JPS605074A - Silicon carbide sintered body and manufacture - Google Patents

Silicon carbide sintered body and manufacture

Info

Publication number
JPS605074A
JPS605074A JP58113596A JP11359683A JPS605074A JP S605074 A JPS605074 A JP S605074A JP 58113596 A JP58113596 A JP 58113596A JP 11359683 A JP11359683 A JP 11359683A JP S605074 A JPS605074 A JP S605074A
Authority
JP
Japan
Prior art keywords
silicon carbide
sintered body
mol
carbide sintered
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58113596A
Other languages
Japanese (ja)
Other versions
JPH0249266B2 (en
Inventor
満彦 古川
北平 孝
栄 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tungsten Co Ltd
Original Assignee
Nippon Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tungsten Co Ltd filed Critical Nippon Tungsten Co Ltd
Priority to JP58113596A priority Critical patent/JPS605074A/en
Publication of JPS605074A publication Critical patent/JPS605074A/en
Publication of JPH0249266B2 publication Critical patent/JPH0249266B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は炭化ケイ素焼結体及びその製造方法に関する。[Detailed description of the invention] The present invention relates to a silicon carbide sintered body and a method for manufacturing the same.

炭化ケイ素焼結体はその優れた耐酸化性、耐熱衝撃性、
耐食性及び高温強度の為に従来から各種耐火材、発熱体
あるいは研摩材等に広く使用されている。そしてこれら
の用途に用いる場合には焼結体に気孔が相当存在してい
てもあまり問題とされず現にその様な焼結体が使われて
いる。
Silicon carbide sintered body has excellent oxidation resistance, thermal shock resistance,
Due to its corrosion resistance and high-temperature strength, it has been widely used in various fireproof materials, heating elements, abrasive materials, etc. When used for these purposes, the presence of a considerable amount of pores in the sintered body does not pose much of a problem, and such sintered bodies are actually used.

ところが近年上述の炭化ケイ素焼結体の特長を活かし各
種構造用材料、腐食性液体用の逆止弁やシール材、高温
炉用熱交換譬用材更には強度の耐摩耗用部材へその用途
が拡大されるに至り、気孔が殆へと存在せずより強度が
大なる焼結体が要望される様になった。
However, in recent years, taking advantage of the above-mentioned features of silicon carbide sintered bodies, its uses have expanded to include various structural materials, check valves and sealing materials for corrosive liquids, heat exchange materials for high-temperature furnaces, and even strong wear-resistant members. As a result, there has been a demand for a sintered body with virtually no pores and greater strength.

炭化ケイ素体の製造方法としては、(イ)気相反応法、
(ロ)反応焼結塊、(1))熱間焼結法があるが、(イ
)の方法は均質かつ緻密な炭化ケイ素が得られるが通常
薄膜しか造り得ず実際上は各種材料のコーティング法に
しか適しておらず、(ロ)の方法は通常炭素とケイ素あ
るいは二酸化ケイ素の粉末を混合し、これを焼成する方
法で形状の大なる物は得られるが緻密な物は得難く現状
では耐火物や発熱体の製造に応用されているに過ぎない
。従って形状がか太き(、かつ緻密な焼結体を得るには
上記(ハ)の方法が最適であるといえる。
Methods for producing silicon carbide bodies include (a) gas phase reaction method;
(b) Reactive sintered lumps and (1) hot sintering methods, but method (a) yields homogeneous and dense silicon carbide, but can usually only produce a thin film and is practically a coating of various materials. The method (b) is usually a method in which carbon and silicon or silicon dioxide powder are mixed and fired, and although it is possible to obtain objects with a large shape, it is difficult to obtain dense objects. It is only applied to the production of refractories and heating elements. Therefore, it can be said that the above method (c) is optimal for obtaining a thick (and dense) sintered body.

