JPS5910714A - Feed water heating equipment - Google Patents

Feed water heating equipment

Info

Publication number
JPS5910714A
JPS5910714A JP11838182A JP11838182A JPS5910714A JP S5910714 A JPS5910714 A JP S5910714A JP 11838182 A JP11838182 A JP 11838182A JP 11838182 A JP11838182 A JP 11838182A JP S5910714 A JPS5910714 A JP S5910714A
Authority
JP
Japan
Prior art keywords
steam
heater
feed water
additional
stop valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11838182A
Other languages
Japanese (ja)
Inventor
Michio Abe
阿部 倫夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11838182A priority Critical patent/JPS5910714A/en
Publication of JPS5910714A publication Critical patent/JPS5910714A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/34Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating
    • F01K7/40Use of two or more feed-water heaters in series

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To improve the efficiency of normal operation, by providing a passage for supplying one of the bled steam and exhaust steam of a steam turbine as a heat source for an added feed water heater and another passage for recovering a heating-side fluid to the feed water heater and by efficiently using the added heater. CONSTITUTION:Superheated steam bled from a reheating turbine 5 is supplied as a heat source for an added heater 14 through a passage 16. A passage 17 is provided so that a heating-side fluid having finished heat exchange in the added heater 14 is introduced into a first high-pressure heater 12 and thus recovered. When the steam bled from the reheating turbine 5 is superheated, an automatic controller 23 opens a shutoff valve 19 so that the superheated steam flows into the added heater 14 through the passage 16. At that time, the heating-side fluid having finished heat exchange for heating feed water is recovered in a lowered degree of superheat to the first high-pressure heater 12 through the passage 17. The temperature of the feed water supplied to an evaporating section 1 is heightened by the added heater 14 so that the efficiency of a plant is enhanced.

Description

【発明の詳細な説明】 本発明は蒸気タービンを原動機とする発電プラントの給
水加熱装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a feed water heating device for a power plant using a steam turbine as a prime mover.

ドラムを有しない貫流ボイラにおいては、起動時又は低
負荷運転時に給水量が低下することによる蒸発器内部の
給水の偏流のために蒸発管に焼損する虞れがある。これ
を防ぐため蒸発器に最低限度ある・一定流量以上の給水
を供給する必要がある。
In a once-through boiler without a drum, there is a risk of burnout of the evaporator tubes due to uneven flow of the feed water inside the evaporator due to a drop in the amount of water feed during startup or low-load operation. To prevent this, it is necessary to supply water to the evaporator at a minimum or constant flow rate.

上記の最低限度の流量を確保する手段の一つとして付加
ヒータ方式が用いられる。
An additional heater system is used as one of the means to ensure the above-mentioned minimum flow rate.

第1図は付加ヒータ方式の系統図である。通常運転にお
いては、蒸発部lで発生した蒸気は過熱器2を経て高圧
タービン3に供給きれた仕事を為した後、再熱器4で高
い過熱度を与えられて再熱タービン5、低圧タービン6
で仕事を為し、復水器7で凝縮し、復水ポンプ8により
低圧ヒータ9を経て脱気器10に送水される。脱気器1
oで脱気された給水は給水ポンプ11によって昇圧され
、第1高圧ヒータ12及び第2高圧ヒータ13を順次に
流通して加熱された後、付加ヒータ14を経て蒸発部1
に還流する。上記の付加ヒータ14において、通常運転
時には熱交換が行なわれない。
FIG. 1 is a system diagram of the additional heater system. In normal operation, the steam generated in the evaporator section 1 passes through the superheater 2 to perform the work that has been completed by supplying it to the high-pressure turbine 3, and then is given a high degree of superheating in the reheater 4, and is then transferred to the reheating turbine 5 and the low-pressure turbine. 6
The water does work, is condensed in a condenser 7, and is sent to a deaerator 10 by a condensate pump 8 via a low-pressure heater 9. Deaerator 1
The feed water degassed at o is boosted in pressure by the feed water pump 11, sequentially passed through the first high pressure heater 12 and the second high pressure heater 13, heated, and then passed through the additional heater 14 to the evaporation section 1.
Reflux to. In the additional heater 14 described above, heat exchange is not performed during normal operation.

起動時又は低負荷時においては、蒸発部の最低流量を確
保するため給水ポンプIOKよって送水が行なわれ、送
水された給水は付加ヒータ14を経て蒸発部1を流通し
て供液2相流となり、汽水分離器15においてドレンと
蒸気とに分離される。
At startup or under low load, water is supplied by the water supply pump IOK to ensure the minimum flow rate of the evaporator, and the supplied water passes through the additional heater 14 and flows through the evaporator 1 to form a two-phase supply flow. The steam is separated into drain and steam in the steam separator 15.

分離されたドレンは付加ヒータ14で熱交換を行った後
、弁24を経て脱気器1oに流入する。以上のように、
起動時又は低負荷時には脱気器i。
After the separated drain undergoes heat exchange with the additional heater 14, it flows into the deaerator 1o via the valve 24. As mentioned above,
Deaerator i during start-up or low load.

→給水ポンプ11→付加ヒータ14(被加熱側J→蒸発
部1→汽水分離器15→付加ヒータ14(加熱側)→脱
気器1oという閉ザイクル運転を行うことによって蒸発
部lの最低流量を確保し、この際付加ヒータ14は給水
とドレンの熱交換を行う。
→ Water pump 11 → Additional heater 14 (heated side J → Evaporator 1 → Brackish water separator 15 → Additional heater 14 (heating side) → Deaerator 1o) By performing a closed cycle operation, the minimum flow rate of the evaporator L can be reduced. At this time, the additional heater 14 performs heat exchange between the water supply and the drain.

