JPS6050494A - Controller for temperature of feedwater of nuclear power plant - Google Patents

Controller for temperature of feedwater of nuclear power plant

Info

Publication number
JPS6050494A
JPS6050494A JP58158095A JP15809583A JPS6050494A JP S6050494 A JPS6050494 A JP S6050494A JP 58158095 A JP58158095 A JP 58158095A JP 15809583 A JP15809583 A JP 15809583A JP S6050494 A JPS6050494 A JP S6050494A
Authority
JP
Japan
Prior art keywords
pressure
feed water
turbine
water heater
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58158095A
Other languages
Japanese (ja)
Inventor
政志 中本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58158095A priority Critical patent/JPS6050494A/en
Publication of JPS6050494A publication Critical patent/JPS6050494A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Control Of Temperature (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、原子炉に供給される給水の温度を好適に調
節する原子力発電プラントの給水温度制御装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a feed water temperature control device for a nuclear power plant that suitably adjusts the temperature of feed water supplied to a nuclear reactor.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

第1図は従来の原子力発電プラントの給水・蒸気系を示
す系統図である。− 原子炉1から主蒸気は主蒸気加減弁3を経て蒸気タービ
ン5に導かれ、ここで仕事をして復水器7に送られ凝縮
される。復水器7で凝縮された復水(給水)は、低圧お
よび高圧給水加熱器9,11を介して原子炉1に導かれ
る。低圧給水加熱器9には、低圧蒸気タービンから逆止
弁13を経て低圧の抽気が供給され、まだ高圧給水加熱
器11には、中圧蒸気タービンから逆止弁14ヲ介して
中圧の抽気が供給される。したがって、給水加熱器9,
11内で、原子炉1へ供給される給水と抽気との熱交換
が行なわれ、給水の温度が上昇する。この給水温度の上
昇により、原子力発電プラントにおけるプラント熱効率
の向上および原子炉1での蒸気の発生を安定化させるこ
とができる。
FIG. 1 is a system diagram showing the water supply and steam systems of a conventional nuclear power plant. - Main steam from the reactor 1 is led to the steam turbine 5 via the main steam control valve 3, where it performs work and is sent to the condenser 7 where it is condensed. Condensate (feed water) condensed in the condenser 7 is led to the reactor 1 via low-pressure and high-pressure feed water heaters 9 and 11. The low-pressure feedwater heater 9 is supplied with low-pressure bleed air from the low-pressure steam turbine via the check valve 13, and the high-pressure feedwater heater 11 is supplied with medium-pressure bleed air from the intermediate-pressure steam turbine via the check valve 14. is supplied. Therefore, the feed water heater 9,
11, heat exchange is performed between the feed water supplied to the reactor 1 and the bleed air, and the temperature of the feed water increases. This increase in feed water temperature can improve plant thermal efficiency in the nuclear power plant and stabilize steam generation in the reactor 1.

ところで、原子炉1内で蒸気を安定的に発生させるため
には、原子炉1の入口での給水温度を、第2図に示され
る斜線の領域内に設定する必要がある。第2図では、横
軸に蒸気発生量(蒸気タービンの出力)が、縦軸に給水
加熱器11出口での給水温度がそれぞれ示される。縦軸
の給水温度は、蒸気発生量が100チのときの定格温度
215Cを基準として百分率で表示される。しかしなが
ら、蒸気タービン5へ送られる主蒸気は主蒸気加減弁3
によシ、発電プラントの熱効率が最適となるように調整
されるため、蒸気タービン5から給水加熱器9,11へ
導かれる抽気も、その圧力が主蒸気加減弁3の開度に依
存することになる。したがって、蒸気タービンの低負荷
時圧は抽気圧力が低くなり、給水加熱器9,11内の圧
力が低下して、第2図の直線BCで示される如く、給水
温度が同図斜線領域外となる場合が生ずる。
By the way, in order to stably generate steam within the nuclear reactor 1, it is necessary to set the feed water temperature at the inlet of the nuclear reactor 1 within the shaded area shown in FIG. In FIG. 2, the horizontal axis shows the steam generation amount (output of the steam turbine), and the vertical axis shows the feed water temperature at the outlet of the feed water heater 11. The feed water temperature on the vertical axis is expressed as a percentage based on the rated temperature of 215C when the steam generation amount is 100 cm. However, the main steam sent to the steam turbine 5 is
Additionally, since the thermal efficiency of the power plant is adjusted to be optimal, the pressure of the extracted air led from the steam turbine 5 to the feed water heaters 9 and 11 also depends on the opening degree of the main steam control valve 3. become. Therefore, when the steam turbine is under low load, the extraction pressure is low, the pressure in the feed water heaters 9 and 11 is reduced, and the feed water temperature is outside the shaded area as shown by straight line BC in FIG. There are cases where this happens.

そこで、従来の原子炉発電プラントには給水温度制御装
置が設けられ、原子炉1での蒸気発生が安定的に行なわ
れるよう、給水温度が調節されている。つま9、然気タ
ービン5の低負荷時には、主蒸気管から高圧給水加熱器
11へ、調畳弁15および逆止弁17を介して主蒸気が
導かれ、給水が加熱される。また、蒸気タービン5の中
負荷時には、1ず高圧蒸気タービンが゛ら、調整弁19
および逆止弁21ヲ介して高圧給水加熱器11に高圧抽
気が導かれ、給水が加熱される。次に、高圧抽気でFi
m水温度が十分上昇されなくなった段階において、調整
弁15を介し、主蒸気が高圧給水加熱器11に送られる
Therefore, a conventional nuclear reactor power plant is provided with a feed water temperature control device, and the feed water temperature is adjusted so that steam generation in the nuclear reactor 1 is performed stably. When the load of the natural air turbine 5 is low, main steam is guided from the main steam pipe to the high-pressure feed water heater 11 via the adjustment valve 15 and the check valve 17, and the feed water is heated. In addition, when the steam turbine 5 is under medium load, the high pressure steam turbine first turns off and the regulating valve 19
High pressure bleed air is introduced to the high pressure feed water heater 11 via the check valve 21 and the feed water is heated. Next, Fi
At the stage when the water temperature is no longer raised sufficiently, main steam is sent to the high-pressure feed water heater 11 via the regulating valve 15.

