JPH0549884B2 - - Google Patents

Info

Publication number
JPH0549884B2
JPH0549884B2 JP58200993A JP20099383A JPH0549884B2 JP H0549884 B2 JPH0549884 B2 JP H0549884B2 JP 58200993 A JP58200993 A JP 58200993A JP 20099383 A JP20099383 A JP 20099383A JP H0549884 B2 JPH0549884 B2 JP H0549884B2
Authority
JP
Japan
Prior art keywords
steam
heater
dry
feed water
dry heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58200993A
Other languages
Japanese (ja)
Other versions
JPS6093205A (en
Inventor
Tokunori Matsushima
Shozo Nakamura
Taiji Inui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20099383A priority Critical patent/JPS6093205A/en
Publication of JPS6093205A publication Critical patent/JPS6093205A/en
Publication of JPH0549884B2 publication Critical patent/JPH0549884B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、ドライヒータを備えた火力発電プラ
ントにおいて、特に超々臨界圧火力発電プラント
のドライヒータにおいて、該ドライヒータ流出口
付近における抽気蒸気が湿り蒸気にならないよう
に制御する制御装置に関するものである。
Detailed Description of the Invention [Field of Application of the Invention] The present invention is directed to a thermal power plant equipped with a dry heater, particularly in a dry heater of an ultra-supercritical pressure thermal power plant. This relates to a control device that prevents steam from forming.

〔発明の背景〕[Background of the invention]

最近提案された超々臨界圧火力発電プラントに
おける給水系統図の1例を第1図に示す。
Figure 1 shows an example of a water supply system diagram for a recently proposed ultra-supercritical thermal power plant.

本第1図において、低圧給水加熱器(図示せ
ず)より送られてくる給水は脱気器4を経て給水
ポンプ5で昇圧された後、中空タービン3と高圧
タービン2の抽気蒸気で加熱されるそれぞれの高
圧給水加熱器8にて昇温される。その後、昇圧ポ
ンプ7にて更に昇圧した後、超高圧タービン1の
抽気蒸気にて加熱される超高圧給水加熱器6を経
て昇温された後にドライヒータ9に導かれる。そ
して給水は、このドライヒータ9にて更に加熱さ
れた後、ボイラ(図示せず)へ供給されるように
なつている。
In FIG. 1, feed water sent from a low-pressure feed water heater (not shown) passes through a deaerator 4, is pressurized by a feed water pump 5, and is then heated by extracted steam from a hollow turbine 3 and a high-pressure turbine 2. The temperature is raised by each high-pressure feed water heater 8. Thereafter, the pressure is further increased by a boost pump 7, and then the water is heated through an ultra-high pressure feed water heater 6 heated by extracted steam from the ultra-high pressure turbine 1, and then introduced to a dry heater 9. The supplied water is further heated by this dry heater 9 and then supplied to a boiler (not shown).

前記ドライヒータ9は超々臨界圧火力発電プラ
ントの給水加熱器系統に特有な給水加熱器であり
このドライヒータ9の設置により熱回収を行つて
プラント熱効率向上を図るものである。このドラ
イヒータ9の機能は、高圧タービン2からの抽気
蒸気である過熱蒸気により給水を加熱するもので
あるが、給水を加熱し温度低下をした抽気蒸気も
過熱蒸気の状態でドライヒータ9より導出され
る。このように、通常の給水加熱器の如く抽気蒸
気が器内にて凝縮しない点において通常の給水加
熱器とは異なる。
The dry heater 9 is a feed water heater specific to the feed water heater system of an ultra-supercritical thermal power plant, and the installation of this dry heater 9 recovers heat to improve the thermal efficiency of the plant. The function of this dry heater 9 is to heat the feed water using superheated steam, which is extracted steam from the high-pressure turbine 2, but the extracted steam that has heated the feed water and lowered its temperature is also drawn out from the dry heater 9 in the state of superheated steam. be done. In this way, this differs from a normal feedwater heater in that the extracted steam does not condense within the vessel, unlike in a normal feedwater heater.