ところが炭化ケイ素は、共有結合性の大きな化合物であ
る為に硬く、強靭でかつ高温に於いても安定した物質で
ある為にそれ単味では焼結性が著しく悪く実用に供し得
る焼結体を得ることは困難である所から、種々の焼結助
剤を混入する研究がなされている。例えばアリエグロ等
の報告(R,^11−11−1e at、al、 Jo
urnal of Aw+erican Ceremi
cSocietg 、1956年、39巻、386〜3
89P)や、特開昭49−7311号公報、特開昭49
−99308号公報、特開昭50−78609号公報、
特開昭51−65111号公報、特開昭53−8401
3号公報、特開昭53767711号公報及び特開昭5
2−6716号公報等で、AL、 Fa、 B、 B、
IC等を焼結助剤として用いれば気孔が少なく強度が大
なる焼結体が得られる旨が報告されている。
However, since silicon carbide is a compound with large covalent bonds, it is hard, tough, and stable even at high temperatures, so silicon carbide alone has extremely poor sintering properties, making it difficult to produce a sintered body that can be put to practical use. Since it is difficult to obtain such additives, research has been conducted into incorporating various sintering aids. For example, the report by Alliegro et al. (R, ^11-11-1e at, al, Jo
Urnal of Aw+erican Ceremi
cSocietg, 1956, vol. 39, 386-3
89P), JP-A No. 49-7311, JP-A No. 49-Sho.
-99308 publication, JP-A-50-78609 publication,
JP-A-51-65111, JP-A-53-8401
Publication No. 3, JP-A No. 53767711 and JP-A No. 5
2-6716, etc., AL, Fa, B, B,
It has been reported that if IC or the like is used as a sintering aid, a sintered body with fewer pores and greater strength can be obtained.

ところで焼結体の強度は種々の要因で決まるが、(イ)
気孔率、(ロ)表面傷、(ハ)粒子の大きさはその強度
に及ぼす影響が大なるものである。
By the way, the strength of a sintered body is determined by various factors, but (a)
Porosity, (b) surface flaws, and (c) particle size have a large effect on the strength.

この中(ロ)の表面傷は加工を留意する事で回避出来、
又(イ)の気孔率については上述の如く種々の焼結助剤
を用い気孔率が非常に少ない焼結体を得る事でほぼ解決
出来る。しかるに(ハ)の粒子の大きさの問題は最も困
難で焼結時に粒成長゛が起こり、微細粒状の焼結体が得
難(その事が強度をある限度以上にする事が出来ない原
因となっている。これらの事実についてはB′を焼結助
剤として用いた炭化ケイ素焼結体についてプ四チャック
等(S、Prochazka et、al、、 ate
、 aram、 Soc、 Bull。
The surface scratches in (b) can be avoided by paying attention to processing.
Furthermore, the porosity (a) can be almost solved by using various sintering aids as described above to obtain a sintered body with very low porosity. However, the problem of particle size (c) is the most difficult, as grain growth occurs during sintering, making it difficult to obtain fine-grained sintered bodies (this is the reason why it is not possible to increase the strength above a certain limit). Regarding these facts, S. Prochazka et al.
, aram, Soc, Bull.

52885〜891 (1973))が結晶粒が成長し
、その強度があまり大とならない旨を報告している事か
らも明らかである。
52885-891 (1973)) reported that crystal grains grow and their strength does not become very large.

