JPS6050642A - Production of optical information recording medium - Google Patents

Production of optical information recording medium

Info

Publication number
JPS6050642A
JPS6050642A JP15772283A JP15772283A JPS6050642A JP S6050642 A JPS6050642 A JP S6050642A JP 15772283 A JP15772283 A JP 15772283A JP 15772283 A JP15772283 A JP 15772283A JP S6050642 A JPS6050642 A JP S6050642A
Authority
JP
Japan
Prior art keywords
gas
recording
target
power density
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15772283A
Other languages
Japanese (ja)
Inventor
Yoshikatsu Takeoka
竹岡 美勝
Norio Ozawa
小沢 則雄
Noburo Yasuda
安田 修朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP15772283A priority Critical patent/JPS6050642A/en
Priority to EP84305898A priority patent/EP0137697B1/en
Priority to DE8484305898T priority patent/DE3467825D1/en
Publication of JPS6050642A publication Critical patent/JPS6050642A/en
Priority to US06/885,738 priority patent/US4663008A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24308Metals or metalloids transition metal elements of group 11 (Cu, Ag, Au)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24314Metals or metalloids group 15 elements (e.g. Sb, Bi)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24316Metals or metalloids group 16 elements (i.e. chalcogenides, Se, Te)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24318Non-metallic elements
    • G11B2007/24328Carbon
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2531Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising glass
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2533Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

PURPOSE:To obtain a homogeneous recording medium excellent in flatness, by accommodating the product of electric power density to be applied to a specific metallic target and the average stay time of dissociation gas for including H (hydrogen) in an optical information recording film as a constituent in a discharge space within a specific range. CONSTITUTION:One of Te, Sb and Ag is fitted to the lower surface of a power applying terminal 5 in a vacuum case 1 as a target 4 and a substrate consisting of glass or transparent plastic is set up on an opposed holder 6. Air in the case is exhausted from an exhaust port 2 and hydrocarbon such as CH4 or gas such as NH3 which can dissociate H by plasma sputtering is fed from a gas guiding port 3 with about 10<-3>-10<-2>Torr. Inert gas such as Ar and N2 is fed together with the dissociation gas so that the partial pressure of the dissociation gas is higher than that of the inert gas. The process is controlled so that the recording film is formed in the range setting up the product of the electric power density to be applied to the target metal and the average stay time of the dissociation gas in the discharge space to 0.05Wsec/cm<2>-0.5Wsec/cm<2>. Thus, the recording medium comparatively high and uniform in stacking speed and superior in recording and reproducing characteristics is obtained.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明はレーザビームの照射により光学的変化を生じさ
せて情報を記録する光学的情報記録用媒体の製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a method of manufacturing an optical information recording medium in which information is recorded by causing an optical change by irradiation with a laser beam.

〔発明の技術的背景と問題点〕[Technical background and problems of the invention]

レーザビームによる情報記録は、記録密度が斉しく高(
、実時間記録ができるなどのq′+徴があり。
Information recording using a laser beam has a uniformly high recording density (
It has q′+ features such as being able to record real time.

近年研究開発が行なわれている。光消+l?記録用媒体
は、従来、透明樹脂基板上にTeなどのカルコゲナイド
系薄膜、色素薄膜などを形成したものが遊事されている
。しかしながらかかる情報記録用媒体は保存中に空気中
の酸素、水分あるいは紫外線の影響により劣化し、情報
の記録再生に支障をきたすという重大な問題点がある。
Research and development has been carried out in recent years. Light extinction + l? Conventionally, recording media have been used in which a chalcogenide thin film such as Te, a dye thin film, etc. are formed on a transparent resin substrate. However, such information recording media have a serious problem in that they deteriorate during storage due to the influence of oxygen, moisture, or ultraviolet rays in the air, causing problems in recording and reproducing information.

