JPS6050539B2 - Method for controlling slab thickness in continuous casting equipment - Google Patents

Method for controlling slab thickness in continuous casting equipment

Info

Publication number
JPS6050539B2
JPS6050539B2 JP867278A JP867278A JPS6050539B2 JP S6050539 B2 JPS6050539 B2 JP S6050539B2 JP 867278 A JP867278 A JP 867278A JP 867278 A JP867278 A JP 867278A JP S6050539 B2 JPS6050539 B2 JP S6050539B2
Authority
JP
Japan
Prior art keywords
roll
slab
thickness
cylinder device
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP867278A
Other languages
Japanese (ja)
Other versions
JPS54101719A (en
Inventor
行夫 長谷川
治男 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP867278A priority Critical patent/JPS6050539B2/en
Publication of JPS54101719A publication Critical patent/JPS54101719A/en
Publication of JPS6050539B2 publication Critical patent/JPS6050539B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 本発明は連続鋳造設備における鋳片厚み制御方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling slab thickness in continuous casting equipment.

連続鋳造設備により鋳造される鋳片の厚さは一定である
ことが当然のこととして望ましく、厚さにバラツキがあ
ると、鋳片の内部割れ等の原因になりやすい。
Naturally, it is desirable that the thickness of the slab cast by continuous casting equipment be constant, and if there is variation in the thickness, it is likely to cause internal cracks in the slab.

しかし実際問題として、鋳造された鋳片の厚みにバラツ
キが生じやすいものである。それは鋳造速度、注水比、
溶鋼性状等の鋳造条件およびロール間隔、ロールの摩耗
等の機械的条件が変化することによつて生じる。この鋳
造条件および機械的条件は、鋳造毎に変わり、かりにロ
ール間隔を正確に保持していても、鋳造中のバルジング
カ等によりロールがたわみ、結果として鋳片の厚みにバ
ラツキが生じるものである。そこで本発明は鋳片の厚み
を一定に保つことができる鋳片厚み制御方法を提案する
ものである。
However, as a practical matter, variations in the thickness of cast slabs tend to occur. It depends on casting speed, water injection ratio,
This occurs due to changes in casting conditions such as molten steel properties and mechanical conditions such as roll spacing and roll wear. These casting conditions and mechanical conditions change for each casting, and even if the roll spacing is maintained accurately, the rolls will be deflected due to bulging forces during casting, resulting in variations in the thickness of the slab. Therefore, the present invention proposes a slab thickness control method that can keep the thickness of the slab constant.

フ 以下、本発明の一実施例を図に基いて説明する。A
は鋳片搬送経路を構成する多数のロールセグメント群で
あつて、この各ロールセグメント群Aのうち、鋳片26
内の未凝固部分の最終端が位置する付近の3つのクラン
プテーブルal、a2、a35の下手位置には鋳片26
の厚さを計測する厚み計測装置25が設けられてある。
この厚み計測装置25としては、例えば鋳片26を挾む
2つのローラを設け、この両ローラの軸心間の距離を計
ることによつて、鋳片26の厚さを計測する方式の装置
などが考えられる。上記ロールセグメントa1〜A3に
ついて第2図に基いて説明すると、1,2はそれぞれロ
ールセグメントを構成する上下フレームであつて、4本
のコラム3が貫通している。4は各コラム3の下端に連
結されたバルジングカ計測用のロードセル、5は該ロー
ドセル4と下フレーム2との間に配設されたスペーサリ
ング、6は上フレーム1の上部において各コラム3に取
付けられた4個のロール間隔調整装置、7は鋳片搬送経
路に沿つて対向する前後2本のコラム3の上端部間に配
設されたクラウンパー、8は該クラウンパー7と各ロー
ル間隔調整装置6のハウジング9との間に配設されたシ
リンダ装置であつて、バルジングカに対抗して上下フレ
ーム1,2を互いに接近せしめる方向に押圧するもので
ある。
An embodiment of the present invention will be described below with reference to the drawings. A
is a large number of roll segment groups constituting a slab conveyance path, and among each roll segment group A, slab 26
The slab 26 is placed at the lower position of the three clamp tables al, a2, and a35 near where the final end of the unsolidified portion is located.
A thickness measuring device 25 is provided to measure the thickness of.
This thickness measuring device 25 may be, for example, a device that measures the thickness of the slab 26 by providing two rollers that sandwich the slab 26 and measuring the distance between the axes of both rollers. is possible. The roll segments a1 to A3 will be described with reference to FIG. 2. Reference numerals 1 and 2 are upper and lower frames constituting the roll segments, and four columns 3 pass through them. 4 is a load cell for measuring bulging force connected to the lower end of each column 3; 5 is a spacer ring disposed between the load cell 4 and the lower frame 2; 6 is attached to each column 3 at the upper part of the upper frame 1. 7 is a crown par provided between the upper ends of the two columns 3 facing each other along the slab conveyance path; 8 is a crown par provided between the crown par 7 and each roll spacing adjustment device; This cylinder device is disposed between the housing 9 of the device 6 and presses the upper and lower frames 1 and 2 toward each other against the bulging force.