ここで、第1図のように高圧タービン2から抽
気され、ドライヒータ9を通つた後の抽気蒸気が
高圧給水加熱器6の加熱源として使用される場
合、ドライヒータ9出口の抽気蒸気は必ず過熱蒸
気状態でなければならない。もし、ドライヒータ
9か高圧給水加熱器8に供給される抽気蒸気が湿
り蒸気になると、該ドライヒータ9から高圧給水
加熱器6に至る抽気蒸気配管や高圧給水加熱器6
の伝熱管が湿り蒸気中の水滴によるエロージヨン
を受けて損傷する虞れがある。
Here, when extracted steam from the high-pressure turbine 2 and passed through the dry heater 9 is used as a heating source for the high-pressure feedwater heater 6 as shown in FIG. 1, the extracted steam at the outlet of the dry heater 9 is always Must be in superheated steam state. If the bleed steam supplied to the dry heater 9 or the high-pressure feed water heater 8 becomes wet steam, the bleed steam piping from the dry heater 9 to the high-pressure feed water heater 6 or the high-pressure feed water heater 6
There is a risk that the heat transfer tubes may be damaged by erosion due to water droplets in the wet steam.

上記のように抽気蒸気が湿り蒸気となる原因と
しては、ドライヒータ9内においてチユーブリー
クなどが発生して給水の一部が抽気蒸気内に流入
し、ドライヒータ9出口の抽気蒸気が湿り蒸気と
なる場合や、各給水加熱器インサービス(抽気蒸
気の通気開始時)時の給水温度昇温遅れに起因す
るドライヒータ過冷却にともなつてドライヒータ
9出口の抽気蒸気が湿り蒸気となる場合などがあ
る。
As mentioned above, the reason why the extracted steam turns into wet steam is that a tube leak occurs in the dry heater 9 and a part of the supplied water flows into the extracted steam, and the extracted steam at the outlet of the dry heater 9 turns into wet steam. In some cases, the extracted steam at the outlet of the dry heater 9 becomes wet steam due to overcooling of the dry heater due to a delay in raising the temperature of the feed water when each feed water heater is in service (when ventilation of extracted steam starts). There is.

これらの原因が発生した場合においても、ドラ
イヒータから給水加熱器に導かれる抽気蒸気が湿
り蒸気になるのを防止することが重要である。
Even when these causes occur, it is important to prevent the bleed steam led from the dry heater to the feedwater heater from turning into wet steam.

〔発明の目的〕[Purpose of the invention]

本発明の目的はドライヒータから給水加熱器へ
導かれる抽気蒸気が湿り蒸気となることを防止
し、プラントの信頼性を向上せしめ得る、ドライ
ヒータ系統の制御制御装置を提供するにある。
An object of the present invention is to provide a control device for a dry heater system that can prevent extracted steam led from a dry heater to a feedwater heater from turning into wet steam and improve plant reliability.

〔発明の概要〕[Summary of the invention]