特開昭57−165292号公報は、かかる従来技術の
欠点を除去するためにTeにカーボンを混入させた記録
媒体の提案である。Teとカーボンとを含む記録膜の一
つの製作方法は、Teターゲットを炭化水素ガスのプラ
ズマでスパッタリングする方法である。しかしながらス
パッタリングは従来Arなどの希ガスのプラズマで金属
ターゲットをスパッタし、当該金属の薄膜を形成する方
法として用いられてきた。ターゲットとプラズマガスと
の反応の可能性の高い組合せ、あるいは炭化水素など解
離性のガスを用いたスパッタリングは実用に供された例
が極めて少ナク、従って工業レベルでかかるスパッタリ
ングを実砲する場合、細部の膜形成条件は不明のことが
多い。例えば、Wl離性のガスを用いる場合、印加する
電力、膜形成・時の圧力、導入するガスの流量などlこ
より、解離過程が変化し、形成される膜の特性は変化す
る。
JP-A-57-165292 proposes a recording medium in which Te is mixed with carbon in order to eliminate the drawbacks of the prior art. One method for manufacturing a recording film containing Te and carbon is to sputter a Te target with hydrocarbon gas plasma. However, sputtering has conventionally been used as a method for sputtering a metal target with plasma of a rare gas such as Ar to form a thin film of the metal. Sputtering using combinations with a high possibility of reaction between the target and plasma gas, or using dissociative gases such as hydrocarbons, has rarely been put to practical use. Therefore, when performing such sputtering on an industrial scale, The detailed film formation conditions are often unknown. For example, when using a Wl-dissociating gas, the dissociation process changes depending on the applied power, the pressure during film formation, the flow rate of the introduced gas, etc., and the characteristics of the formed film change.

しかも、膜形成時に設定すべき上記イト々の条件値はス
パッタ装置ごとに変化する。そこで、最適の膜形成条件
は個々の装置ごとに多数の実験を行ない設定しなければ
ならないと云う不便さがあった。
Moreover, the condition values of the above items to be set during film formation vary depending on the sputtering apparatus. Therefore, there is an inconvenience in that the optimum film forming conditions must be determined by conducting numerous experiments for each individual device.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、かかる従来技術の欠点を除去し、解離
性ガスを用いたスパッタリングにおいて良(制御された
記録膜の形成された光情報記録用媒体の製造方法を提供
することにある。
An object of the present invention is to eliminate the drawbacks of the prior art and to provide a method for manufacturing an optical information recording medium in which a well-controlled recording film is formed by sputtering using a dissociative gas.

〔発明の概要〕[Summary of the invention]

本発明の元情報記録用媒体の製造方法においでは、金属
ターゲットを解離性ガスのプラズマでスパッタリングし
て基板上に記録膜を形成する過程において、ターゲット
に印加する電力密度と解離性ガスの放電空間内における
平均滞在時間との績が0. O05W sec / c
m ” より大きく、0.5Wsec/ C1l+”よ
り小さい範囲に設定するこ七を特徴としている。
In the method for manufacturing the original information recording medium of the present invention, in the process of forming a recording film on a substrate by sputtering a metal target with plasma of a dissociative gas, the power density applied to the target and the discharge space of the dissociative gas are controlled. The average stay time within the area is 0. O05W sec/c
m'' and smaller than 0.5 Wsec/C1l+''.

ここで電力密度は単価面積当りターゲットに印加される
電力である。また、平均滞在時間は次式でめられる。
Here, the power density is the power applied to the target per unit area. In addition, the average residence time can be calculated using the following formula.

〔発明の効果〕〔Effect of the invention〕

本発明によイtば、いかなるスパッタ装置においても適
用可能な膜形成条件があらかじめ設定できる。従って、
解離性ガスを用いるスパッタリングを工業レベルで芙施
する場合の利点は極めて大きい。
According to the present invention, film forming conditions applicable to any sputtering apparatus can be set in advance. Therefore,
The advantages of applying sputtering using a dissociative gas at an industrial level are extremely large.

〔発明゛の実施例〕[Example of invention]

以下、本発明の実施例に基づき詳述する。 Hereinafter, the present invention will be explained in detail based on examples.

第1図は本発明を実砲するためのスパッタ装置の一例で
ちる。図中、1は真空容器、2は真空ポンプ(図示して
いないンへ接続された排気口、3は解離性ガスを含むガ
ス尋人口、4は金属ターゲット、5は電力印加用端子、
6は接地された対向電極で基板ホルダーを兼ねている。
FIG. 1 shows an example of a sputtering apparatus for implementing the present invention. In the figure, 1 is a vacuum container, 2 is an exhaust port connected to a vacuum pump (not shown), 3 is a gas outlet containing a dissociable gas, 4 is a metal target, 5 is a terminal for applying power,
6 is a grounded counter electrode which also serves as a substrate holder.