ところが、上記の給水温度制御装置では、原子力発電プ
ラントの運転員が給水温度を監視し、調整弁15 、1
9を手動にて開閉操作しなければならない。また、ル4
整弁15 、19の操作が手動であることから、原子力
発電プラントの負荷の変動に基づき変化するプラント状
態の変動に対し、給水温度を適切に1lil!御するこ
とが困難となる。
However, in the above-mentioned feed water temperature control device, an operator of a nuclear power plant monitors the feed water temperature and controls the regulating valves 15 and 1.
9 must be opened and closed manually. Also, le 4
Since the valve regulators 15 and 19 are operated manually, the feed water temperature can be adjusted to 1 liter appropriately in response to fluctuations in plant conditions that change based on fluctuations in the load of the nuclear power plant! It becomes difficult to control.

〔発り」の−的〕[Target of origin]

この発明は、上記事実を考慮してなされたものであって
、給水加熱器から慶子炉へ尋かれる給水の61.6度を
、自動的かつ最治に制御する原子力発電プラントの給水
i晶贋制御装置を提供することを目的とする。
This invention was made in consideration of the above-mentioned facts, and is a method for automatically and safely controlling the feed water temperature of 61.6 degrees from the feed water heater to the Keiko reactor. The purpose is to provide a control device.

〔発明の概要〕[Summary of the invention]

仕事をした蒸気が復水器で凝縮され、この凝縮された伐
木を加熱して原子炉へ導ぐ給水加熱器と、前記蒸気ター
ビンからのタービン抽気を前記給水加熱器へ導く抽気管
路に設けられ、この抽気管路内のタービン抽気の圧力を
検出する圧力スイッチと、この圧力スイッチによって圧
力検出されるタービン抽気の圧力とは異なるタービン抽
気あるいは主蒸気を前記給水加熱器へ導く管路に設けら
れ、かつ前記圧力スイッチに接続されてこの圧力スイッ
チからの信号により開閉制御される調整弁とを有するも
のであり、前記圧力スイッチおよび調整弁によシ、前記
給水加熱器に導かれる給水加熱器加熱用の蒸気が選択的
に切シ換えられて供給されるものである。
The steam that has done the work is condensed in a condenser, and a feed water heater that heats the condensed felled wood and guides it to the nuclear reactor, and a bleed air pipe line that guides turbine bleed air from the steam turbine to the feed water heater are provided. a pressure switch that detects the pressure of turbine bleed air in the bleed air pipe, and a pressure switch that is installed in a pipe that leads turbine bleed air or main steam to the feedwater heater, which is different from the pressure of the turbine bleed air detected by the pressure switch. and a regulating valve that is connected to the pressure switch and whose opening and closing are controlled by signals from the pressure switch, and a feed water heater that is guided to the feed water heater by the pressure switch and the regulating valve. Steam for heating is selectively switched and supplied.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の実施例を図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第3図は、この発明に係る原子力発電プラントの給水温
度制御装置の第1実施例を適用した原子力発電プラント
の給水・黒体系を示す系統図である0 原子炉31で発生した主蒸気は主蒸気管33に案内され
、この主蒸気管33に設けられた主蒸気加減弁あを介し
て蒸気タービン37に導かれる。蒸気タービン37に堺
かれた主蒸気は、蒸気タービン37を駆動させ、仕事を
しだ後イ夛水器39に送られ、冷却されて凝縮される。
FIG. 3 is a system diagram showing the feed water/black system of a nuclear power plant to which the first embodiment of the feed water temperature control device for a nuclear power plant according to the present invention is applied. The steam is guided to the steam pipe 33 and is led to the steam turbine 37 via a main steam control valve provided in the main steam pipe 33. The main steam pumped into the steam turbine 37 drives the steam turbine 37 to perform work, and then is sent to the water collector 39 where it is cooled and condensed.

また、主蒸気管33における主蒸気加減弁35の上流側
とり水器39とは、タービンバイパス管41によシ連通
され、このタービンバイパス管41にタービンバイパス
弁43が設けられる。
Further, a water intake device 39 on the upstream side of the main steam control valve 35 in the main steam pipe 33 is communicated with a turbine bypass pipe 41, and a turbine bypass valve 43 is provided in the turbine bypass pipe 41.

また、峡水器39で凝縮された仮水(給水)は給水ボ゛
ンゾ45によシ昇圧され、低圧給水加熱器47および高
圧給水加熱器49を順次経て加熱された後、原子炉31
に導かれる。低圧給水加熱器47と低圧蒸気タービンと
は低圧抽気管51で連結され、この低圧抽気IT、5.
51には逆止弁53が配設される。したがって、給水は
低圧給水加熱器47内で、低圧蒸気タービンから供給さ
れる低圧タービン抽気により加熱δれる。また、高圧給
水加熱器49ど中圧蒸気タービンとは中圧抽気管55に
より連結され、この中圧抽気管55にも逆止弁57が設
けられる。したがって、低圧給水加熱器47を流出した
給水は高圧給水加熱器49内で、中圧蒸気タービンから
供給される中圧タービン抽気により加熱される。
In addition, the temporary water (feed water) condensed in the canyon 39 is pressurized by the feed water cylinder 45, heated through the low pressure feed water heater 47 and the high pressure feed water heater 49 in sequence, and then heated to the reactor 31.
guided by. The low pressure feed water heater 47 and the low pressure steam turbine are connected by a low pressure bleed air pipe 51, and this low pressure bleed air IT, 5.
A check valve 53 is disposed at 51 . Therefore, the feed water is heated δ in the low pressure feed water heater 47 by the low pressure turbine bleed air supplied from the low pressure steam turbine. Further, the high pressure feed water heater 49 and the intermediate pressure steam turbine are connected through an intermediate pressure bleed pipe 55, and this intermediate pressure bleed pipe 55 is also provided with a check valve 57. Therefore, the feed water flowing out of the low pressure feed water heater 47 is heated in the high pressure feed water heater 49 by the intermediate pressure turbine bleed air supplied from the intermediate pressure steam turbine.