上記の目的を達成するため、本発明のドライヒ
ータ系統制御装置は、蒸気タービンの抽気蒸気に
よつて給水を加熱するドライヒータ、及び、上記
のドライヒータを流通した抽気蒸気によつて給水
を加熱する給水加熱器を備えた発電プラントのド
ライヒータにおいて、上記のドライヒータを流通
すべき抽気蒸気をバイパスさせる抽気蒸気バイパ
ス系統、および、前記のドライヒータを流通すべ
き給水をバイパスさせる給水バイパス系統の少な
くともいずれか一方を設けるとともに、上記抽気
蒸気バイパス系統および給水バイパス系統の少な
くともいずれか一方に流量調節弁を設け、かつ、
前記ドライヒータの抽気蒸気流出管路に温度検出
器及び圧力検出器を設けるとともに、上記2個の
検出器の出力信号を入力されて前記流量調節弁を
開閉制御する制御器を設けたことを特徴とする。
In order to achieve the above object, the dry heater system control device of the present invention includes a dry heater that heats feed water using extracted steam from a steam turbine, and a dry heater that heats the feed water using extracted steam that flows through the dry heater. In a dry heater for a power generation plant equipped with a feed water heater, a bleed steam bypass system bypasses the bleed steam that should flow through the dry heater, and a feed water bypass system bypasses the feed water that should flow through the dry heater. a flow rate control valve is provided in at least one of the extraction steam bypass system and the water supply bypass system, and
A temperature detector and a pressure detector are provided in the bleed steam outflow line of the dry heater, and a controller is provided which receives output signals from the two detectors and controls opening and closing of the flow rate regulating valve. shall be.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例である超々臨界圧火力プラン
トのドライヒータの系統とその制御装置を図面に
基づいて説明する。
A dry heater system and its control device for an ultra-supercritical thermal power plant, which is an embodiment of the present invention, will be explained based on the drawings.

第2図は第1図に示した超々臨界圧火力発電プ
ラントにおけるドライヒータ9まわりの系統に本
発明を適用した1実施例を示したものである。第
2図において、高圧蒸気タービン2からの抽気蒸
気はドライヒータ入口抽気蒸気管21を通つてド
ライヒータ9へ導かれ、ここで給水を加熱した後
にドライヒータ出口抽気蒸気管22を通つて高圧
給水加熱器8に流入する前記入口抽気蒸気管21
には抽気蒸気止弁11が設けられ、プラントの運
用に従つてドライヒータ及び給水加熱器を起動
(ヒータインサービス)又は停止する時に開閉す
る。本発明の抽気蒸気バイパス系統は、前記ドラ
イヒータ入口抽気蒸気管21と前記ドライヒータ
出口抽気蒸気管22とを結ぶ抽気蒸気バイパス配
管23と、このバイパス配管23に設けた蒸気量
制御弁24とにより構成される。また、高圧給水
加熱器8に抽気蒸気を導く高圧給水加熱器入口抽
気蒸気配管25に圧力検出器26と温度検出器2
7とをそれぞれ設置する。そしてこれら2つの検
出器26,27からの検出信号は前記蒸気量制御
弁24を制御するために設けた制御器28に入力
するようになつている。
FIG. 2 shows an embodiment in which the present invention is applied to a system around the dry heater 9 in the ultra-supercritical thermal power plant shown in FIG. In FIG. 2, the extracted steam from the high-pressure steam turbine 2 is led to the dry heater 9 through the dry heater inlet bleed steam pipe 21, heats the feed water here, and then passes through the dry heater outlet bleed steam pipe 22 to the high pressure water supply. The inlet bleed steam pipe 21 flows into the heater 8
is provided with a bleed steam stop valve 11, which is opened and closed when the dry heater and feedwater heater are started (heater-in service) or stopped according to the operation of the plant. The bleed steam bypass system of the present invention includes a bleed steam bypass pipe 23 connecting the dry heater inlet bleed steam pipe 21 and the dry heater outlet bleed steam pipe 22, and a steam amount control valve 24 provided in the bypass pipe 23. configured. In addition, a pressure detector 26 and a temperature detector 2 are installed at the high-pressure feed water heater inlet bleed steam piping 25 that guides the bleed steam to the high-pressure feed water heater 8.
7 and 7 respectively. Detection signals from these two detectors 26 and 27 are input to a controller 28 provided to control the steam amount control valve 24.

第3図は上記制御器28の具体的構成の1例を
示すブロツク線図である。
FIG. 3 is a block diagram showing one example of a specific configuration of the controller 28.