光情報記録用媒体を製造する場合、透明有機樹脂あるい
はガラスからなる基板を基板ホルダー6に設置し、真空
容器1を1 (1”Torr程反にイノ[気する。しか
る鏝、ガス導入口から解離性ガスをきむガスを導入し、
A空容器1内が所定の圧力に1.4″るようガス流量、
および真空ポンプへの排気鼠を調合が好ましい。10 
”I”、orr台以下であると安定した放電が得られに
くい。またI Q−’ Torrより高い場合°安定な
スパッタリングが困難である。真空容器1が所定の圧力
に到達した後、電力端子5を介してターゲット4と対向
電極6七の間に電力を印加し、放電を行なわせる。放電
にPPすい生成する解離性ガスを含むプラズマによりタ
ーゲット3をスパッタし、基板上に記録膜を形成する。
When manufacturing an optical information recording medium, a substrate made of transparent organic resin or glass is placed on the substrate holder 6, and the vacuum container 1 is heated to about 1" Torr from the gas inlet. Introducing a gas that detects dissociative gases,
A gas flow rate so that the inside of the empty container 1 reaches a predetermined pressure of 1.4",
And it is preferable to prepare the exhaust rat to a vacuum pump. 10
If it is less than "I", orr level, it is difficult to obtain stable discharge. Further, when the IQ-' Torr is higher than that, stable sputtering is difficult. After the vacuum container 1 reaches a predetermined pressure, power is applied between the target 4 and the counter electrode 67 via the power terminal 5 to cause discharge. A recording film is formed on the substrate by sputtering the target 3 using plasma containing a dissociative gas that generates PP in the discharge.

解離性ガスは放電により解離する。解:イトにより生成
する種々の活性r′Jj4ま、スパッタに関与するもの
、ターゲットと反L6するもの、煕板上にJti: X
1’tするものなど様々なものがある。従って、活性1
111の(重り頂、数−計、およびエネルギーη「どは
記を六11グシの11己録再生特性、基板への堆積速度
に1狂犬な影響そ及ぼす。
The dissociable gas is dissociated by electric discharge. Solution: Various active r′Jj4 generated by light, those involved in sputtering, those that interact with the target, Jti on the plate:
There are various things such as 1't. Therefore, activity 1
The weight, number, and energy η of 111 have a huge influence on the self-recording and reproducing characteristics of 611, and the rate of deposition onto the substrate.

解離過程に影響を及ばず最も重要な因子は解離性ガスの
放゛慮窒間内における平均滞在時間と印加電力1B度で
ある。平均滞在時間が長い程、印加電力密度が大きい程
解離性反応は促進される。
The most important factors that do not affect the dissociation process are the average residence time of the dissociative gas in the nitrogen chamber and the applied power of 1 B degree. The longer the average residence time and the higher the applied power density, the more the dissociative reaction is promoted.

即ち、ターゲット面積は通常スバクタ装置毎に一定の値
を取るが、放電圧力や電極間距離及び印加電力密度ら固
定しても、解離性ガスの流量が変化すればM離性ガスの
平均滞在時間は変化し、従って解離反応の進行状況が変
化し記録膜の形成過程が変化するのである。このことが
解離性ガスを含むスパッタリングによる記録膜の形成を
複雑なものにする主要な原因である。
In other words, the target area usually takes a constant value for each subactor device, but even if the discharge pressure, interelectrode distance, and applied power density are fixed, if the flow rate of the dissociative gas changes, the average residence time of the M dissociative gas will change. changes, and therefore the progress of the dissociation reaction changes and the formation process of the recording film changes. This is the main reason why the formation of a recording film by sputtering containing a dissociable gas is complicated.

出願人らは種々の実験により、印加する電力密度とM離
性ガスの平均滞在時間との積を所定の範囲に制御すイt
ばスパッタ装置によらず、制御された記録膜の形成が可
能なことを見出した。
The applicants conducted various experiments to control the product of the applied power density and the average residence time of the M-separating gas within a predetermined range.
We have found that it is possible to form a recording film in a controlled manner regardless of the sputtering device.