ここで、低圧および高圧給水加熱器47.49に供給さ
れるタービン抽気の圧力とこれらの給水加熱器47 、
49で加熱される給水の温度との関係を述べる0 給水加熱器47 、49内の加熱側は、加熱蒸気として
のタービン抽気で満たされ、給水との熱交換はその大部
分がタービン抽気の凝縮熱によって行なわれる。したが
って、給水加熱器47 、49の出口側での給水温度は
、タービン抽気の温度とほぼ一致する。また、タービン
抽気は、給水加熱器47 、49内でほぼ飽和状態の蒸
気であるため、その温度は給水加熱器47 、4.9の
器内圧力のみの関数と考えられる。以上のことから、給
水加熱器47 、49の出口での給水温度は、給水加熱
器47 、49のそれぞれの器内圧力によって一義的決
定される。つまり、器内圧力全高く設定すれは高温の給
水温度が、また器内圧力を低く設定すれ庁低温の給水温
度がそれぞれ得られる。
Here, the pressure of the turbine bleed air supplied to the low-pressure and high-pressure feedwater heaters 47, 49 and these feedwater heaters 47,
The heating side of the feed water heaters 47 and 49 is filled with turbine bleed air as heated steam, and most of the heat exchange with the feed water is through condensation of the turbine bleed air. It is done by heat. Therefore, the feed water temperature at the outlet side of the feed water heaters 47, 49 approximately matches the temperature of the turbine bleed air. Further, since the turbine extracted air is steam that is almost saturated in the feedwater heaters 47 and 49, its temperature is considered to be a function only of the internal pressure of the feedwater heaters 47 and 4.9. From the above, the feed water temperature at the outlet of the feed water heaters 47 1 and 49 is uniquely determined by the internal pressure of each of the feed water heaters 47 1 and 49 . In other words, if the internal pressure is set high, a high temperature can be obtained, and if the internal pressure is set low, a low temperature can be obtained.

故に、第3図の原子力発電プラントでは、給水温度は、
低圧タービン抽気の供給される低圧給水加熱器47およ
び中圧タービン抽気の供給される高圧給水加熱器49に
より漸次上昇される。
Therefore, in the nuclear power plant shown in Figure 3, the feed water temperature is
It is gradually raised by a low-pressure feedwater heater 47 supplied with low-pressure turbine bleed air and a high-pressure feedwater heater 49 supplied with intermediate-pressure turbine bleed air.

また、高圧給水加熱器49内で熱交換されたタービン抽
気は凝縮して凝縮水となり、低圧給水加熱器47に導か
れる。この凝縮水は、低圧給水加熱器47内で熱交換さ
°れて凝縮された凝縮水とともに、復水器39に送られ
る。
Moreover, the turbine bleed air heat-exchanged within the high-pressure feedwater heater 49 is condensed to become condensed water, which is guided to the low-pressure feedwater heater 47 . This condensed water is sent to the condenser 39 together with the condensed water that undergoes heat exchange and condensation in the low-pressure feedwater heater 47 .

一方、主蒸気管33における主蒸気加減弁邪の上流側と
高圧給水加熱器49とはサブ主蒸気管59により連結さ
れ、このサブ主蒸気管59には、給水加熱器49に向っ
てび」整弁61、逆止弁63が順次接続される。この調
整弁61はその開閉動作により、サブ主蒸気管59を連
通または閉塞する。このaI−!l整弁61の開弁時に
おける高圧給水加熱器49の器内圧力は、つぎの式で示
される0 (器内圧力)=(主蒸気圧)−KX(給水加熱器へ供給
される主蒸気量)2 ・・・・・・(1) ここでKの値は、調整弁61開弁時の圧力損失係数であ
る。つまシ、調整弁開口時、給水加熱器へ供給される主
蒸気量が同一であっても、配設される調整弁のKの値の
相違により、調整弁開口直後の器内圧力が異なる。そこ
で、このKの値は、主蒸気流入時における給水加熱器4
9の器内圧力が所望の値に(例えば、第4図のB′点か
ら02点に、第6図の1点からG′点に)設定されるよ
うに調整弁を選択し、これにより決定される。
On the other hand, the upstream side of the main steam control valve in the main steam pipe 33 and the high-pressure feed water heater 49 are connected by a sub-main steam pipe 59. The regulating valve 61 and the check valve 63 are connected in sequence. The regulating valve 61 communicates or closes the sub-main steam pipe 59 by its opening and closing operations. This aI-! The internal pressure of the high-pressure feedwater heater 49 when the regulating valve 61 is open is expressed by the following formula: 0 (internal pressure) = (main steam pressure) - KX (main steam supplied to the feedwater heater) Quantity) 2 (1) Here, the value of K is the pressure loss coefficient when the regulating valve 61 is open. Even if the amount of main steam supplied to the feed water heater is the same when the regulating valve is opened, the internal pressure immediately after the regulating valve is opened is different due to the difference in the value of K of the disposed regulating valve. Therefore, the value of K is
Select the regulating valve so that the pressure inside the vessel at point 9 is set to the desired value (for example, from point B' in Fig. 4 to point 02, or from point 1 to point G' in Fig. 6). It is determined.

また、中圧抽気管55における逆止弁57の上流側には
圧力スイッチ65が配設され、この圧力′スイッチ65
はさらに調整弁61に電気的に接続される。この圧力ス
イッチ65は、中圧抽気管55内を流れるタービン抽気
の圧力を検出し、この抽気圧力がON設定値以下の場合
には調整弁61f:開とする信号を、また抽気圧力がO
F”F設定値以上の場合には調整弁61を閉とする信号
をそれぞれ出力する。これらON・Ofi”F設定値は
、信号のチャタリングを防止するためにある程度の圧力
差をもって設定され、圧力スイッチ65のON・OFF
動作がヒステリシスを有する。これにより調整弁61の
開閉が過誤なく作動される。
Further, a pressure switch 65 is disposed upstream of the check valve 57 in the medium pressure bleed pipe 55.
is further electrically connected to the regulating valve 61. This pressure switch 65 detects the pressure of turbine bleed air flowing inside the intermediate pressure bleed air pipe 55, and when this bleed air pressure is below the ON set value, it outputs a signal to open the regulating valve 61f.
If the value exceeds the F"F set value, a signal is output to close the regulating valve 61. These ON/Ofi"F set values are set with a certain pressure difference to prevent chattering of the signal. ON/OFF of switch 65
Operation has hysteresis. This allows the regulating valve 61 to be opened and closed without error.

また、上記ON・OF’F設定値は、高圧給水加熱器4
9出口での給水温度が原子炉31での蒸気発生を安定的
に行なわせる領域(ちり4図の斜線で示される領域)の
下限(それぞれB点、E点)になるように設定される。
In addition, the above ON/OF'F setting values are for the high pressure water heater 4.
The temperature of the feed water at outlet 9 is set to be the lower limit (points B and E, respectively) of the region (the region indicated by diagonal lines in Figure 4) in which the reactor 31 can stably generate steam.