上記制御器28は、前記圧力検出器26からの
信号29により前記給水加熱器8に流入する抽気
蒸気の圧力に対応した飽和温度信号31を算出す
る演算器30と、該飽和温度信号31と前記温度
検出器27の信号出力32とを入力して該検出温
度と該飽和温度との温度差信号34を算出する演
算器33と、温度差設定器35と、該温度差設定
器35の出力信号36と前記温度差信号34とを
入力して最適な蒸気量制御ができるように前記蒸
気量制御弁24に対して弁操作信号39を与える
比例積分演算器38とにより構成されている。
The controller 28 includes a calculator 30 that calculates a saturation temperature signal 31 corresponding to the pressure of the extracted steam flowing into the feed water heater 8 based on a signal 29 from the pressure detector 26, an arithmetic unit 33 that receives the signal output 32 of the temperature detector 27 and calculates a temperature difference signal 34 between the detected temperature and the saturation temperature; a temperature difference setter 35; and an output signal of the temperature difference setter 35. 36 and a proportional-integral calculator 38 which inputs the temperature difference signal 34 and provides a valve operation signal 39 to the steam amount control valve 24 so as to perform optimum steam amount control.

次に、第3図に示す制御器28及び第2図に示
した抽気蒸気バイパス系統の機能並びに運用方法
について説明する。
Next, the functions and operating methods of the controller 28 shown in FIG. 3 and the extraction steam bypass system shown in FIG. 2 will be explained.

例えば、ドライヒータ9にてチユーブリークな
どが発生して給水の一部が抽気蒸気内に流入し、
ドライヒータ9出口の抽気蒸気が湿り蒸気となつ
た場合、蒸気温度検出器27からの信号出力32
と上記圧力検出器25からの信号出力29に基づ
き上記演算器30にて算出される飽和温度信号3
1とが同じ値を示す。つまり、前記給水加熱器8
に導入される抽気蒸気が湿り蒸気となつたことを
検出することとなる。この時、上記温度差算出演
算器33からの信号出力34と上記温度差設定器
35からの信号出力36との偏差が零になるよう
に、上記比例積分演算器38により前記蒸気量制
御弁24が制御されるので、上記温度差設定器3
5により上記飽和温度信号31よりも上記温度検
出信号31が高くなるように設定してあると、前
記制御弁24が開き、温度の高い抽気蒸気の1部
を前記蒸気配管21から直接前記抽気蒸気管22
へバイパスさせてリークした給水を加熱せしめ、
湿り蒸気になることを防止することができる。
For example, a tube leak occurs in the dry heater 9 and part of the supplied water flows into the extracted steam,
When the extracted steam at the outlet of the dry heater 9 becomes wet steam, the signal output 32 from the steam temperature detector 27
and a saturation temperature signal 3 calculated by the arithmetic unit 30 based on the signal output 29 from the pressure detector 25.
1 indicates the same value. In other words, the feed water heater 8
It is detected that the extracted steam introduced into the chamber has turned into wet steam. At this time, the proportional-integral calculator 38 adjusts the steam amount control valve 24 so that the deviation between the signal output 34 from the temperature difference calculator 33 and the signal output 36 from the temperature difference setter 35 becomes zero. is controlled, the temperature difference setting device 3
5, the temperature detection signal 31 is set to be higher than the saturation temperature signal 31, the control valve 24 opens, and a portion of the high temperature bleed steam is directly transferred from the steam pipe 21 to the bleed steam. tube 22
bypass to heat the leaked water supply,
It can prevent it from becoming wet steam.