本発明は上述の諸問題を解決し、高密度でかつ結晶粒が
微細な炭化ケイ素焼結体及びその製造方法を提供せんと
するものであり、その要旨は、(a)酸化エルビウム5
〜15重量%、(b)イツトリア1〜4モル%、マグネ
シア2〜6モル%、カルシア2〜7モル%の中の一種以
上が固溶せしめられた部分安定化酸化ジルコニウム2〜
6重量%及び残部が(c)炭化ケイ素なる組成の炭化ケ
イ素焼結体及び(8)酸化エルビウム粉末を5〜15重
量%、(b]イツトリア1〜4モル%、マグネシア2〜
6モル%、カルシア2〜7モル%の中の一種以上が固溶
せしめられた部分安定化酸化ジルコニウム粉末2〜6重
量%及び残部が(c)・炭化ケイ素粉末とを混合後成型
し、次いで熱間焼結法により焼結せしめることを特徴と
する炭化ケイ素焼結体の製造方法である。
The present invention aims to solve the above-mentioned problems and provide a silicon carbide sintered body with high density and fine grains and a method for manufacturing the same.
(b) Partially stabilized zirconium oxide 2 to 15% by weight, (b) 2 to 4% of partially stabilized zirconium oxide in which one or more of 1 to 4 mol% of ittria, 2 to 6 mol% of magnesia, and 2 to 7 mol% of calcia are dissolved.
A silicon carbide sintered body having a composition of 6% by weight and the balance being (c) silicon carbide, and (8) 5 to 15% by weight of erbium oxide powder, (b) 1 to 4 mol% of ittria, and 2 to 4% of magnesia.
6 mol %, 2 to 6 mol % of partially stabilized zirconium oxide powder in which one or more of 2 to 7 mol % of calcia is dissolved in solid solution, and the balance is (c) silicon carbide powder are mixed and then molded. This is a method for producing a silicon carbide sintered body, characterized in that sintering is performed by a hot sintering method.

以下本発明をなすに至った実験並びにひの結果を示す。The experiments and results that led to the present invention are shown below.

〈実験I〉 純度98.5%、平均粒子径0.5PIIIのSiC粉
末と純度99.9%平均粒子径5pHlのZ「02粉末
及び粒度5mの第1表に示す様な部分安定化Zrよ08
粉末とを第1表記載の割合で各種配合したものをボール
ミル混合機によす10時時間式混合粉砕を行なった後、
これを充分に乾燥して焼結用原料とし、50X 50(
Wl)角、高さ60.mmの黒鉛型内に上記各種焼結用
原料を充填すると共に高周波コイルに押入し、1800
℃〜2050℃の温度範囲内で各所定温度にて200k
g/dの圧力を加え60分間保持し、次いで圧力を抜い
て放冷することにより50X50X5.5 (m)の目
的の焼結体を得た。各々の焼結体をダイヤモンド砥石で
切断後研削して各10個の3X4X36(■゛)の試験
片を作成し各種試験をして得られた測定値を同じく第1
表に示す。
<Experiment I> SiC powder with a purity of 98.5% and an average particle size of 0.5 PIII, Z'02 powder with a purity of 99.9% and an average particle size of 5 pHl, and partially stabilized Zr as shown in Table 1 with a particle size of 5 m. 08
After mixing and pulverizing various types of powder in the proportions listed in Table 1 using a ball mill mixer,
This was thoroughly dried and used as a raw material for sintering, and 50X 50 (
Wl) corner, height 60. The various sintering raw materials mentioned above were filled into a graphite mold of 1,800 mm in diameter, and then pushed into a high-frequency coil.
200k at each specified temperature within the temperature range from ℃ to 2050℃
A pressure of g/d was applied and held for 60 minutes, then the pressure was released and the mixture was allowed to cool to obtain a desired sintered body of 50×50×5.5 (m). Each sintered body was cut and ground with a diamond grindstone to create ten 3X4X36 (■゛) test pieces, and the measured values obtained by various tests were also used in the first test.
Shown in the table.

第1表の1(ホットプレス温度1800℃)第1表の4
(ホットプレス温度2000℃)なお上記第1表中、例
えば6 (ZrQL+6モル%M90) としているの
は、6(94モル%ZrOよ+6モル%M90 )の事
である(以下同じ)。
1 in Table 1 (hot press temperature 1800℃) 4 in Table 1
(Hot press temperature: 2000° C.) In Table 1 above, for example, 6 (ZrQL+6 mol% M90) refers to 6 (94 mol% ZrO+6 mol% M90) (the same applies hereinafter).