前記ロール間隔調整装置6は、コラム3の上端小径部3
aに外嵌する外筒10と、該外筒10の外周に形成され
た雄ねじ部11と、内周面の雌ねじ部が上記雄ねじ部1
1に螺合すると共に上フレーム1に回転のみ自在に支持
されたウォームホィール12と、該ウォームホィール1
2に螺合するウォームギヤー13と、上記コラム3の外
周面の凹部内に,嵌入すると共に外筒10の内周面に形
成されたキー溝内に嵌入して外筒10をコラム3の長手
方向にのみ移動自在とするキー15とからなる。16は
コラム3に外嵌するスリーブ、17は両フレーム1,2
に支持されたロールであつて、この各口3ール17のう
ち、適当なロールは駆動ロールとされている。
The roll spacing adjustment device 6 includes a small diameter portion 3 at the upper end of the column 3.
an outer cylinder 10 that fits externally into the outer cylinder 10, a male threaded part 11 formed on the outer periphery of the outer cylinder 10, and a female threaded part on the inner peripheral surface of the external cylinder 10,
a worm wheel 12 which is screwed into the upper frame 1 and is rotatably supported by the upper frame 1;
A worm gear 13 is screwed into the column 3, and the worm gear 13 is fitted into a recess on the outer circumferential surface of the column 3, and is also fitted into a keyway formed on the inner circumferential surface of the outer cylinder 10, so that the outer cylinder 10 can be attached to the longitudinal axis of the column 3. It consists of a key 15 that is movable only in the direction. 16 is a sleeve that fits onto the column 3, and 17 is both frames 1 and 2.
Among these rolls 17, a suitable roll is a drive roll.

18は分配ギヤー19を介して前記ウォームギヤー13
を回転駆動せしめる減速機付駆動モータ、20はシリン
ダ装置8の押圧力を電圧値に変換する変換器、21は圧
油をシリンダ装置38に供給するための油圧回路、22
は該回路21に介在せしめられた圧力調整弁、23は該
圧力調整弁22の作動モータ、30は該モータ23の制
御回路であつて、ロードセル4から入力されたバルジン
グカの電圧値F1と所定値ΔPとをプラス4し、このF
1+ΔPが、上記変換器20から入力されたシリンダ装
置8の押圧力に基く電圧値P1につりあうように、すな
わちF1+ΔP=P1となるようにモータ23を作動せ
しめて圧力調整弁22を制御するものである。
18 is connected to the worm gear 13 via a distribution gear 19
20 is a converter that converts the pressing force of the cylinder device 8 into a voltage value; 21 is a hydraulic circuit for supplying pressure oil to the cylinder device 38; 22
23 is a pressure regulating valve interposed in the circuit 21, 23 is an operating motor of the pressure regulating valve 22, and 30 is a control circuit for the motor 23, which is connected to the bulging force voltage value F1 inputted from the load cell 4 and a predetermined value. ΔP plus 4, this F
The pressure regulating valve 22 is controlled by operating the motor 23 so that F1+ΔP is balanced with the voltage value P1 based on the pressing force of the cylinder device 8 inputted from the converter 20, that is, F1+ΔP=P1. be.