第2図は解離性ガスを含むスパッタリングによる記録膜
の形成を行なうためのダイアグラムである。図中、11
は放電による加熱により基板が損傷しないための印加電
力密度の装置1″Xによらない上限である。値としては
2W/cm2程度である。j2は安定な放電が接続する
ための印加電力密度の装置によらない下限である。(直
としては0.01 W/cm”得度である。13は真空
ポンプの排気能力、放電圧力1fとにより決定さイする
平均ン帝任苛1;1]の下限である。1直としては1m
5ecイ早1圧である。14は放電圧力ζこより決定さ
イする平均’AiI在時間の上限である。値古しては1
00 m sec程度である。
FIG. 2 is a diagram for forming a recording film by sputtering containing a dissociative gas. In the figure, 11
is the upper limit of the applied power density independent of the device 1''X to prevent the substrate from being damaged by heating due to discharge.The value is approximately 2W/cm2.j2 is the upper limit of the applied power density for stable discharge to connect. This is the lower limit that does not depend on the equipment. (For direct measurement, it is 0.01 W/cm. This is the lower limit. 1m for 1st shift
5ec is 1 pressure early. 14 is the upper limit of the average 'AiI residence time determined from the discharge pressure ζ. The price is 1
It is about 00 msec.

第2図において斜線を施した直線12 、 i 3と曲
線15とで囲まイ1、る領域■は]「σl!1・ff性
ガスの゛1′均滞在時間が短、く、印加電力密度が小さ
いため71J’r ?:11反応が充分に進行しない領
域である。従って、1頂域Ifこおける記録膜の堆積速
度は著しく遅<1「ってしまう。工業レベルで記録膜形
成4行なうには不適当な領域である。
In FIG. 2, the area (1) surrounded by the diagonally shaded straight line 12, i3 and the curve 15 is the area () where the residence time of the σl!1·ff gas is short, the applied power density is This is a region in which the 71J'r?:11 reaction does not proceed sufficiently because of the small value of 71J'r?:11.Therefore, the deposition rate of the recording film in the 1-vertical region If is extremely slow <1. This is an inappropriate area.

第2図において直、fS 11 、 J 4と曲線10
とで囲まれる斜線を施した領域■は、解fiit I’
l’ガスの平均滞在時間が長(、印加電力密度ヨが大き
いブこめ、解離反応が、過大に進行する領域である。領
域111において記録膜の形成を行なうと、膜の堆積速
度は大きいものの、堆積した記録膜と解離による活性種
との反応が奢しく進行し、記@膜の平坦性がそこなわれ
てしまう。平坦性がそこなわイすると記録膜の反射率が
低下する。反射率は記録膜の屈折率などで変化するが、
40係8度以上が好ましい。
In Fig. 2, direct, fS 11, J 4 and curve 10
The shaded area surrounded by is the solution fiit I'
This is a region where the average residence time of l' gas is long (and the applied power density is high), and the dissociation reaction progresses excessively.If a recording film is formed in region 111, the deposition rate of the film is high, but , the reaction between the deposited recording film and the active species due to dissociation progresses gracefully, and the flatness of the recording film is impaired.When the flatness is impaired, the reflectance of the recording film decreases.Reflectance varies depending on the refractive index of the recording film, etc.
40 coefficient 8 degrees or more is preferable.

解雄性ガスが炭化水系の場合、領域1■においては炭化
水素の重合反応が著しく進行するため、記録膜が形成さ
イ1ず画板上に、粉末状重合物が堆積することすらある
When the androlytic gas is a hydrocarbon-based gas, the polymerization reaction of the hydrocarbon progresses significantly in region 12, so that a recording film is not formed and a powdery polymer may even be deposited on the picture plate.

以上lこより直線11 、12 、13 、14とti
B線15.16とで囲まれた領域11内で記録膜の形成
を行なえば、記録再生特性の秀れた媒体を製造すること
ができ、同時に膜形成速度が大きいと云う工業上の必要
性をも満足させることができる。
Lines 11, 12, 13, 14 and ti
If a recording film is formed within the region 11 surrounded by the B lines 15 and 16, it is possible to manufacture a medium with excellent recording and reproducing characteristics, and at the same time, there is an industrial necessity that the film formation speed is high. can also be satisfied.