つまり、圧力スイッチ650ON・OFF設定値は上記
B点、1点を決定する高圧給水加熱器49のそれぞれの
器内圧力B′点 E/点に対応する中圧抽気管55内の
圧力でおる。なお、第5図の縦軸の給水温度は第2図と
同様に光示される。
That is, the ON/OFF setting values of the pressure switch 650 are the pressures in the medium pressure bleed pipe 55 corresponding to the internal pressure points B' and E/of the high pressure feed water heater 49 which determine the above points B and 1, respectively. Note that the feed water temperature on the vertical axis in FIG. 5 is shown in the same manner as in FIG. 2.

次に、作用を説明する0 蒸気タービン37の負荷が高い場合には、中圧抽気管5
5を流れるタービン抽気の圧力も高く、圧力スイッチ6
5のON設定値以上であるため、調整弁61は閉とされ
る。したがって、高圧給水加熱器49内の給水は中圧タ
ービン抽気によって熱交換される。
Next, the operation will be explained.0 When the load on the steam turbine 37 is high, the intermediate pressure bleed pipe 5
The pressure of the turbine bleed air flowing through the pressure switch 6 is also high.
Since the value is equal to or higher than the ON setting value of No. 5, the regulating valve 61 is closed. Therefore, the feed water in the high pressure feed water heater 49 is heat exchanged by the medium pressure turbine bleed air.

この状態から蒸気タービン37の負荷が低下すると、中
圧タービン抽気の圧力も低下し、この中圧タービン抽気
が供給される高圧給水加熱器49の器内圧力も、第4図
に示されるようにN点 E/点。
When the load on the steam turbine 37 decreases from this state, the pressure of the intermediate pressure turbine extracted air also decreases, and the internal pressure of the high pressure feed water heater 49 to which this intermediate pressure turbine extracted air is supplied also decreases as shown in FIG. N point E/point.

B′点と次第に低下する。したがって、この器内圧力の
低下に追随して、高圧給水加熱器49出口の給水温度も
同図においてA点、E点、B点と低下する。中圧抽気管
団を流れる抽気圧力が、器内圧力B′点に対応するON
設定値になると、圧力スイッチ65からのON信号によ
シ調整弁61が開作動し、高圧給水加熱器49に主蒸気
が導かれる。これにより、高圧給水加熱器49の器内圧
力は第4図の02点にまで昇圧され、これに対応して高
圧給水加熱器49出口での給水温度も、第4図C点まで
上昇する。
It gradually decreases to point B'. Therefore, following this decrease in the internal pressure, the temperature of the feed water at the outlet of the high-pressure feed water heater 49 also decreases from point A to point E to point B in the figure. The bleed pressure flowing through the intermediate pressure bleed pipe group is ON corresponding to the vessel internal pressure point B'.
When the set value is reached, the adjustment valve 61 is opened by an ON signal from the pressure switch 65, and main steam is introduced to the high pressure feed water heater 49. As a result, the internal pressure of the high-pressure feed water heater 49 is increased to point 02 in FIG. 4, and correspondingly, the temperature of the feed water at the outlet of the high-pressure feed water heater 49 is also increased to point C in FIG. 4.

さらに蒸気タービン37の負荷が低下すると、低圧給水
加熱器47に導かれる低圧蒸気タービンからの抽気圧力
が低下し、低圧給水加熱器47から高圧給水加熱器49
へ流入する給水の温度が低下する。
When the load on the steam turbine 37 further decreases, the extraction pressure from the low-pressure steam turbine guided to the low-pressure feedwater heater 47 decreases, and the pressure from the low-pressure feedwater heater 47 to the high-pressure feedwater heater 49 decreases.
The temperature of the feed water flowing into the tank decreases.

したがって、高圧給水加熱器49内での熱交換量を増大
すべく、この高圧給水加熱器49に流入する主蒸気量が
増える。この流入主蒸気量の増加に伴い、式(1)から
判明されるように、高圧給水加熱器49の器内圧力が第
4図の点C′から徐々に低下する。この器内圧力の低下
に応じて高圧給水加熱器49出口の給水温度も第4図C
点から徐々に低下する。
Therefore, in order to increase the amount of heat exchange within the high-pressure feedwater heater 49, the amount of main steam flowing into the high-pressure feedwater heater 49 increases. With this increase in the amount of main steam flowing in, the internal pressure of the high-pressure feed water heater 49 gradually decreases from point C' in FIG. 4, as is clear from equation (1). In response to this decrease in internal pressure, the temperature of the feed water at the outlet of the high pressure feed water heater 49 also changes as shown in Figure 4C.
It gradually decreases from this point.

また、蒸気タービン37の負荷が低い場合には、中圧抽
気管55内の抽気圧力は圧力スイッチ65のOFF設定
値より低く、したがって調整弁61は開となっており、
高圧給水加熱器49には主蒸気が供給される。
Further, when the load on the steam turbine 37 is low, the bleed pressure in the intermediate pressure bleed pipe 55 is lower than the OFF setting value of the pressure switch 65, and therefore the regulating valve 61 is open.
Main steam is supplied to the high pressure feed water heater 49.

この状態から蒸気タービン37の負荷が上昇すると、高
圧給水加熱器49の器内圧力は第4図に示されるように
02点 D/点と昇圧し、これに応じて給水加熱器49
出口の給水温度も6点、D点と上昇する。そして、中圧
抽気管55を流れる抽気圧力が、器内圧力D′点に対応
するOF”F設定値になると、圧力スイッチ65からの
OFF信号によって調整弁61が閉し、器内圧力はE′
点に低下する。この器内圧力の低下に応じて、高圧給水
加熱器49出口の給水温度も点Eに低下する。
When the load on the steam turbine 37 increases from this state, the internal pressure of the high-pressure feedwater heater 49 increases to point 02D/, as shown in FIG.
The temperature of the water supply at the outlet also rises to 6 points and then to point D. When the bleed pressure flowing through the intermediate pressure bleed pipe 55 reaches the OF"F setting value corresponding to the chamber pressure point D', the regulating valve 61 is closed by the OFF signal from the pressure switch 65, and the chamber pressure becomes E. ′
drop to a point. In accordance with this decrease in the internal pressure, the temperature of the feed water at the outlet of the high pressure feed water heater 49 also decreases to point E.