第1図において、24は前記厚み計測装置25からの計
測信号と鋳片26の厚み設定器27からの設定信号とを
比較演算して鋳片26の厚さが適正であるか否かを検出
する7比較演算器、28は該比較演算器24からの入力
信号に基いて前記各ロールセグメントa1〜A3のモー
タ18を正転もしくは逆転せしめる回転方向制御回路で
ある。 上記構成の作用を説明する。
In FIG. 1, 24 compares and calculates the measurement signal from the thickness measuring device 25 and the setting signal from the thickness setter 27 of the slab 26 to detect whether or not the thickness of the slab 26 is appropriate. 7 comparator 28 is a rotation direction control circuit that rotates the motor 18 of each of the roll segments a1 to A3 forward or reverse based on the input signal from the comparator 24. The operation of the above configuration will be explained.

連続鋳造中におい9て、厚み計測装置25によつて鋳片
26の厚さが計測され、その計測値D1の信号は比較演
算器24に入力される。また上記厚み計測装置25が設
けられてある箇所における鋳片26の理想的な厚さを決
めておき、その厚さ設定値D2の信号を設i定器27に
より比較演算器24に入力する。この比較演算器24て
は、上記計測値D1と設定値D2とを比較演算し、たと
えばD1〈D2となつた場合には、比較演算器24から
回転方向制御回路28にモータ正転(もしくは逆転)の
信号が入力さ”れ、該回路28により、まず下手側のロ
ールセグメントa1のモータ18が正転(もしくは逆転
)せしめられてウォームギヤー13、ウォームホィール
12、外筒10(外周にはねじスクリューがある)およ
びコラム3を介して上下の両ロール17の間隔αが狭め
られる。次に中央のロールセグメントA2のロール間隔
αが同様にして狭められ、さらに上手側のロールセグメ
ントA3のロール間隔αが狭められて、D1=D2にな
ると、各モータ18の作動が停止せしめられる。また反
対にD1〉D2になると、下手側のロールセグメントa
1のロール間隔調整装置6から順番に作動せしめられて
、各ロールセグメントa1〜A3のロール間隔αが広げ
られ、D1=D2になると、各モータ18の作動が停止
せしめられて、鋳片26の厚さが適正に保持される。
また連続鋳造をおこなうと、鋳片26のバルジングカに
より、上下のロール17,17およびフレーム1,2を
介してコラム3が上下に引つ張られてロードセル4に負
荷がかかり、バルジングカr が計測される。
During continuous casting 9, the thickness of the slab 26 is measured by the thickness measuring device 25, and a signal of the measured value D1 is input to the comparator 24. Further, the ideal thickness of the slab 26 at the location where the thickness measuring device 25 is installed is determined in advance, and a signal of the thickness setting value D2 is inputted to the comparison calculator 24 by the setting i setter 27. This comparator 24 compares and computes the measured value D1 and the set value D2. For example, if D1<D2, the comparator 24 sends a signal to the rotation direction control circuit 28 to rotate the motor forward (or reverse). ) is input, and the circuit 28 causes the motor 18 of the lower roll segment a1 to rotate forward (or reverse), and the worm gear 13, the worm wheel 12, and the outer cylinder 10 (with screws on the outer periphery) are input. The spacing α between the upper and lower rolls 17 is narrowed through the screw (with a screw) and the column 3. Next, the roll spacing α of the middle roll segment A2 is similarly narrowed, and further the roll spacing of the upper roll segment A3 is narrowed. When α is narrowed and D1=D2, the operation of each motor 18 is stopped.On the other hand, when D1>D2, the lower roll segment a
The roll spacing adjusting device 6 of No. 1 is operated in order to widen the roll spacing α of each roll segment a1 to A3, and when D1=D2, the operation of each motor 18 is stopped and the rolling distance of the slab 26 is increased. The thickness is maintained properly.
In addition, when continuous casting is performed, the column 3 is pulled up and down by the bulging force of the slab 26 via the upper and lower rolls 17, 17 and the frames 1, 2, and a load is applied to the load cell 4, and the bulging force r is measured. Ru.