実施1縛−1 直径20 cmのI’eからなる円形ターゲツトを具備
したR F二極捜スパッタ装置において%電極間距離を
7 Cmとし、炭化水素としてCH4ガスを2X 10
−2Torr になるよう導入した。CH,流量と印加
電力密度を種々に変化させスパッタした場合の膜の堆積
速度と、印加電力密度とCH,の半均夜時間との積との
関係を第3図の21に示す。
Implementation 1 - 1 In an RF bipolar detection sputtering device equipped with a circular target made of I'e with a diameter of 20 cm, the distance between the electrodes was set to 7 cm, and CH4 gas was used as the hydrocarbon at 2×10
-2Torr was installed. 21 in FIG. 3 shows the relationship between the film deposition rate when sputtering is performed with various CH flow rates and applied power densities and the product of the applied power density and the half-uniform night time of CH.

印加電力密度と平均滞在時間との積がo:o 05より
小さい領域で著しく堆積速度の低下することが判る。0
.005より大きい領域で形成した記録膜からなる媒体
は5cmWX 200 n5ec の半導体レーザビー
ム照射により記録でき、再生信号の変調度は60%とい
う秀れた記録再生特性を示した。
It can be seen that the deposition rate decreases significantly in the region where the product of the applied power density and the average residence time is smaller than o:o05. 0
.. A medium consisting of a recording film formed in an area larger than 005 could be recorded by irradiation with a semiconductor laser beam of 5 cm W x 200 n5 ec, and exhibited excellent recording and reproducing characteristics with a modulation degree of the reproduced signal of 60%.

実施例−2 直径12cmのsbからなる円形ターゲツトを具rli
fi L/ fCD Cフレーナマグネトロンスバノタ
jij i&において、電極間距離を12cmとし、C
f(、およびNH,ガスを5 X 10 ”Torrに
′f、(るように導入シた。CH4とN Hs との分
圧比は5/1である。
Example-2 A circular target made of sb with a diameter of 12 cm was used.
fi L/ fCD In the C fuller magnetron Subanota jij i&, the distance between the electrodes is 12 cm, and the C
The gases f(, and NH) were introduced at 5×10 ” Torr so that the partial pressure ratio of CH4 and NHs was 5/1.

CH4,NH,流量と印加電力密Kを様々lこ変化させ
た場合の膜の堆積速度と印加電力密度とCI(4゜N 
Hsの平均滞在時間との積との関係を第3図の22に示
す。上記積の値が0005より大きい条件で形成した記
録膜からなる媒体は良好な記録再生特性を示した。
Film deposition rate, applied power density, and CI (4°N) when CH4, NH, flow rate and applied power density K are varied.
The relationship between the product of Hs and the average residence time is shown at 22 in FIG. A medium made of a recording film formed under conditions where the value of the above product was greater than 0005 exhibited good recording and reproducing characteristics.

実施例−3 直径15cmの八9からなる円形ターゲットを具備した
RFプレーナマグネトロンスパッタリング装置において
、電極間距離を8 cmとし、CH4およびArガスを
6 X 10’Torrになるように導入した。CH,
とArとの分圧比は4/1である。
Example 3 In an RF planar magnetron sputtering apparatus equipped with a circular target consisting of eight nines with a diameter of 15 cm, the distance between the electrodes was set to 8 cm, and CH4 and Ar gas were introduced at a pressure of 6 x 10' Torr. CH,
The partial pressure ratio between Ar and Ar is 4/1.

CH4,Ar流量と印加電力密1変とを様々に変化させ
た場合の膜の堆積速度と、印加電力密度とCH,。
CH4, Film deposition rate, applied power density and CH, when the Ar flow rate and the applied power density are varied.

Arガスの平均滞在時間との積との関係を第3図の23
に示す。上記績の値が0.005より大きい東件で形成
した記録11弾からなる媒体は良好な記録再生特性を示
した。
The relationship between the product and the average residence time of Ar gas is shown in 23 in Figure 3.
Shown below. A medium consisting of 11 recordings made by Tohki Co., Ltd. and having the above-mentioned performance value of greater than 0.005 exhibited good recording and reproducing characteristics.