く実験■〉 実験■と同様に作った焼結用原料を第2表に示す様な熱
同等方圧加圧焼結(以下HIPとする)条件にて焼結さ
せた場合の焼結体の緒特性を第2表に示す。
Experiment ■〉 The results of the sintered body were obtained when the raw material for sintering made in the same manner as in Experiment ■ was sintered under the heat isostatic pressure sintering (hereinafter referred to as HIP) conditions as shown in Table 2. The characteristics are shown in Table 2.

第2表 以上の結果から炭化ケイ素に、酸化エルビウム及び部分
安定化した酸化ジルコニウムを添加する事により、得ら
れる焼結体が緻密かつ微細粒状のものとなる事は判るが
、その機構+rついては必ずしも正確には解明し得ては
ない。がしかし概路次の如(であると考えられる、即ち
酸化エルビウムは高温域で炭化ケイ素め結晶格子中に入
り込み、その過程で焼結が進行し該酸化エルビウムが結
晶粒成長を抑制する、又部分安定化した酸化ジルコニウ
ムは炭化ケイ素に固溶する事なく均一に分散された状態
で存在しており焼結冷却途上で一部含まれる少量の正方
晶が単斜晶へ相変態を起こし、それに伴う体積膨張によ
り周囲の炭化ケイ素母材に応力を与え高い密度と強度を
示す様になるという事である。従って用いる酸化ジルコ
ニウムが安定化状態の物であれば体積膨張が無いので密
度及び強度の上昇が見られないし、又未安定化酸化ジル
コニウムを使えば体積膨張する正方晶が多すぎる為に焼
結体に過度の応力がかかり割れを生じる。
From the results in Table 2 and above, it can be seen that by adding erbium oxide and partially stabilized zirconium oxide to silicon carbide, the resulting sintered body becomes dense and finely grained, but the mechanism +r is not necessarily clear. It has not been precisely elucidated. However, the general idea is as follows (i.e., erbium oxide enters the crystal lattice of silicon carbide in a high temperature range, sintering progresses in the process, and the erbium oxide suppresses crystal grain growth. Partially stabilized zirconium oxide exists in a uniformly dispersed state without forming a solid solution in silicon carbide, and during sintering and cooling, a small amount of tetragonal crystals contained in it undergo phase transformation to monoclinic crystal, and The accompanying volumetric expansion applies stress to the surrounding silicon carbide matrix, making it exhibit high density and strength.Therefore, if the zirconium oxide used is in a stabilized state, there will be no volumetric expansion, so the density and strength will decrease. No increase is observed, and if unstabilized zirconium oxide is used, there are too many tetragonal crystals that expand in volume, so excessive stress is applied to the sintered body and cracks occur.

ここで上述の実験結果から熱間焼結法(ホットプレス法
及びHIP法)の焼結条件につき検討すると、緻密で強
度が大なる焼結体を得る為には温度は1850℃以上が
必要であるが、逆にあまり高くなれば粒成長が激しくな
る為に十分に緻密化する以前に過度な粒成長が生起し気
孔が残存するのでその上限は2000℃とすべきである
。又圧力については100kg/d以上あれば十分でそ
の上限については特に限定されるものではない。次にホ
ットプレス法の場合にあっては焼結雰囲気は真空中ある
いは不活性ガス中でなす事が、又HIP法の場合は不活
性ガス中でなす事が望ましい。
Considering the sintering conditions for hot sintering methods (hot press method and HIP method) based on the above experimental results, we found that a temperature of 1850°C or higher is required to obtain a dense and strong sintered body. However, if the temperature is too high, on the other hand, grain growth becomes intense and excessive grain growth occurs before sufficient densification occurs, leaving pores, so the upper limit should be 2000°C. As for the pressure, it is sufficient if it is 100 kg/d or more, and there is no particular limitation on the upper limit. Next, in the case of the hot press method, it is desirable that the sintering atmosphere be performed in a vacuum or in an inert gas, and in the case of the HIP method, it is desirable to perform the sintering in an inert gas.