そのロードセル4からの出力信号は制御回路30に入力
され、バルジングカの電圧値F1と予め定められてある
所定値ΔPとをプラスする。次にF1+ΔPと変換器2
0から入力されたシリンダ装置8の押圧力に基く電圧値
P1とを比較演算し、F1+ΔP<P1になつた場合(
すなわちバルジングカが小さくなつた場合)には直ちに
モータ23を作動せしめて調整弁22を絞り、シリンダ
装置8の押圧力を減少せしめてF1+ΔP=P1になる
ようにする。また反対にF1+ΔP〉P1になつた楊合
(すなわちバルジングカが大きくなつた場合)には直ち
にモータ23を逆方向に作動せしめて調整弁22を開き
、シリンダ装置8の押圧力を増大せしめてF1+ΔP=
P1になるようにする。したがつてこの結果、ロール間
隔調整装置6には、シリンダ装置8の押圧力P1からバ
ルジングカF1を差し引いた力(すなわちΔP)しか加
わらないので、モータ18の駆動力は小さなものでよい
。上記実施例によれば、鋳片26が未凝固部の最終端位
置から上手に向かつて順番に押しつけられることにより
、凝固収縮あるいはバルジングカによつて生じた鋳片2
6内の空隙に溶鋼が流入するのを防ぐことができる。
The output signal from the load cell 4 is input to the control circuit 30, and a predetermined value ΔP is added to the voltage value F1 of the bulging force. Next, F1 + ΔP and converter 2
When the voltage value P1 based on the pressing force of the cylinder device 8 inputted from 0 is compared and calculated, and F1+ΔP<P1 (
That is, if the bulging force becomes small), the motor 23 is immediately activated to throttle the regulating valve 22, and the pressing force of the cylinder device 8 is reduced so that F1+ΔP=P1. On the other hand, when the force becomes F1+ΔP>P1 (that is, when the bulging force increases), the motor 23 is immediately operated in the opposite direction, the regulating valve 22 is opened, and the pressing force of the cylinder device 8 is increased, so that F1+ΔP=
Make it P1. Therefore, as a result, only a force (that is, ΔP) obtained by subtracting the bulging force F1 from the pressing force P1 of the cylinder device 8 is applied to the roll interval adjusting device 6, so that the driving force of the motor 18 may be small. According to the above embodiment, the slabs 26 are sequentially pressed upward from the final end position of the unsolidified portion, so that the slabs 26 that are caused by solidification shrinkage or bulging force are
It is possible to prevent molten steel from flowing into the voids in 6.

なお、上記実施例では、3つのロールセグメントa1〜
A3を操作することにより鋳片26の厚さをコントロー
ルするようにしているが、1つ、2つ、あるいは4つ以
上のロールセグメントを操作するようにしてもよい。
In addition, in the above embodiment, three roll segments a1 to
Although the thickness of the slab 26 is controlled by manipulating A3, one, two, or four or more roll segments may be manipulated.

以上述べたごとく本発明の連続鋳造設備における鋳片厚
み制御方法によれば、ロール間隔αを調整することがて
きることはもちろんのこと、刻々と変化するバルジング
カに対抗してシリンダ装置8によりそのバルジングカよ
りも常に少し大き目の押圧力により上下フレームを互い
に接近する方向へ押圧することができるものであつた、
これにより鋳片26を常に適正圧で押圧でき、押圧不足
や押え過ぎによる鋳片内部の品質劣化は生じない。
As described above, according to the slab thickness control method in continuous casting equipment of the present invention, it is possible not only to adjust the roll interval α, but also to control the bulging force by the cylinder device 8 against the ever-changing bulging force. It was possible to press the upper and lower frames toward each other with a pressing force that was always slightly larger than that of the bulging force.
As a result, the slab 26 can always be pressed with an appropriate pressure, and quality deterioration inside the slab due to insufficient pressing or excessive pressing does not occur.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例を示し、第1図は概略側面図、第
2図は要部の説明図である。 1,2・・・・・・上下フレーム、4・・・・・・ロー
ドセル、6・・・・・・ロール間隔調整装置、8・・・
・・シリンダ装置、13・・・・・・ウォームギヤー、
17・・・・・・ロール、18・・・・・・モータ、2
0・・・・・・変換器、21・・・・・油圧回路、22
・・・・・・圧力調整弁、23・・・・・・モータ、2
〔4・・・・・・比較演算器、25・・・・・・厚み計
測装置、26・・・鋳片、27・・・・・・設定器、2
8・・・・・・回転方向制御回路、30・・・・・・制
御回路、A・・・・・・ロールセグメント群、a1〜A
3・・・・・・ロールセグメント。
The figures show one embodiment of the present invention, with FIG. 1 being a schematic side view and FIG. 2 being an explanatory view of the main parts. 1, 2... Upper and lower frames, 4... Load cell, 6... Roll interval adjustment device, 8...
...Cylinder device, 13... Worm gear,
17...Roll, 18...Motor, 2
0...Converter, 21...Hydraulic circuit, 22
......Pressure regulating valve, 23...Motor, 2
[4... Comparison calculator, 25... Thickness measuring device, 26... Slab, 27... Setting device, 2
8...Rotation direction control circuit, 30...Control circuit, A...Roll segment group, a1 to A
3...Roll segment.