その後、蒸気タービン37の負荷の上昇に伴い、高圧給
水加熱器49の器内圧力はE′点からE点へと昇圧し、
これに対応して高圧給水加熱器49出口の給水温度もE
点からA点へと上昇する。
Thereafter, as the load on the steam turbine 37 increases, the internal pressure of the high-pressure feed water heater 49 increases from point E' to point E.
Correspondingly, the temperature of the feed water at the outlet of the high pressure feed water heater 49 is also E.
Rise from point to point A.

上記実施例によれば、給水加熱器49へ導かれる中圧タ
ービン抽気の圧力を圧力スイッチ65によシ検出し、こ
の検出値に基づき調整弁61を開閉して、高圧給水加熱
器49への主蒸気の流入を制御することから、原子炉3
1へ供給される給水の温度を、この原子炉31での蒸気
の発生が安定に行なわれる領域内に、自動的かつ適切に
設定制御することができる。
According to the embodiment described above, the pressure of the medium-pressure turbine bleed air guided to the feed water heater 49 is detected by the pressure switch 65, and the regulating valve 61 is opened or closed based on this detected value, so that the pressure of the medium-pressure turbine bleed air guided to the feed water heater 49 is Since the inflow of main steam is controlled, reactor 3
The temperature of the water supplied to the nuclear reactor 31 can be automatically and appropriately controlled within a range where steam is stably generated in the nuclear reactor 31.

第5図はこの発明に係る原子力発電プラントの給水温度
制御装置の第2実施例を示す系統図である。この図にお
いて前記第1実施例と同様な部分は、同一の符号を附す
ことによシ説明を省略する。
FIG. 5 is a system diagram showing a second embodiment of the feed water temperature control device for a nuclear power plant according to the present invention. In this figure, the same parts as those in the first embodiment are given the same reference numerals and the explanation thereof will be omitted.

高圧給水加熱器49には、第1管路としてのサブ主蒸気
管59および第3管路としての中圧抽気管55の他に、
高圧蒸気タービンに連結される第2管路としての高圧抽
気管71が設けられる。この高圧抽気管71には高圧給
水加熱器49に向って圧力スイッチ73、調整弁75お
よび逆止弁77が順次配設される。
In addition to the sub-main steam pipe 59 as a first pipe line and the intermediate pressure bleed air pipe 55 as a third pipe line, the high pressure feed water heater 49 includes:
A high pressure bleed pipe 71 is provided as a second pipe line connected to the high pressure steam turbine. A pressure switch 73 , a regulating valve 75 , and a check valve 77 are sequentially arranged in this high-pressure bleed pipe 71 toward the high-pressure feed water heater 49 .

調整弁75は圧力スイッチ6に電気的に接続され、この
圧力スイッチ65のON −OF’F信号により開閉作
動する。調整弁75開弁時における高圧給水加熱器49
の器内圧力は、次式で決定される。
The regulating valve 75 is electrically connected to the pressure switch 6, and is opened and closed by the ON-OF'F signal of the pressure switch 65. High pressure feed water heater 49 when regulating valve 75 is open
The internal pressure of is determined by the following formula.

(器内圧力)=(高圧抽気圧)−LX(給水加熱器に流
入される高圧抽気量)2 ・・・・・・(2) ここに、Lは式(1)のKと同様に、開弁時の圧力損失
係数である。したがって、ル!l整弁75を選択してこ
のLの値を適切とすることにより、調整弁75の開弁時
における給水加熱器49の器内圧力が、所望の値に(例
えば、第6図B′点からG′点に)なるよう設定される
(Internal pressure) = (High pressure bleed pressure) - LX (High pressure bleed air amount flowing into the feed water heater) 2 ...... (2) Here, L is the same as K in equation (1), This is the pressure loss coefficient when the valve is open. Therefore, le! By selecting the regulating valve 75 and setting the value of L appropriately, the internal pressure of the feed water heater 49 when the regulating valve 75 is opened is adjusted to a desired value (for example, at point B' in FIG. 6). to point G').

圧力スイッチ73は調整弁6エに電気的に接続され、こ
の圧力スイッチ73のON・OFF信号に基づき、調整
弁61を開閉作動させる。つまシ、圧力スイッチ73は
高圧抽気管71内の抽気圧力を検出し、この検出値がO
N設定値以下のときは調整弁61を開作動させ、OFF
設定値以上のときは調整弁61を閉作動させる。このO
N・OFF設定値は、高圧給水加熱器49出口の給水温
度が、原子炉31での蒸気を安定的に発生しうる範囲(
第6図の斜線で示される領域)の下限(それぞれF点、
1点)になるように設定される。:)まシ、圧力スイッ
チ730ON・OFF設定値は、上記F点、■点を決定
する高圧給水加熱器49のそれぞれの器内圧力ド点工′
点に対応する商用抽気管71内の圧力である。このON
・0円゛設定値も圧力の僅少差をもって設定され、圧力
スイッチ73からの信号のチャタリングが防止される。
The pressure switch 73 is electrically connected to the regulating valve 6e, and opens and closes the regulating valve 61 based on ON/OFF signals of the pressure switch 73. The pressure switch 73 detects the bleed pressure in the high pressure bleed pipe 71, and this detected value is
When the N value is below the set value, the regulating valve 61 is opened and turned OFF.
When the value exceeds the set value, the regulating valve 61 is operated to close. This O
The N-OFF setting value is a range (
The lower limit of the shaded area in Figure 6 (point F, respectively)
1 point). :) The ON/OFF setting values of the pressure switch 730 are the internal pressure points of the high-pressure feed water heater 49 that determine the above points F and ■.
This is the pressure within the commercial bleed pipe 71 corresponding to the point. This ON
- The 0 yen setting value is also set with a slight difference in pressure to prevent chattering of the signal from the pressure switch 73.

次に、作用を説明する。Next, the effect will be explained.

蒸気タービン37の負荷が高いときには、圧力スイッチ
65 、73からのOFF信号により、調整弁61゜7
5は閉作動し、高圧給水加熱器49には中圧抽気管55
からのタービン抽気が供給きれる。このときの高圧給水
加熱器49の器内圧力は第6図のA′点、高圧給水加熱
器49出口での給水温度は同図A点でそれぞれ示される
When the load on the steam turbine 37 is high, the OFF signals from the pressure switches 65 and 73 turn off the regulating valve 61°7.
5 is closed, and a medium pressure bleed pipe 55 is connected to the high pressure feed water heater 49.
Turbine bleed air can be supplied completely. At this time, the internal pressure of the high-pressure feed water heater 49 is shown at point A' in FIG. 6, and the feed water temperature at the outlet of the high-pressure feed water heater 49 is shown at point A in the figure.