上述の第1表〜第2表中の焼結温度1850〜2000
℃、焼結圧力100kg/cIIr以上の場合データの
みをまとめると第3表の如くなる。
Sintering temperature 1850-2000 in Tables 1 to 2 above
℃ and sintering pressure of 100 kg/cIIr or more, the data are summarized as shown in Table 3.

化エルビウムの量は、それを少なくとも5重量%用いな
ければ対理論密度が低(、かつ抗折力その他の特性も良
くないが、逆jζあまり多すぎ18重量%ともなれば粒
成舵に伴う弊害が生じるのでその量は5〜15重量%と
する。又部分安定化酸化ジルコニウムは、それを少なく
とも2重量%用いなければ上述の添加効果を発揮し得ず
抗折力、シャルピー衝撃値も共に低い、一方あまり多(
その量が8重量%ともなれば粒成長に伴なう種々の弊害
が生じるのでその量は2〜6重量%とする。なお酸化ジ
ルコニウムを部分安定化させる為の添加物たるイ1ドリ
ア、マグネシア及びカルシアは実験上それぞれ1〜4モ
ル%、2〜6モル%及び2〜7モル%が好ましい。
Unless the amount of erbium chloride is used is at least 5% by weight, the theoretical density will be low (and the transverse rupture strength and other properties will not be good either, but if it is too large (18% by weight), it will cause grain formation problems. The amount of partially stabilized zirconium oxide should be 5 to 15% by weight since this may cause harmful effects.Also, unless at least 2% by weight of partially stabilized zirconium oxide is used, the above-mentioned effect of addition cannot be achieved, and both the transverse rupture strength and Charpy impact value will decrease. Low, on the other hand, too high (
If the amount is as much as 8% by weight, various problems associated with grain growth will occur, so the amount is set at 2 to 6% by weight. It should be noted that 1-4 mol%, 2-6 mol% and 2-7 mol% of idria, magnesia and calcia, which are additives for partially stabilizing zirconium oxide, are experimentally preferred.

次に用いる炭化ケイ素の一部がBe、 BeO+8J、
C+AI、 AIN、A1.0.で置換されている場合
についての実験を示す。
Part of the silicon carbide used next is Be, BeO+8J,
C+AI, AIN, A1.0. We will show an experiment for the case where .

く実験I〉 純度98.5%、平均粒子径0 、5)t、mのSiC
粉末と純度99.9%、平均粒子径5PmのEr工04
粉末及び第3表に記載する様な各種添加物を実験Iに記
載と同様な方法にて1950℃にて焼結させ各種特性を
調査し測定値を第4表に示す。
Experiment I〉 SiC with purity 98.5%, average particle size 0, 5) t, m
Powder and purity 99.9%, average particle size 5Pm Er-process 04
The powder and various additives as listed in Table 3 were sintered at 1950° C. in the same manner as described in Experiment I, and various properties were investigated and the measured values are shown in Table 4.

第4表 この第4表から、炭化ケイ素の一部を上記種々の添加物
で置換した場合にあっても、酸化エルビウム及び部分安
定化酸化ジルコニウムを適正量添加する事により、緻密
で微細粒状焼結体とする事が出来る事が確認されるが、
この場合の置換量は0.5重量%位なければ無置換の物
と比べて大差はないが、あまり多量となり 3.0重量
%にもなると抗折力や硬さの低下が見られる為その置換
量は2重量%以下好ましくは0.5〜2重量%とする。
Table 4 From Table 4, it is clear that even when silicon carbide is partially replaced with the various additives mentioned above, by adding appropriate amounts of erbium oxide and partially stabilized zirconium oxide, dense and fine granular sintered particles can be produced. It has been confirmed that it is possible to form a solid body, but
In this case, if the amount of substitution is about 0.5% by weight, there is not much difference compared to the unsubstituted product, but if it is too large and reaches 3.0% by weight, a decrease in transverse rupture strength and hardness will be seen. The amount of substitution is 2% by weight or less, preferably 0.5-2% by weight.