Claims (1)

【特許請求の範囲】[Claims] 1 鋳片搬送経路を構成する各ロールセグメントのうち
、鋳片26の未凝固部分の最終端が位置する付近の複数
のロールセグメントa_1〜a_3の下手位置に経路上
を搬送されてくる鋳片26の厚さを計測する厚み計測装
置25を設け、上記各ロールセグメントa_1〜a_3
に設けられたロール間隔調整装置6を作動させる駆動モ
ータ18を設け、比較演算器24において厚み計測装置
25から入力された厚さ計測値D_1と設定器27から
入力された設定値D_2とを比較演算してその両値D_
1,D_2が一致するまで信号を出力し、その出力信号
により作動させられた回転方向制御回路28により各モ
ータ18を作動させて各ロールセグメントa_1〜a_
3のロール間隔αを調整し、各ロールセグメントa_1
〜a_3に、バルジング力計測用ロードセル4とバルジ
ング力に対抗して上下両フレーム1,2を互いに接近さ
せる方向へ押圧するシリンダ装置8と、該シリンダ装置
8の押圧力を電圧値に変換する変換器20と、シリンダ
装置8に圧油を供給するための油圧回路に介在させた圧
力調正弁22を作動させる作動モータ23とを設け、制
御回路30においてロードセル4から入力された電圧値
Fと所定値ΔPとをプラスし、この両値の和(F_1+
ΔP)が変換器20から入力された電圧値P_1とつり
あう(F_1+ΔP=P_1)まで作動モータ23を作
動させてシリンダ装置8の押圧力を調整することを特徴
とする連続鋳造設備における鋳片厚み制御方法。
1 Among the roll segments constituting the slab conveyance path, the slab 26 is conveyed on the path to the lower position of the plurality of roll segments a_1 to a_3 near where the final end of the unsolidified portion of the slab 26 is located. A thickness measuring device 25 is provided to measure the thickness of each roll segment a_1 to a_3.
A drive motor 18 is provided to operate the roll spacing adjustment device 6 provided at Calculate both values D_
A signal is output until 1 and D_2 match, and each motor 18 is operated by the rotation direction control circuit 28 activated by the output signal to rotate each roll segment a_1 to a_
Adjust the roll interval α of 3, and each roll segment a_1
~a_3 includes a load cell 4 for measuring bulging force, a cylinder device 8 that presses both the upper and lower frames 1 and 2 toward each other against the bulging force, and a conversion that converts the pressing force of the cylinder device 8 into a voltage value. 20 and an operating motor 23 that operates a pressure regulating valve 22 interposed in a hydraulic circuit for supplying pressure oil to the cylinder device 8. The predetermined value ΔP is added to the sum of both values (F_1+
ΔP) is balanced with the voltage value P_1 inputted from the converter 20 (F_1+ΔP=P_1) by operating the operating motor 23 to adjust the pressing force of the cylinder device 8. Control of slab thickness in continuous casting equipment Method.
JP867278A 1978-01-27 1978-01-27 Method for controlling slab thickness in continuous casting equipment Expired JPS6050539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP867278A JPS6050539B2 (en) 1978-01-27 1978-01-27 Method for controlling slab thickness in continuous casting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP867278A JPS6050539B2 (en) 1978-01-27 1978-01-27 Method for controlling slab thickness in continuous casting equipment