蒸気タービン37の負荷の低下とともに、中圧抽気管5
5内の抽気圧力は低下し、高圧給水加熱器49の器内圧
力も、第6図においてE点からE′点、B′点へと変化
する。これにともない、高圧給水加熱器49出口の給水
温度も、同図においてA点からE点、B点へと低下する
。中圧抽気管55の抽気圧力が器内圧力のB′点に対応
する圧力に低下すると、圧力スイッチ65がこれを検出
し、調整弁75が開作動する。これによシ、高圧蒸気タ
ービンから高圧給水加熱器49へ高圧抽気が供給され、
器内圧力は第6図のG′点まで上昇する。したがって高
圧給水加熱器49出口での給水温度が6点まで上昇する
As the load on the steam turbine 37 decreases, the intermediate pressure bleed pipe 5
The bleed pressure in the high-pressure feed water heater 49 decreases, and the internal pressure of the high-pressure feed water heater 49 also changes from point E to point E' to point B' in FIG. Along with this, the temperature of the feed water at the outlet of the high-pressure feed water heater 49 also decreases from point A to point E to point B in the figure. When the bleed pressure of the intermediate pressure bleed pipe 55 decreases to a pressure corresponding to point B' of the internal pressure, the pressure switch 65 detects this and the regulating valve 75 is opened. As a result, high-pressure extraction air is supplied from the high-pressure steam turbine to the high-pressure feed water heater 49,
The internal pressure rises to point G' in FIG. Therefore, the temperature of the feed water at the outlet of the high-pressure feed water heater 49 rises to six points.

この後、蒸気タービン37の負荷がさらに低下すると、
高圧抽気管71の抽気圧力も低下し、これにともない、
高圧給水加熱器49の器内圧力は1g6図においてG′
点から12点 FJ点へと変化する0この器内圧力の低
下によシ、高圧給水加熱器49出口の給水温度も同図に
おいて6点から工点、F点へと低下する。高圧抽気管7
1の抽気圧力が器内圧力のF′点に対応する圧力になる
と、圧力スイッチ73がこれを検出し、調整弁61が開
作動する。−これにより°高圧給水加熱器49に主蒸気
が導かれ、その器内圧力は第6図のG′点まで上昇する
。したがって、給水加熱器49出口での給水温度はG点
まで昇温される。
After this, when the load on the steam turbine 37 further decreases,
The bleed pressure of the high pressure bleed pipe 71 also decreases, and along with this,
The internal pressure of the high-pressure feed water heater 49 is 1gG′ in the diagram
Due to this decrease in the internal pressure, the temperature of the feed water at the outlet of the high-pressure feed water heater 49 also decreases from point 6 to point FJ in the figure. High pressure bleed pipe 7
When the bleed pressure of No. 1 reaches a pressure corresponding to point F' of the internal pressure, the pressure switch 73 detects this and the regulating valve 61 is opened. - This leads the main steam to the high-pressure feed water heater 49, and the internal pressure rises to point G' in FIG. Therefore, the temperature of the feed water at the outlet of the feed water heater 49 is raised to point G.

また、蒸気タービン37の負荷が低く、中圧抽気管55
、高圧抽気′#71のそれぞれの抽気圧力が圧力スイッ
チ65 、73のそれぞれのON設定値以下の場合には
、調整弁61 、75はともに開作動し、高圧給水加熱
器49には主蒸気が供給される。その後、蒸気タービン
の負荷が上昇し、高圧抽気管71内の抽気圧力が、高圧
給水加熱器49の器内圧力E′点に対応する圧力に到る
と、圧力スイッチ73からのOFF信号によシ調整弁6
1が閉作動する0この調整弁61の閉作動によって、器
内圧力は12点まで低下し、高圧給水加熱器49出口で
の給水温度も1点に降下する。
In addition, the load on the steam turbine 37 is low, and the intermediate pressure bleed pipe 55
, when the bleed pressure of each of the high-pressure bleed air #71 is lower than the ON set value of each of the pressure switches 65 and 73, the regulating valves 61 and 75 are both opened, and the high-pressure feed water heater 49 receives main steam. Supplied. Thereafter, when the load on the steam turbine increases and the bleed pressure in the high-pressure bleed air pipe 71 reaches a pressure corresponding to the internal pressure point E' of the high-pressure feed water heater 49, an OFF signal from the pressure switch 73 is activated. Adjustment valve 6
1 is closed. 0 By this closing operation of the regulating valve 61, the internal pressure drops to 12 points, and the feed water temperature at the outlet of the high pressure feed water heater 49 also drops to 1 point.

その後、さらに蒸気ター°ビン37の負荷が上昇すると
、高圧抽気管71からの高圧タービン抽気によ□ リ、
高圧給水加熱器49の器内圧力は11点から07点。
After that, when the load on the steam turbine 37 further increases, the high pressure turbine bleed air from the high pressure bleed pipe 71
The internal pressure of the high-pressure feed water heater 49 ranges from 11 points to 07 points.

D′点へと上昇し、これにともない給水温度も1点から
0点、D点へと上昇する。中圧抽気管55の抽気圧力が
、高圧給水加熱器49の器内圧力D′点に対応する圧力
になると、圧力スイッチ65からのOFF信号によって
調整弁75が閉じ、器内圧力はE′点に低下する。この
器内圧力の低下によシ高圧給水加熱器49出口の給水温
度も8点に低下し、その後、高圧給水加熱器49には中
圧抽気管55からの抽気のみが供給される。
The temperature rises to point D', and along with this, the feed water temperature also rises from point 1 to point 0 to point D. When the bleed pressure in the medium pressure bleed pipe 55 reaches a pressure corresponding to the internal pressure of the high pressure feed water heater 49 at point D', the regulating valve 75 is closed by the OFF signal from the pressure switch 65, and the internal pressure reaches point E'. decreases to Due to this decrease in the internal pressure, the temperature of the feed water at the outlet of the high-pressure feed water heater 49 also drops to 8 points, and after that, only the bleed air from the medium pressure bleed air pipe 55 is supplied to the high-pressure feed water heater 49.