実施例−4 直径20cmのTeからなる円形ターゲットを具備した
7% F 2極型スパツタ装置において、電極間距離を
5cmとし、CH4ガスを3 X I O−” Tor
rになるよう導入した。CH4流験と印加電力密度とを
様々に変化させてスパッタして膜形成を行なった。基板
は厚さl、 5 mmのアクリル板、膜厚は、600A
 である。印加′rに力密度と平均滞在時間との積の異
なる媒体について半導体レーザ(波長8300A)によ
る反射率を測定した結果を第4図の31に示す。印加成
力が度と平均滞在時間との、漬が、0.5より大きい領
域で形成した媒体記録膜表面は平坦性が損わイtており
、反射率は40%以下に低下した。
Example-4 In a 7% F bipolar sputtering device equipped with a circular target made of Te with a diameter of 20 cm, the distance between the electrodes was 5 cm, and CH4 gas was
It was introduced to make it r. Film formation was performed by sputtering while varying the CH4 current and applied power density. The substrate is a 5 mm thick acrylic plate, and the film thickness is 600A.
It is. 31 in FIG. 4 shows the results of measuring the reflectance of a semiconductor laser (wavelength: 8300 A) for media with different products of force density and average residence time during application 'r. The surface of the medium recording film formed in a region where the applied force and the average residence time were greater than 0.5 lost its flatness, and the reflectance decreased to 40% or less.

上記績の噴が1附近では基板上に粉末状−11i合物が
堆積した。
In the vicinity of the first injection described above, a powdery -11i compound was deposited on the substrate.

実h1例−5 直径15cm(7)SF)からなる円形ターゲットを具
備したRFプレーナマグネトロンスパッタ蔑装に2いて
、′4極間距離を7cmとし、CH<およびArガスを
5 X 10−’Torrになるよう導入した。CH4
とAr上の分圧比は2/1である。CH4,Ar流量と
印加電力密度を様々に変化させて膜形成を行なった。基
板は厚さ1.5mmのアクリル板、膜厚は500Aであ
る。印加電力密度と平均!’if)夜時間との債の異な
る媒体について、実施例−4と同様の方法で反射率を阻
」定した結果を第4図の32に示した。上記績の値が0
.5より小さい領域で形成した媒体記録膜表面は極めて
平坦性が良く、40チ以上の反射率を示し、また良好な
記録再生特性を示した。
Practical Example 1 - 5 In an RF planar magnetron sputtering system equipped with a circular target of 15 cm (7) SF) in diameter, the distance between the 4 poles was 7 cm, and the CH< and Ar gas was 5 X 10-' Torr. It was introduced to become CH4
The partial pressure ratio on and Ar is 2/1. Film formation was performed by varying the CH4, Ar flow rate and applied power density. The substrate is an acrylic plate with a thickness of 1.5 mm, and the film thickness is 500A. Applied power density and average! 32 in FIG. 4 shows the results of inhibiting the reflectance in the same manner as in Example 4 for media with different night time characteristics. The value of the above result is 0
.. The surface of the medium recording film formed in an area smaller than 5 had extremely good flatness, exhibited a reflectance of 40 inches or more, and exhibited good recording and reproducing characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製造方法を実施するだめの装置の一例
を示す模式図、第2図は本発明の製造方法に関する説明
図、第3図は本発明により製造した記録媒体記録膜の堆
積速度と、印加電力密度と平均滞在時間との積・さの関
係を示す図、第4図は本発明により製造した記録媒体の
反射率と、印加電力密eと平均滞在時間との積との関係
を示す図である。 1・・・真空容器、2・・・排気口、3・・・ガス導入
口、4・・・ターゲット、5・・電力印加端子、6・・
・基板ホルダー。 代理人弁理士 則 近 憲 佑(ほか1名)第1図 第2図 平均帰在時向 第3図
FIG. 1 is a schematic diagram showing an example of an apparatus for implementing the manufacturing method of the present invention, FIG. 2 is an explanatory diagram regarding the manufacturing method of the present invention, and FIG. 3 is a deposition of a recording film of a recording medium manufactured by the present invention. A diagram showing the relationship between speed, applied power density, and average residence time, and FIG. It is a figure showing a relationship. DESCRIPTION OF SYMBOLS 1... Vacuum container, 2... Exhaust port, 3... Gas inlet, 4... Target, 5... Power application terminal, 6...
・Substrate holder. Representative patent attorney Noriyuki Chika (and 1 other person) Figure 1 Figure 2 Average return time direction Figure 3

Claims (1)