例えば、各給水加熱器のインサービス時(抽気
蒸気の通気開始時)、給水温度昇温遅れに起因す
るドライヒータ過冷却にともなつてドライヒータ
9出口の抽気蒸気が湿り蒸気となつた場合、すな
わち、給水加熱器8の給水温度よりもドライヒー
タ9の給水温度の方が高くなつた時に、ドライヒ
ータ9内の蒸気側圧力は給水加熱器8内の蒸気側
圧力よりも高いか又はほぼ同じ圧力となるので、
ドライヒータ9に導入された抽気蒸気が必要以上
に冷却され(過冷却)ドライヒータ内ですでに、
湿り蒸気となつてしまう(ドレン化)場合、本発
明のバイパス系統及び制御装置は、上述したチユ
ーブリークによるドレン化の場合と全く同様に作
動し、必要な量だけ温度の高い抽気蒸気をバイパ
スせしめると共に上記湿り蒸気量を減らすことに
より、前記給水加熱器8へ導入される抽気蒸気の
湿り蒸気化(ドレン化)を防止することができ
る。
For example, when each feed water heater is in service (when ventilation of extracted steam starts), if the extracted steam at the outlet of the dry heater 9 becomes wet steam due to overcooling of the dry heater due to a delay in raising the temperature of the supplied water, That is, when the feed water temperature of the dry heater 9 becomes higher than the feed water temperature of the feed water heater 8, the steam side pressure in the dry heater 9 is higher than or almost the same as the steam side pressure in the feed water heater 8. Because of the pressure,
The extracted steam introduced into the dry heater 9 is cooled more than necessary (supercooled) and is already inside the dry heater.
In the case where the steam is turned into wet steam (condensation), the bypass system and control device of the present invention operate in exactly the same way as in the case of draining with a tube leak as described above, and bypass the high-temperature bleed steam by the necessary amount. At the same time, by reducing the amount of wet steam, it is possible to prevent the extracted steam introduced into the feed water heater 8 from turning into wet steam (condensation).

第4図は、本発明の給水バイパス系統の1実施
例を示したもので、前記ドライヒータ9の給水入
口配管15と給水出口配管16とを結ぶ給水バイ
パス配管40と、この給水バイパス配管40に設
けた給水量制御弁41とにより構成される。ま
た、高圧給水加熱器8に抽気蒸気を導く高圧給水
加熱器入口抽気蒸気配管25に圧力検出器26と
温度検出器27とをそれぞれ設置する。そして、
これら2つの検出器26,27からの検出信号は
前記給水量制御弁41を制御する制御器42に入
力するようになつている。この制御器42は、前
述した制御器28と全く同様に構成されたもの
で、機能も同じである。このように構成された給
水バイパス系統を用いると、給水加熱器のインサ
ービス時などのように、ドライヒータ9に導入さ
れた抽気蒸気が必要以上に冷却され(過冷却)
て、ドライヒータ9出口の抽気蒸気が湿り蒸気と
なつた場合、上記制御器42が、上述した抽気蒸
気バイパス系統における制御器28と全く同様に
作動し、前記給水量制御弁41により必要な量だ
け給水をバイパスせしめ、ドライヒータ9内での
熱負荷を軽減させて抽気蒸気の出口温度を上げる
ことにより、前記給水加熱器8へ導入される抽気
蒸気の湿り蒸気化を防止することができる。さら
に、上記温度差設定器35により出口蒸気の過熱
度を間接的に制御することもできるので、ドライ
ヒータと給水加熱器の熱負荷のアンバランスを修
正することも可能となる。
FIG. 4 shows an embodiment of the water supply bypass system of the present invention, which includes a water supply bypass pipe 40 connecting the water supply inlet pipe 15 and the water supply outlet pipe 16 of the dry heater 9, and It is constituted by a water supply amount control valve 41 provided. Further, a pressure detector 26 and a temperature detector 27 are installed in the high-pressure feed water heater inlet bleed steam piping 25 that guides the bleed steam to the high-pressure feed water heater 8, respectively. and,
Detection signals from these two detectors 26 and 27 are input to a controller 42 that controls the water supply amount control valve 41. This controller 42 is configured in exactly the same way as the controller 28 described above, and has the same functions. When the feed water bypass system configured in this manner is used, the extracted steam introduced into the dry heater 9 is cooled more than necessary (supercooling), such as when the feed water heater is in service.
When the extracted steam at the outlet of the dry heater 9 becomes wet steam, the controller 42 operates in exactly the same manner as the controller 28 in the extracted steam bypass system described above, and the water supply amount control valve 41 controls the amount of water required. By bypassing the feed water, reducing the heat load within the dry heater 9 and increasing the outlet temperature of the extracted steam, it is possible to prevent the extracted steam introduced into the feed water heater 8 from becoming wet vapor. Furthermore, since the degree of superheating of the outlet steam can be indirectly controlled by the temperature difference setting device 35, it is also possible to correct the imbalance in the heat load between the dry heater and the feed water heater.