この実施例比よっても、高圧給水加熱器49に導かれる
抽気圧力全圧力スイッチ65 、73によって検出し、
調姫弁61 、75を開閉作動させて、主蒸気または高
圧抽気を選択的かつ自動的に供給することから、給水温
度を、原子炉31での然気発生が安定的に行なわれる領
域に自動a71J御することができる。
According to this embodiment, the bleed air pressure guided to the high pressure feed water heater 49 is detected by the full pressure switches 65 and 73,
By opening and closing the control valves 61 and 75 to selectively and automatically supply main steam or high-pressure extraction air, the temperature of the feed water can be automatically adjusted to a range where natural gas is stably generated in the reactor 31. A71J can be controlled.

さらに、この実施例の場合には、蒸気タービン37の中
負荷時に、高圧抽気管71を介して高圧タービン抽気を
高圧給水加熱器49に導くことから、蒸気タービン37
の中負荷時におけるプラント効率の低下を防止すること
ができる。
Furthermore, in the case of this embodiment, when the steam turbine 37 is under medium load, the high pressure turbine bleed air is guided to the high pressure feed water heater 49 via the high pressure bleed air pipe 71.
It is possible to prevent a decrease in plant efficiency during medium load.

なお、上記第2実施例においては、圧力スイッチ73が
、高圧抽気管71において調整弁75の上流側に設けら
れるものを説明したが、この圧力スイッチ73を、調整
弁75の下流側で逆止弁77の上流側に設けてもよい(
第3実施例)。この場合には、調整弁75が開作動する
までは圧力スイッチ73が高圧抽気の圧力を検出できな
いので、調整弁61を開閉させるためには、調整弁75
が開とされかつ圧力スイッチ73からのON・OFF信
号が出力されることが必要となる。この実施例の場合に
も上記第2実施例と同様な効果を得ることができる。
In the second embodiment, the pressure switch 73 is provided upstream of the regulating valve 75 in the high pressure bleed pipe 71. It may be provided on the upstream side of the valve 77 (
Third Example). In this case, the pressure switch 73 cannot detect the pressure of the high pressure bleed air until the regulating valve 75 is opened.
It is necessary for the pressure switch 73 to be opened and for the ON/OFF signal to be output from the pressure switch 73. In this embodiment as well, the same effects as in the second embodiment can be obtained.

また、上記第3実施例の場合に、調整弁61..75 
−と圧力スイッチ73との制御系にAND回路を組み込
み、このAND回路によってインターロック回路を形成
してもよい。この第4実施例が第7図に示される。
Further, in the case of the third embodiment, the regulating valve 61. .. 75
An AND circuit may be incorporated into the control system between the pressure switch 73 and the pressure switch 73, and an interlock circuit may be formed by this AND circuit. This fourth embodiment is shown in FIG.

圧力スイッチ73および′rA整弁75からAND回路
79に信号が入力され、この入力信号を受けてAND回
路79から調整弁61に信号が出力される。すなわち、
第8図に示されるように、調整弁75が開作動している
旨の信号と圧力スイッチ73からのON信号とがA N
 D 1fljj−路79に入力されると、このAND
回路79から調整弁61を開作動させる信号が出力され
る。また、上記入力信号のうち、圧力スイッチ73から
の信号が01i’F化号である場合には、AND回路7
9からにりj整弁61を閉作動させる信号が出力はれる
。この実施例の場合も、前記第2実施例と同様な効果を
奏する。
Signals are input from the pressure switch 73 and the 'rA regulating valve 75 to the AND circuit 79, and in response to this input signal, the AND circuit 79 outputs a signal to the regulating valve 61. That is,
As shown in FIG. 8, the signal indicating that the regulating valve 75 is open and the ON signal from the pressure switch 73 are A N
When input to D 1fljj-path 79, this AND
A signal for opening the regulating valve 61 is output from the circuit 79. Furthermore, among the above input signals, if the signal from the pressure switch 73 is the 01i'F code, the AND circuit 7
A signal for closing the regulating valve 61 is output from 9. This embodiment also provides the same effects as the second embodiment.

〔発明の効果〕〔Effect of the invention〕

以上のように5.この発明に係る原子力発電プラントの
給水温度制御装置によれば、蒸気タービンから給水加熱
器へ導かれるタービン抽気の圧力を圧力スイッチで検出
し、この検出値に基づき一4整弁を作動させて、上記給
水加熱器へ、上記加熱蒸気の圧力とは異なる圧力のター
ビン抽気まだは主蒸気を供給することから、給水加nA
器から原子炉へ導かれる給水の温度を自動的に、かつ原
子炉での然気発生が安定的に行なわれる最適な領域に制
御することができるという効果を奏する。
As mentioned above, 5. According to the feed water temperature control device for a nuclear power plant according to the present invention, the pressure of turbine bleed air guided from the steam turbine to the feed water heater is detected by a pressure switch, and the 14 regulating valve is operated based on this detected value, Since main steam is supplied to the feed water heater at a pressure different from the pressure of the heating steam, the feed water is increased to nA.
This has the effect that the temperature of the water supplied from the reactor to the reactor can be automatically controlled to an optimum range where the reactor can stably generate air.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の原子力発電プラントの給水・蒸気系を示
す系統図、第2図は蒸気タービンの出力と給水加熱器出
口での給水温度との関係を示す線図、第3図はこの発明
に係る原子力発電プラントの給水温度制御装置の第1実
施例を適用した原子力発電プラントの給水・蒸気系を示
す系統図、第4図は上記第1実施例において給水加熱器
の器内圧力と給水加熱器出口での給水温度とのそれぞれ
を蒸気タービンの変動に応じて個別に示す線図、゛第5
図はこの発明に係る原子力発電プラントの給水温度制御
装置の第2実施例を示す系統図、第6図は上記第2実施
例において給水加熱器の器内圧力と給水加熱器出口での
給水温度とのそれぞれを蒸気タービンの変動に応じて個
別に示す線図、第7図はこの発明に係る原子力@電プラ
ントの給水温度制御装置の第4実施例を示す系統図、第
8図は第4実施例におけるインターロック回路を示すブ
ロック線図である。 31・・・原子炉、37・・・蒸気タービン、39・・
・復水器、49・−・高圧給水加熱器、51・・・低圧
抽気管、5・・・中圧抽気管、59・・・サブ主蒸気管
、61・・・調整弁、65・・・圧力スイッチ、71・
・・高圧抽気管、75・・・調整弁。゛出願人代理人 
波 多 野 次 第゛1図 第2図 第6 図 第7図 第8図
Figure 1 is a system diagram showing the feed water and steam system of a conventional nuclear power plant, Figure 2 is a diagram showing the relationship between the output of the steam turbine and the feed water temperature at the outlet of the feed water heater, and Figure 3 is a diagram showing the present invention. Fig. 4 is a system diagram showing the feed water and steam system of a nuclear power plant to which the first embodiment of the feed water temperature control device for a nuclear power plant is applied. Diagram showing the feed water temperature at the outlet of the heater individually according to the fluctuations of the steam turbine, ``5th
The figure is a system diagram showing a second embodiment of the feed water temperature control device for a nuclear power plant according to the present invention, and Figure 6 shows the internal pressure of the feed water heater and the feed water temperature at the outlet of the feed water heater in the second embodiment. FIG. 7 is a system diagram showing the fourth embodiment of the feed water temperature control device for a nuclear power plant according to the present invention, and FIG. It is a block diagram showing an interlock circuit in an example. 31...Nuclear reactor, 37...Steam turbine, 39...
・Condenser, 49... High pressure feed water heater, 51... Low pressure bleed pipe, 5... Medium pressure bleed pipe, 59... Sub main steam pipe, 61... Regulating valve, 65...・Pressure switch, 71・
...High pressure bleed pipe, 75...Adjustment valve.゛Applicant's agent
Shida Hatano Figure 1 Figure 2 Figure 6 Figure 7 Figure 8

