹拌されることとなり、重力による不均
一分布化を防くことができる。
In this way, the liquid phase consisting of molten nickel and iron is sufficiently stirred within the sintered material 2, and uneven distribution due to gravity can be prevented.

筒体5内に収納された焼結材2は、セラミンク粉末6を
充填した中に埋められているから、上記回転で傷つくこ
とはない。又、このようなセラミック粉末6を充填した
筒体5を用いることで、不定形の焼結材料に対しても上
記の回転焼結が可能である。
Since the sintered material 2 housed in the cylindrical body 5 is buried in the ceramic powder 6, it will not be damaged by the above rotation. Moreover, by using the cylinder 5 filled with such ceramic powder 6, the above-mentioned rotary sintering is possible even for irregularly shaped sintered materials.

第1表は、上記回転加熱を行った場合と、同−月料につ
いて従来のモリブデンヒータ輻射炉で行った場合の、得
られたタングステン焼結合金のシャルピー衝撃値を測定
した結果を、比較して示したものである。シャルピー衝
撃値測定試験には、8mmX8mmX55++unのノ
ンチなし形状の試験片を用いた。
Table 1 compares the results of measuring the Charpy impact value of the tungsten sintered alloy obtained when the above rotational heating was performed and when the same monthly heating was performed using a conventional molybdenum heater radiant furnace. This is what is shown. For the Charpy impact value measurement test, a test piece of 8mm x 8mm x 55++un shape without a non-pierce was used.

第1表 表から、回転加熱を行って得られたタングステン焼結合
金は、従来の輻射加熱法によるものより組成分布が均一
で、しん性が優れている製品が多く製造できることがわ
かる。
From Table 1, it can be seen that the tungsten sintered alloy obtained by rotational heating can produce more products with a more uniform composition distribution and superior toughness than those produced by the conventional radiant heating method.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、タングステン焼
結合金の製造工程において、液相焼結時の加熱手段は、
被加熱材料を回転させる回転加熱式とした。そのため、
焼結中に液相成分の撹拌を行うことができ、成分の不均
一な分布によるしん性の劣化が防止されるという効果が
ある。
As explained above, according to the present invention, in the manufacturing process of a tungsten sintered alloy, the heating means during liquid phase sintering is
A rotary heating type was adopted in which the material to be heated was rotated. Therefore,
The liquid phase components can be stirred during sintering, which has the effect of preventing deterioration of toughness due to non-uniform distribution of the components.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第2図は本発明の一実施例を示し、第1図
は焼結炉内の焼結材の回転装置の要部平面図、第2図は
焼結材を充填した筒体の横断面図、第3図はタングステ
ン焼結合金中のタングステン量とシャルピー衝撃値との
相関関係を表すグラフである。 ■はハースロール、2は焼結材、3は金属外皮、4はセ
ラミンク層、5は筒体、6はセラミック粉末。
Figures 1 and 2 show an embodiment of the present invention, in which Figure 1 is a plan view of the main part of a rotating device for sintered material in a sintering furnace, and Figure 2 is a cylinder filled with sintered material. FIG. 3 is a graph showing the correlation between the amount of tungsten in the tungsten sintered alloy and the Charpy impact value. 2 is a hearth roll, 2 is a sintered material, 3 is a metal shell, 4 is a ceramic layer, 5 is a cylinder, and 6 is a ceramic powder.

Claims (1)

【特許請求の範囲】[Claims] (1)タングステン85〜98重量%、残部がニッケル
と鉄の粉末からなる混合粉を圧縮成形し、ついで該圧縮
成形体を所定温度に加熱してニッケルと鉄を溶融して液
相となし、前記圧縮成形体を焼結して緻密化するように
したタングステン焼結合金の製造方法において、前記ニ
ッケルと鉄を溶融して液相となす工程で、被加熱材料に
回転を与えながら焼結することを特徴とするタングステ
ン焼結合金の製造方法。
(1) Compression molding of a mixed powder consisting of 85 to 98% by weight of tungsten, the balance being nickel and iron powder, and then heating the compression molded product to a predetermined temperature to melt the nickel and iron to form a liquid phase; In the method for producing a tungsten sintered alloy in which the compression molded body is sintered to make it dense, the material to be heated is sintered while being rotated in the step of melting the nickel and iron to form a liquid phase. A method for producing a tungsten sintered alloy, characterized by:
JP27507088A 1988-10-31 1988-10-31 Manufacture of tungsten sintered alloy Pending JPH02122029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27507088A JPH02122029A (en) 1988-10-31 1988-10-31 Manufacture of tungsten sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27507088A JPH02122029A (en) 1988-10-31 1988-10-31 Manufacture of tungsten sintered alloy

Publications (1)

Publication Number Publication Date
JPH02122029A true JPH02122029A (en) 1990-05-09

Family

ID=17550419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27507088A Pending JPH02122029A (en) 1988-10-31 1988-10-31 Manufacture of tungsten sintered alloy

Country Status (1)

Country Link
JP (1) JPH02122029A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58181465A (en) * 1982-04-16 1983-10-24 Katsuzo Okada Production of metallic composite material containing solid lubricant
JPS62185805A (en) * 1986-02-12 1987-08-14 Mitsubishi Metal Corp Production of high-speed flying body made of tungsten alloy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58181465A (en) * 1982-04-16 1983-10-24 Katsuzo Okada Production of metallic composite material containing solid lubricant
JPS62185805A (en) * 1986-02-12 1987-08-14 Mitsubishi Metal Corp Production of high-speed flying body made of tungsten alloy

Similar Documents

Publication Publication Date Title
JP2002020805A (en) Liquid phase sintering method for multi-componential material
JP6883103B2 (en) Calcogenide sputtering target and its manufacturing method
Wang et al. Fabrication of spherical AlSi10Mg powders by radio frequency plasma spheroidization
JPH02304815A (en) Manufacture of siwteredbody
AU2020203209A1 (en) Oxide ore smelting method
JP2970813B2 (en) SPUTTERING TARGET, METHOD FOR MANUFACTURING THE SAME, RECORDING THIN FILM FORMED USING THE TARGET, OPTICAL DISC
JPS61139637A (en) Target for sputter and its manufacture
JPS642177B2 (en)
JP2001098366A (en) METHOD OF PRODUCING Ge-Sb-Te SPUTTERING TARGET MATERIAL
US4300951A (en) Liquid phase sintered dense composite bodies and method for producing the same
JPH02122029A (en) Manufacture of tungsten sintered alloy
US3860420A (en) Method of making welding rods by sintering in the presence of a liquid phase
JPH0733528B2 (en) Blast furnace operation method
JPH0549730B2 (en)
CN110106383A (en) A kind of WC Reinforced Cu-Cr composite material and preparation method
JPS6199640A (en) Manufacture of composite target material
JP2542566B2 (en) Method for manufacturing target for sputtering device
JPH02122028A (en) Manufacture of tungsten sintered alloy
JPH0459075B2 (en)
JPH0380849B2 (en)
JPS58164780A (en) Formation of target for sputtering
JP2000328240A (en) Sputtering target for forming magneto-optical recording medium film and its production
JPH03158435A (en) Functionally gradient composite material and its manufacture
JPS62205556A (en) Sputtering target for forming photoelectromagnetic recording medium
Otsuka et al. Formation of a Ti-Al2O3 functionally graded surface layer on a Ti substrate with the use of ultrafine particles