第5図は、給水バイパス系統と抽気蒸気バイパ
ス系統との双方を設けた実施例を示したもので、
第6図はその制御装置の構成を示すブロツク図で
ある。これらの系統及び制御装置において第2図
乃至第4図と同一図面参照番号を附したものは、
同様乃至は類似の構成部材である。このように構
成されたドライヒータバイパス系統を用いると、
前述の各バイパス系統の機能及び効果の他に、ド
ライヒータカツトの運転ができる。さらに、制御
器45の設定器35を調節することにより給水バ
イパス量の制御に加えて抽気蒸気量バイパス量の
制御によつて湿り蒸気化を防止するので制御範囲
と制御量が大きくなる利点を生む。
FIG. 5 shows an example in which both a water supply bypass system and an extraction steam bypass system are provided.
FIG. 6 is a block diagram showing the configuration of the control device. Those systems and control devices with the same drawing reference numbers as in Figures 2 to 4 are as follows:
They are the same or similar components. Using the dry heater bypass system configured in this way,
In addition to the functions and effects of each bypass system described above, a dry heater cut can be operated. Furthermore, by adjusting the setting device 35 of the controller 45, in addition to controlling the feed water bypass amount, wet vaporization is prevented by controlling the extraction steam amount bypass amount, which has the advantage of increasing the control range and control amount. .

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明のドライヒータ系
統制御装置は、蒸気タービンの抽気蒸気によつて
給水を加熱するドライヒータ、及び、上記のドラ
イヒータを流通した抽気蒸気によつて給水を加熱
する給水加熱器を備えた発電プラントのドライヒ
ータにおいて、上記のドライヒータを流通すべき
抽気蒸気をバイパスさせる抽気蒸気バイパス系
統、および、前記のドライヒータを流通すべき給
水をバイパスさせる給水バイパス系統の少なくと
もいずれか一方を設けるとともに、上記抽気蒸気
バイパス系統および給水バイパス系統の少なくと
もいずれか一方に流量調節弁を設け、かつ、前記
ドライヒータの抽気蒸気流出管路に温度検出器及
び圧力検出器を設けるとともに、上記2個の検出
器の出力信号を入力されて前記流量調節弁を開閉
制御する制御器を設けることにより、ドライヒー
タから給水加熱器へ導かれる抽気蒸気が湿り蒸気
となることを防止して、プラント全体の信頼性向
上に貢献するところ多大である。
As described in detail above, the dry heater system control device of the present invention includes a dry heater that heats feed water using extracted steam from a steam turbine, and a dry heater that heats the feed water using extracted steam that has passed through the dry heater. A dry heater for a power generation plant equipped with a feed water heater includes at least an bleed steam bypass system that bypasses the bleed steam that should flow through the dry heater, and a feed water bypass system that bypasses the feed water that should flow through the dry heater. At least one of the bleed steam bypass system and the water supply bypass system is provided with a flow rate control valve, and the bleed steam outflow pipe of the dry heater is provided with a temperature detector and a pressure detector. By providing a controller that receives the output signals of the two detectors and controls the opening and closing of the flow rate regulating valve, it is possible to prevent the extracted steam led from the dry heater to the feed water heater from turning into wet steam. This greatly contributes to improving the reliability of the entire plant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の対象となる超々臨界圧プラン
トの給水系統図、第2図は本発明の一実施例を示
すドライヒータの抽気蒸気バイパス系統及びその
制御装置を示す系統図、第3図は、第2図に示し
た制御装置の詳細を示すブロツク線図、第4図は
本発明の一実施例を示すドライヒータの給水バイ
パス系統及びその制御装置を示す系統図、第5及
び第6図は上記と異なる実施例を示し、第5図は
抽気蒸気バイパス系統図、第6図はブロツク線図
である。 1……超高圧タービン、2……高圧タービン、
3……中圧タービン、4……脱気器、5……給水
ポンプ、6……超高圧給水加熱器、7……昇圧ポ
ンプ、8……高圧給水加熱器、9……ドライヒー
タ、11……抽気止弁、15,16……給水配
管、21,22,25……抽気蒸気配管、23…
…抽気蒸気バイパス配管、24,41……制御
弁、26……圧力検出器、27……温度検出器、
28,42,45……制御器、30,33,38
……演算器、35……設定器、40……給水バイ
パス配管。
Fig. 1 is a water supply system diagram of an ultra-supercritical pressure plant that is the object of the present invention, Fig. 2 is a system diagram showing a dry heater bleed steam bypass system and its control device, which is an embodiment of the present invention, and Fig. 3 is a block diagram showing details of the control device shown in FIG. 2, FIG. 4 is a system diagram showing a dry heater water supply bypass system and its control device according to an embodiment of the present invention, and fifth and sixth are system diagrams showing the control device. The figures show an embodiment different from the above, with FIG. 5 being an extraction steam bypass system diagram and FIG. 6 being a block diagram. 1...Ultra high pressure turbine, 2...High pressure turbine,
3... Medium pressure turbine, 4... Deaerator, 5... Water pump, 6... Ultra high pressure feed water heater, 7... Boost pump, 8... High pressure feed water heater, 9... Dry heater, 11 ... Bleeding stop valve, 15, 16... Water supply piping, 21, 22, 25... Bleeding steam piping, 23...
...Extraction steam bypass piping, 24, 41...Control valve, 26...Pressure detector, 27...Temperature detector,
28, 42, 45...Controller, 30, 33, 38
...Calculator, 35...Setting device, 40...Water supply bypass piping.