Claims (1)

【特許請求の範囲】 1、蒸気タービンで仕事をした蒸気が復水器で凝縮され
、この凝縮された復水を加熱して原子炉へ導く給水加熱
器と、前記蒸気タービンからのタービン抽気を前記給水
加熱器へ導く抽気管路に設けられ、この抽気管路内のタ
ービン抽気の圧力を検出する圧力スイッチと、この圧力
スイッチによって検出されるタービン抽気の圧力とは異
なるタービン抽気あるいは主蒸気を前記給水加熱器へ導
く管路に設けられ、かつ前記圧力スイッチに接続されて
この圧力スイッチからの信号により開閉制御される61
4整弁とを有することを%徴とする原子力発電プラント
の給水温度制御装置。 2、調整弁は、原子炉からの主蒸気を蒸気タービンへ導
く主蒸気管と給水加熱器とを連結する管路に設けられる
特許請求の範囲第1項記載の原子力発電プラントの給水
温度制御装置。 3、調整弁は、主蒸気管と給水加熱器とを連結する第1
管路、および高圧蒸気タービンと前記給水加熱器とを連
結する第2管路のそれぞれに設けられ、また圧力スイッ
チは第2管路、および中圧蒸気タービンと前記給水加熱
器とを連結する第3管路にそれぞれ設けられ、第1管路
の調整弁は第2管路の圧力スイッチに、第2管路の調整
弁は第3管路の圧力スイッチに各々接続される特許請求
の範囲第1項記載の原子力発電プラントの給水温度制御
装置。
[Claims] 1. Steam that has done work in the steam turbine is condensed in a condenser, and a feed water heater that heats the condensed water and guides it to the nuclear reactor, and a turbine extraction air from the steam turbine. A pressure switch is provided in the bleed air pipe leading to the feed water heater and detects the pressure of the turbine bleed air in the bleed air pipe, and a pressure switch is provided that detects the pressure of the turbine bleed air in the bleed air pipe, and the pressure switch detects the pressure of the turbine bleed air or main steam that is different from the pressure of the turbine bleed air detected by the pressure switch. 61, which is provided in a conduit leading to the feed water heater, is connected to the pressure switch, and is opened/closed by a signal from the pressure switch;
A water supply temperature control device for a nuclear power plant having four regulating valves. 2. The feed water temperature control device for a nuclear power plant according to claim 1, wherein the regulating valve is provided in a pipe connecting the main steam pipe that guides main steam from the nuclear reactor to the steam turbine and the feed water heater. . 3. The regulating valve is the first valve that connects the main steam pipe and the feed water heater.
A pressure switch is provided in each of the second pipe line and the second pipe line connecting the high-pressure steam turbine and the feedwater heater, and the pressure switch is provided in the second pipe line and the second pipe line connecting the intermediate-pressure steam turbine and the feedwater heater. Claim 1, wherein each of the three pipelines is provided with a regulating valve in the first pipeline being connected to a pressure switch in the second pipeline, and a regulating valve in the second pipeline being connected to a pressure switch in the third pipeline. The feed water temperature control device for a nuclear power plant according to item 1.
JP58158095A 1983-08-31 1983-08-31 Controller for temperature of feedwater of nuclear power plant Pending JPS6050494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58158095A JPS6050494A (en) 1983-08-31 1983-08-31 Controller for temperature of feedwater of nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58158095A JPS6050494A (en) 1983-08-31 1983-08-31 Controller for temperature of feedwater of nuclear power plant

Publications (1)

Publication Number Publication Date
JPS6050494A true JPS6050494A (en) 1985-03-20

Family

ID=15664190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58158095A Pending JPS6050494A (en) 1983-08-31 1983-08-31 Controller for temperature of feedwater of nuclear power plant

Country Status (1)

Country Link
JP (1) JPS6050494A (en)

Similar Documents

Publication Publication Date Title
EP3715593B1 (en) Power plant and power output increase controlling method for power plant
US6301895B1 (en) Method for closed-loop output control of a steam power plant, and steam power plant
JPS6314004A (en) Feedwater-heater drain pressure controller for steam turbineplant
JPS6193208A (en) Turbine bypass system
JPS6239648B2 (en)
JPS6050494A (en) Controller for temperature of feedwater of nuclear power plant
JP2578328B2 (en) Output control method for back pressure turbine generator
JPH0454204A (en) Control device for gas-extraction and condensation type turbine
JPH05296401A (en) Exhaust heat recoverying boiler system and its main steam temperature controller
JP3056880B2 (en) Feedwater heater controller
JPH026968B2 (en)
JPS6058361B2 (en) Water level control device for feed water heater
JPH0549884B2 (en)
JPS5857010A (en) Two-stage reheating system thermal power plant
JPS62102003A (en) Feedwater heater
SU354167A1 (en) THERMAL STEAM TURBINE
JPH06257964A (en) Condensed water flow rate controller
JPS6235002B2 (en)
JPS6062604A (en) Reheater heating steam system of power generating plant
JPH01102202A (en) Drain controller for feedwater heater
JPS59200106A (en) Boiler
JPS62276304A (en) Boiler controller for reheat steam turbine
JPS6069218A (en) Turbine bypass system
JPS59197709A (en) Control system of water level of deaerator
JPH056002B2 (en)