【特許請求の範囲】 (1)金属ターゲ、トを水素が宿成成分の一つである解
離性ガスを含むガスのプラズマでスパツタリングして少
(とも金属と水素とは含まれる記録膜を形成する方法に
おいて、前記金属ターゲットに印加する。3力密反と解
離性ガスの放電空1fij内における平均11庁在時間
との積が0.05νV sec / cm 2より太き
(,0,5W sec / cm 2 より小さい範囲
で記録膜を形成するこLを特徴とする元情報記録用媒体
の製造方法。 (2)金1・J1ターゲットが少な(ともTe、Sl)
、Agのうち一つを含んでいることを特徴とする特許請
求の範囲第1項記載の光情報記録用媒体の製造方法。 (4)解離性ガスがCH,であることを特徴とする(5
)プラズマが解離性と10ガスとの混合ガスから遣方法
。 (6)解離性ガスが炭化水素と窒素もしくはアンモ
[Claims] (1) A recording film containing a small amount of metal and hydrogen is formed by sputtering a metal target with a plasma of a gas containing a dissociative gas in which hydrogen is one of the host components. In the method of / cm 2 A manufacturing method for a former information recording medium characterized by forming a recording film in an area smaller than L. (2) Few gold 1/J1 targets (both Te and Sl)
, Ag. (4) The dissociable gas is CH, (5
) A method in which plasma is generated from a mixture of dissociative and 10 gases. (6) The dissociable gas is hydrocarbon and nitrogen or ammonia.
JP15772283A 1983-08-31 1983-08-31 Production of optical information recording medium Pending JPS6050642A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP15772283A JPS6050642A (en) 1983-08-31 1983-08-31 Production of optical information recording medium
EP84305898A EP0137697B1 (en) 1983-08-31 1984-08-29 Method of producing an optical information recording medium
DE8484305898T DE3467825D1 (en) 1983-08-31 1984-08-29 Method of producing an optical information recording medium
US06/885,738 US4663008A (en) 1983-08-31 1986-07-21 Method of producing an optical information recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15772283A JPS6050642A (en) 1983-08-31 1983-08-31 Production of optical information recording medium

Publications (1)

Publication Number Publication Date
JPS6050642A true JPS6050642A (en) 1985-03-20

Family

ID=15655936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15772283A Pending JPS6050642A (en) 1983-08-31 1983-08-31 Production of optical information recording medium

Country Status (1)

Country Link
JP (1) JPS6050642A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06217826A (en) * 1993-01-28 1994-08-09 Parisu:Kk Rucksack
JPH0779821A (en) * 1993-09-17 1995-03-28 Hironobu Sugihara Portable bag
US5651511A (en) * 1987-12-22 1997-07-29 Roll Systems, Inc. Roll support and feed apparatus
US5702962A (en) * 1994-09-05 1997-12-30 Ngk Insulators Ltd Fabrication process for a static induction transistor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5651511A (en) * 1987-12-22 1997-07-29 Roll Systems, Inc. Roll support and feed apparatus
JPH06217826A (en) * 1993-01-28 1994-08-09 Parisu:Kk Rucksack
JPH0779821A (en) * 1993-09-17 1995-03-28 Hironobu Sugihara Portable bag
US5702962A (en) * 1994-09-05 1997-12-30 Ngk Insulators Ltd Fabrication process for a static induction transistor

Similar Documents

Publication Publication Date Title
JP2003500783A (en) Hybrid disc manufacturing method and hybrid disc
EP0137697B1 (en) Method of producing an optical information recording medium
US4003813A (en) Method of making a magnetic oxide film with high coercive force
JPS6050642A (en) Production of optical information recording medium
US4756811A (en) Method for manufacturing bubble-mode optical recording media
JPH06101151B2 (en) Method for manufacturing optical information recording medium
JP3219596B2 (en) Manufacturing method of optical recording medium
JPH0223926B2 (en)
JPS6395983A (en) Optical recording medium
JPS63162872A (en) Hard amorphous carbon film
JPS6038727A (en) Magnetic recording medium and its manufacture
JP2791807B2 (en) Optical recording medium and manufacturing method thereof
JPH0718076A (en) Film produced by gas-phase polymerization and information medium
JPH049868B2 (en)
JPH049870B2 (en)
JP2581036B2 (en) Optical recording medium
JPH0516087B2 (en)
JP2597630B2 (en) Optical memory medium
JPH0258744A (en) Optical disk memory
JPS6232087A (en) Preparation of optical recording medium
JPS60125950A (en) Optical information recording medium and its production
JPS61178744A (en) Production of information recording medium
JPS6258437A (en) Formation of optical information recording medium
JPS61214131A (en) Production of magnetic recording medium
JPH04157156A (en) Production of plasmic polymer film