Claims (1)

【特許請求の範囲】 1 蒸気タービンの抽気蒸気によつて給水を加熱
するドライヒータ、及び、上記のドライヒータを
流通した抽気蒸気によつて給水を加熱する給水加
熱器を備えた発電プラントのドライヒータにおい
て、上記のドライヒータを流通すべき抽気蒸気を
バイパスさせる抽気蒸気バイパス系統、および、
前記のドライヒータを流通すべき給水をバイパス
させる給水バイパス系統の少なくともいずれか一
方を設けるとともに、上記抽気蒸気バイパス系統
および給水バイパス系統の少なくともいずれか一
方に流量調節弁を設け、かつ、前記ドライヒータ
の抽気蒸気流出管路に温度検出器及び圧力検出器
を設けるとともに、上記2個の検出器の出力信号
に基いて前記流量調節弁を開閉制御する制御器を
設けたこと特徴とする、発電プラントのドライヒ
ータ系統の制御装置。 2 前記の制御器は、圧力検出器によつて検出し
た抽気蒸気の圧力に対応する飽和蒸気温度を算出
する演算器と、上記演算器の出力信号及び前記温
度検出器によつて検出した抽気蒸気の温度に基づ
いて該抽気蒸気の過熱度を算定する演算器と、上
記の演算器によつて算定された過熱度に基づいて
前記流量調節弁の開度を制御する流量調節器とを
備え、上記流量調節弁を開閉制御してドライヒー
タから給水加熱器に供給される抽気蒸気が湿り蒸
気とならないように調節し得べくなしたることを
特徴とする特許請求の範囲第1項に記載の発電プ
ラントのドライヒータ系統の制御装置。
[Claims] 1. A dry power generation plant equipped with a dry heater that heats feed water using extracted steam from a steam turbine, and a feed water heater that heats the feed water using extracted steam that has passed through the dry heater. In the heater, an bleed steam bypass system that bypasses the bleed steam to be passed through the dry heater, and
At least one of a water supply bypass system for bypassing the water supply to be distributed through the dry heater is provided, and at least one of the bleed steam bypass system and the water supply bypass system is provided with a flow rate control valve, and the dry heater is provided with a flow rate control valve. A power generation plant, characterized in that a temperature detector and a pressure detector are provided in the bleed steam outflow pipe, and a controller is provided for controlling the opening and closing of the flow rate regulating valve based on the output signals of the two detectors. control device for the dry heater system. 2. The controller includes a computing unit that calculates the saturated steam temperature corresponding to the pressure of the extracted steam detected by the pressure detector, and an output signal of the computing unit and the extracted steam detected by the temperature detector. a computing unit that calculates the degree of superheating of the extracted steam based on the temperature of the computing unit, and a flow rate regulator that controls the opening degree of the flow rate regulating valve based on the degree of superheating calculated by the computing unit, Claim 1, characterized in that the flow control valve is controlled to open and close so that the extracted steam supplied from the dry heater to the feed water heater does not turn into wet steam. A control device for the dry heater system of a power generation plant.
JP20099383A 1983-10-28 1983-10-28 Method and device for controlling dry heater system of generating plant Granted JPS6093205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20099383A JPS6093205A (en) 1983-10-28 1983-10-28 Method and device for controlling dry heater system of generating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20099383A JPS6093205A (en) 1983-10-28 1983-10-28 Method and device for controlling dry heater system of generating plant