以上述べて来た如く、本発明によれば非常に緻密、かつ
結晶粒が微細で強靭性に富む炭化ケイ素焼結体が得られ
、その焼結体は実用上の緒特性においても優れており、
しかもホットプレス法あるいはHIP法によ炒製造する
ので大型の焼結体の製造が容易であるので、耐酸化性、
耐熱衝撃性、耐食性、高温強度等を要求される各種構造
用部材や耐摩耗用部材として広範に利用する事が出来る
ものである。
As described above, according to the present invention, a silicon carbide sintered body that is extremely dense, has fine crystal grains, and is rich in toughness can be obtained, and the sintered body has excellent practical properties. ,
Moreover, since it is manufactured using the hot press method or HIP method, it is easy to manufacture large sintered bodies, so it has excellent oxidation resistance.
It can be widely used as various structural members and wear-resistant members that require thermal shock resistance, corrosion resistance, high-temperature strength, etc.

特許出願人 日本タングステン株式会社代理人有吉教晴Patent applicant Noriharu Ariyoshi, agent of Nippon Tungsten Co., Ltd.

Claims (1)

【特許請求の範囲】 1、(a)酸化エルビウム5〜15重量%、(b)イツ
トリア1〜4モル%、マグネジ12〜6モル%。 カルシア2〜7モル%の中の一種以上が固溶せシメられ
た部分安定化酸化ジルコニウム2〜6重量%及び残部が
(c)炭化ケイ素なる組成の炭化ケイ素焼結体。 2、理論密度の96%以上の密度を有する特許請求の範
囲第1項記戦の炭化ケイ素焼結体。 3、焼結体の粒径が平均10ibm以下である特許請求
の範囲第1項記載の炭化ケイ素焼結体。 4・軸)酸化エルビウム5〜15重量%、(b)イツト
リア1〜4モル%、マグネジ12〜6モル%。 カルシア2〜7モル%の中の一種以上が固溶せシメられ
た部分安定化酸化ジルコニウム2〜6重量%及び残部が
(C)その2重量%以下(0を含まず)をBe、 Be
0r B 、 B、C+^I、 A11ll、^1ニル
 の一種以上で置換した炭化ケイ素なる組成の炭化ケイ
素焼結体。 5、理論密度の96%以上の密度を有する特許請求の範
囲第4項記載の炭化ケイ素焼結体。 6、焼結体の粒径が平均IIS以下である特許請求の範
囲第4項記載の炭化ケイ素焼結体。 7 、 (a)酸化エルビウム粉末を5〜15重量%、
(b)イツトリア1〜4モル%、マグネシア2〜6モル
%、カルシア2〜7モル%の中の一種以上が固溶せしめ
られた部分安定化酸化ジルコニウム粉末2〜6重量%及
び残部が(c)炭化ケイ素粉末とを混合後成型し、次い
で熱間焼結法により焼結せしめる乙とを特徴とする炭化
ケイ素焼結体の製造方法。 8、熱間焼結法がホットプレス法であることを特徴とす
る特許請求の範囲第7項記載の炭化ケイ素焼結体の製造
方法。 9、ホットプレス焼結条件を、温度1850〜2000
℃、圧力100kg / cd以上とする乙とを特徴と
する特許請求の範囲第8項記載の炭化ケイ素焼結体の製
造方法。 10.熱間焼結法が熱間等方圧加圧法であることを特徴
とする特許請求の範囲第7項記載の炭化ケイ素焼結体の
製造方法。 11、熱間等方圧加圧焼結条件を、温度1850〜20
00℃、圧力100kg / cd以上とすることを特
徴とする特許請求の範囲第10項記載の炭化ケイ素焼結
体の製造方法。 12、 (a)酸化エルビウム粉末を5〜15重景%重
量b)イツトリア1〜4モル%、マグネシア2〜6モル
%、カルシア2〜7モル%の中の一種以上が固溶せしめ
られた部分安定化酸化ジルコニウム粉末2〜6重量%及
び残部が(c)その2重量%以下(0を含まず)をBe
、 Bed、 B 、 B、C1Alp^1.Q7粉末
の一種以上で置換した炭化ケイ素粉末とを混合後成型し
、次いで熱間焼結法により焼結せしめることを特徴とす
る炭化ケイ素焼結体の製造方法。 13、熱間焼結法がホットプレス法であることを特徴と
する特許請求の範囲第12項記載の炭化ケイ素焼結体の
製造方法。 14、ホットプレ゛ス焼結条件を、温度1850〜20
00℃、圧力100kg / ci以上とすることを特
徴とする特許請求の範囲第13項記載の炭化ケイ素焼結
体の製造方法。 15、熱間焼結法が熱間等方圧加圧法である乙とを特徴
とする特許請求の範囲第12項記載の炭化ケイ素焼結体
の製造方法。 16、熱間等方圧加圧焼結条件を、温度1850〜20
00℃、圧力100kg / cd以上とすることを特
徴とする特許請求の範囲第15項記載の炭化ケイ素焼結
体の製造方法。
[Claims] 1. (a) 5 to 15% by weight of erbium oxide, (b) 1 to 4 mol% of itria, and 12 to 6 mol% of magnezium. A silicon carbide sintered body having a composition of 2 to 6% by weight of partially stabilized zirconium oxide in which at least 2 to 7 mol% of calcia is solid-dissolved and the balance is (c) silicon carbide. 2. The silicon carbide sintered body according to claim 1, which has a density of 96% or more of the theoretical density. 3. The silicon carbide sintered body according to claim 1, wherein the average particle size of the sintered body is 10 ibm or less. 4. Axis) Erbium oxide 5-15% by weight, (b) Ittria 1-4 mol%, Magnesium 12-6 mol%. 2 to 6% by weight of partially stabilized zirconium oxide in which one or more of 2 to 7 mol% of calcia is solid-dissolved, and the balance is (C) 2% by weight or less (not including 0) of Be, Be