Publications (2)

Publication Number Publication Date
JPS54101719A JPS54101719A (en) 1979-08-10
JPS6050539B2 true JPS6050539B2 (en) 1985-11-08

Family

ID=11699414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP867278A Expired JPS6050539B2 (en) 1978-01-27 1978-01-27 Method for controlling slab thickness in continuous casting equipment

Country Status (1)

Country Link
JP (1) JPS6050539B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0516771B2 (en) * 1985-10-30 1993-03-05 Mitsubishi Electric Corp
WO1996004086A1 (en) * 1994-07-29 1996-02-15 Sumitomo Metal Industries, Ltd. Continuous casting method for thin cast piece and apparatus therefor

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63278654A (en) * 1987-05-12 1988-11-16 Nkk Corp Light rolling reduction casting method
JP2925855B2 (en) * 1992-09-28 1999-07-28 日立造船株式会社 Slab thickness control device for twin mold roll type continuous sheet casting equipment
JP5417891B2 (en) * 2009-02-25 2014-02-19 Jfeスチール株式会社 Continuous casting method for steel slabs
JP5417892B2 (en) * 2009-02-25 2014-02-19 Jfeスチール株式会社 Continuous casting method for steel slabs
JP5426915B2 (en) * 2009-04-09 2014-02-26 新日鉄住金エンジニアリング株式会社 Light reduction device for continuous casting equipment
CN110181018B (en) * 2018-05-17 2022-01-14 江阴兴澄特种钢铁有限公司 Continuous casting billet thickness on-line measurement and reduction adjustment system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0516771B2 (en) * 1985-10-30 1993-03-05 Mitsubishi Electric Corp
WO1996004086A1 (en) * 1994-07-29 1996-02-15 Sumitomo Metal Industries, Ltd. Continuous casting method for thin cast piece and apparatus therefor

Also Published As

Publication number Publication date
JPS54101719A (en) 1979-08-10

Similar Documents

Publication Publication Date Title
CA2083804C (en) A process and a device for continuous casting of slabs or ingots
US4702300A (en) Double drum type continuous casting machine
US4481800A (en) Cold rolling mill for metal strip
JPS6050539B2 (en) Method for controlling slab thickness in continuous casting equipment
EP1068914B1 (en) Process and apparatus for casting a continuous metal strand
JPH03238112A (en) Control method and device to compensate speed effect in tandem cold roll device
US3427839A (en) Hydraulic adjusting means for rolling mills
CN102233416B (en) Lightly-pressed roll speed control method
FR2490334A1 (en) APPARATUS FOR MEASURING THE THICKNESS OF THE PRODUCT LAYER ON ONE OF THE CYLINDERS OF A HOMOGENIZATION MIXER
JPS629755A (en) Method for controlling operation of twin roll type mold in continuous casting installation for thin sheet
US2961901A (en) Automatic control for adjusting rolling mills
JPS62130759A (en) Method for controlling leveling roll for continuously cast steel ingot
GB1346878A (en) Rollmill control system
KR100384450B1 (en) Method for controlling strand driven roll pressure in the continuous caster
JPH06297013A (en) Method for controlling plate bend by using roll gap sensor
GB1149236A (en) Prestressed rolling mill
KR200157532Y1 (en) Auto-control device of roll cap
JPH01166863A (en) Method and device for controlling rolling reduction in twin drum type continuous casting machine
JP2000079457A (en) Device for controlling interval between roll segments in continuous caster
JP2521206B2 (en) Rolling mill hydraulic reduction control method and hydraulic reduction device
JPS6048269B2 (en) Roll spacing control method in continuous casting equipment
JPH06106305A (en) Device for controlling thickness of cast strip in twin mold roll type continuous casting equipment
JPS62179856A (en) Continuous casting method and its roller apron
CN112756574B (en) Slab continuous casting soft reduction control method under fault condition of displacement sensor
JPH0494846A (en) Method for controlling rotating speed of roll in twin roll type continuous caster