Publications (2)

Publication Number Publication Date
JPS6093205A JPS6093205A (en) 1985-05-25
JPH0549884B2 true JPH0549884B2 (en) 1993-07-27

Family

ID=16433719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20099383A Granted JPS6093205A (en) 1983-10-28 1983-10-28 Method and device for controlling dry heater system of generating plant

Country Status (1)

Country Link
JP (1) JPS6093205A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5292347B2 (en) * 2010-03-26 2013-09-18 株式会社日立製作所 Power plant and power plant operation method
JP2016113980A (en) * 2014-12-16 2016-06-23 株式会社東芝 Steam turbine plant

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5766304U (en) * 1980-10-03 1982-04-20
JPS5866204U (en) * 1981-10-22 1983-05-06 三菱重工業株式会社 Desuperheater for ultra-high pressure plants

Also Published As

Publication number Publication date
JPS6093205A (en) 1985-05-25

Similar Documents

Publication Publication Date Title
KR890002916B1 (en) Steam turbine plant having a turbine bypass system
KR100243551B1 (en) Method of minimizing thermal stress of steam turbine
JPH0549884B2 (en)
US3361117A (en) Start-up system for forced flow vapor generator and method of operating the vapor generator
JP3065794B2 (en) Feed water heating device
JP2607609B2 (en) Operation control method for steam turbine plant
JP2863645B2 (en) Feedwater flow control system for an exhaust gas reburning combined cycle power plant
JPH0472962B2 (en)
JPH0223929Y2 (en)
JPH0443996A (en) Steam flow rate controller for fast reactor plant
JPH01203804A (en) Feed water heater drain system
JP3056880B2 (en) Feedwater heater controller
JPH0250004A (en) Control system of pressure inside deaerator
JPH06129208A (en) Composite cycle plant
JP2752226B2 (en) Drain pump warming device
JPH07293808A (en) Control device for feedwater heater
JPS5910714A (en) Feed water heating equipment
JPS58190504A (en) Combined plant
JPS63223309A (en) Warming device for turbine steam regulation valve
JPS60259805A (en) Method of starting and stopping drying heater for steam turbine plant and controller thereof
JPH01230908A (en) Control method of steam turbine heater
JPH0475363B2 (en)
JPH0399101A (en) Controller of exhaust heat recovering heat exchanger
JPH05296409A (en) Protection system and protection device for exhaust heat recoverying boiler
JPH07174304A (en) Water level controller for feed water heater