A silicon carbide sintered body having a composition of silicon carbide substituted with one or more of 0r B, B, C+^I, A11ll, and ^1nyl. 5. The silicon carbide sintered body according to claim 4, which has a density of 96% or more of the theoretical density. 6. The silicon carbide sintered body according to claim 4, wherein the grain size of the sintered body is equal to or less than average IIS. 7. (a) 5 to 15% by weight of erbium oxide powder,
(b) 2 to 6% by weight of partially stabilized zirconium oxide powder in which one or more of 1 to 4 mol% of ittria, 2 to 6 mol% of magnesia, and 2 to 7 mol% of calcia are dissolved, and the balance is (c ) A method for producing a silicon carbide sintered body, comprising the steps of (b) mixing the mixture with silicon carbide powder, molding the mixture, and then sintering it by a hot sintering method. 8. The method for producing a silicon carbide sintered body according to claim 7, wherein the hot sintering method is a hot press method. 9. Hot press sintering conditions: temperature 1850-2000
9C and a pressure of 100 kg/cd or more. 10. 8. The method for producing a silicon carbide sintered body according to claim 7, wherein the hot sintering method is a hot isostatic pressing method. 11. Hot isostatic pressure sintering conditions were set at a temperature of 1850 to 20
11. The method for producing a silicon carbide sintered body according to claim 10, characterized in that the temperature is 00°C and the pressure is 100 kg/cd or more. 12. (a) Erbium oxide powder of 5 to 15% by weight b) A part in which one or more of 1 to 4 mol% of ittria, 2 to 6 mol% of magnesia, and 2 to 7 mol% of calcia is dissolved as a solid solution. 2 to 6% by weight of stabilized zirconium oxide powder and the balance (c) 2% by weight or less (not including 0) of Be
, Bed, B, B, C1Alp^1. A method for producing a silicon carbide sintered body, which comprises mixing and molding silicon carbide powder substituted with one or more types of Q7 powder, and then sintering by a hot sintering method. 13. The method for producing a silicon carbide sintered body according to claim 12, wherein the hot sintering method is a hot press method. 14. Hot press sintering conditions: temperature 1850~20
14. The method for producing a silicon carbide sintered body according to claim 13, characterized in that the temperature is 00°C and the pressure is 100 kg/ci or more. 15. The method for producing a silicon carbide sintered body according to claim 12, characterized in that the hot sintering method is a hot isostatic pressing method. 16. Hot isostatic pressure sintering conditions were set at a temperature of 1850 to 20
16. The method for producing a silicon carbide sintered body according to claim 15, characterized in that the temperature is 00°C and the pressure is 100 kg/cd or more.
JP58113596A 1983-06-22 1983-06-22 Silicon carbide sintered body and manufacture Granted JPS605074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58113596A JPS605074A (en) 1983-06-22 1983-06-22 Silicon carbide sintered body and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58113596A JPS605074A (en) 1983-06-22 1983-06-22 Silicon carbide sintered body and manufacture

Publications (2)

Publication Number Publication Date
JPS605074A true JPS605074A (en) 1985-01-11
JPH0249266B2 JPH0249266B2 (en) 1990-10-29

Family

ID=14616212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58113596A Granted JPS605074A (en) 1983-06-22 1983-06-22 Silicon carbide sintered body and manufacture

Country Status (1)

Country Link
JP (1) JPS605074A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61281071A (en) * 1985-06-07 1986-12-11 株式会社日立製作所 Tough ceramics and manufacture
JPS6365250U (en) * 1986-10-17 1988-04-30
US4746635A (en) * 1985-05-25 1988-05-24 Kabushiki Kaisha Riken High strength and high hardness alumina-zirconia-silicon carbide sintered ceramic composite and its manufacturing process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4746635A (en) * 1985-05-25 1988-05-24 Kabushiki Kaisha Riken High strength and high hardness alumina-zirconia-silicon carbide sintered ceramic composite and its manufacturing process
JPS61281071A (en) * 1985-06-07 1986-12-11 株式会社日立製作所 Tough ceramics and manufacture
JPS6365250U (en) * 1986-10-17 1988-04-30

Also Published As

Publication number Publication date
JPH0249266B2 (en) 1990-10-29

Similar Documents

Publication Publication Date Title
US5746957A (en) Gel strength enhancing additives for agaroid-based injection molding compositions
JP2749199B2 (en) Densified SiC ceramic article
US5656218A (en) Method for making high performance self-reinforced silicon carbide using a pressureless sintering process
US4164424A (en) Alumina core having a high degree of porosity and crushability characteristics
CA1228372A (en) Process for producing a zirconia refractory body and a product produced by the process
US4191720A (en) Method for making porous, crushable core having an integral outer barrier layer
US5334563A (en) Ceramics composite material and production thereof
JP3311755B2 (en) Reaction-bonded silicon carbide refractory products
US3948670A (en) Alumina-chrome refractory
CN113548891A (en) Two-phase cobalt tantalate ceramic block and preparation method thereof
JPS605074A (en) Silicon carbide sintered body and manufacture
US4435514A (en) Chromia magnesia refractory
US5576254A (en) Carbon refractory for blast furnace and method for manufacturing such carbon refractory
JPS5891065A (en) Manufacture of silicon carbide ceramic sintered body
JPH0253388B2 (en)
JPS60231466A (en) High density silicon carbide sintered body
JPS605073A (en) Silicon carbide sintered body and manufacture
WO1999032417A1 (en) Dense refractories with improved thermal shock resistance
JPS6034515B2 (en) Manufacturing method of silicon carbide ceramic sintered body
JPH0544428B2 (en)
JPH01502426A (en) Method for preparing aluminum oxide ceramics with increased wear resistance
JPS62148367A (en) Abrasion resistance, high strength, high toughness and high hardness ceramic sintered body and manufacture
EP0388966A2 (en) Refractory body, method of making and use of same
JPS6121968A (en) Manufacture of zirconia refractories
JPS6081066A (en) High density silicon carbide sintered body and manufacture