このように、従来、付加ヒーター 又は低負荷時には熱交換を行うが、通常運転時には何ら
作用をしない。即ち付加ヒータは通常運転時におけるプ
ラントの熱効率向上に関して全く寄与していなかった。
As described above, conventionally, heat exchange is performed using an additional heater or when the load is low, but there is no effect during normal operation. That is, the additional heater did not contribute at all to improving the thermal efficiency of the plant during normal operation.

本発明は上述の事情に鑑みて為され、付加ヒータを備え
た貫流ボイラを設けた蒸気原動機プラントにおいて、付
刃[1ヒータを活用してjiJ常運転時のプラントの効
率を向上せしめ得る給水加熱装置を提供することを目的
とする。
The present invention has been made in view of the above-mentioned circumstances, and provides a feed water heating system that can improve the efficiency of the plant during normal operation by utilizing a heater in a steam power plant equipped with a once-through boiler equipped with an additional heater. The purpose is to provide equipment.

−J−,記の目的f:達成するため、本発明の給水加熱
装置は、貫流蒸気発生装置と、該蒸気発生装置からの蒸
気により駆動きれる蒸気タービンと、核蒸気タービンに
接続した発電機と、上記の蒸気タービンから供給さ扛る
710熱蒸気によって蒸気発生装%゛に供給する給水を
加熱するための給水加熱器と、上記の蒸気発生装置と給
水力ロ熱器との間に設置されてだ気発生装置から供給さ
れる流体を熱源とじて上記の給水を加熱するための付加
給水加熱器を備えた発電プラントにおいて、前記の蒸気
タービンの抽気と排気とのいずれか一方を付加給水加熱
器の熱源として供給する管路を設けると共に、上記の付
加給水加熱器において熱交換を終えた加熱側の流体を給
水加熱器に回収する管路を設けたことを特徴とする。
-J-, objective f: In order to achieve this, the feedwater heating device of the present invention includes a once-through steam generator, a steam turbine that can be driven by the steam from the steam generator, and a generator connected to a nuclear steam turbine. , a feed water heater for heating the feed water supplied to the steam generator by 710 hot steam supplied from the steam turbine, and a feed water heater installed between the steam generator and the feed water heater. In a power generation plant equipped with an additional feed water heater for heating the above feed water using fluid supplied from a fresh air generator as a heat source, either the extracted air or the exhaust air of the steam turbine is used for additional feed water heating. The present invention is characterized by providing a pipe line for supplying the water as a heat source to the water heater, and a pipe line for collecting the fluid on the heating side that has completed heat exchange in the additional feed water heater to the feed water heater.

次に本発明の一実施例を第2図について説明する。従来
形の装置f (第1図ンと同一の図面参照番号を付した
蒸発部1、過熱器2、高圧タービン3、再熱器4、再熱
タービン5、低圧タービン6、復水器7、復水ポンプ8
、低圧ヒータ9、脱気器10、給水ポンプ11.第1高
圧ヒータ12、第2高圧ヒータ13、付加ヒ〜り14、
汽水分離器15、及び弁24は従来形の装置におけると
同様若しくは類似の構成部材である。
Next, one embodiment of the present invention will be described with reference to FIG. Conventional device f (evaporator section 1, superheater 2, high-pressure turbine 3, reheater 4, reheat turbine 5, low-pressure turbine 6, condenser 7, with the same drawing reference numbers as in Figure 1) Condensate pump 8
, low pressure heater 9, deaerator 10, water supply pump 11. A first high pressure heater 12, a second high pressure heater 13, an additional heater 14,
The steam separator 15 and valve 24 are the same or similar components as in conventional systems.

本実施例が従来形の装置に比して特に異なる所の第1は
、再熱タービン5から抽出した過熱蒸気を付加ヒーター
14の熱源として供給する管路16を設けた事である。
The first difference between this embodiment and the conventional apparatus is that a conduit 16 is provided for supplying superheated steam extracted from the reheat turbine 5 as a heat source to the additional heater 14.

本発明を実地に適用する場合、再熱タービン5の排気を
付加ヒータ14の熱源として供給する管路(図示せず)
を設けてもよい。
When the present invention is actually applied, a conduit (not shown) that supplies the exhaust gas of the reheat turbine 5 as a heat source for the additional heater 14
may be provided.

本実施例が従来装置と異なるところの第2は、付加ヒー
タ14で熱交換を終えた加熱側の流体を第1高圧ヒータ
12に導入して回収する管路17を設けたことである。
The second difference between this embodiment and the conventional device is that a conduit 17 is provided for introducing and recovering the heating-side fluid that has undergone heat exchange with the additional heater 14 into the first high-pressure heater 12.

本実施例は前記の過−(蒸気供給用の管路16に電磁作
動式の止弁19を設け、この止弁19を制御する自動制
御装置23を備えである。上記の自動制御装置23に、
圧力検出器21及び温度検出器22の出力信号を入力略
せ、管路16に供給される蒸気が過熱蒸気である場合に
上記の止弁19を開弁じ、湿り蒸気の場合は閉弁するよ
うに制御作動するように構成する。
This embodiment is equipped with an electromagnetically actuated stop valve 19 in the above-mentioned steam supply pipe line 16, and an automatic control device 23 for controlling this stop valve 19. ,
The output signals of the pressure detector 21 and the temperature detector 22 are input, and the stop valve 19 is opened when the steam supplied to the pipe line 16 is superheated steam, and closed when it is wet steam. Configure for controlled operation.

以上のように構成した給水加熱装置においては、角1熱
タービン5の抽気が過熱蒸気になると、圧力検出器21
及び温度検出器22の検出出力信号を入力された自動制
御装置23が止弁19を開弁作動させ、過熱蒸気が管路
16を経て付加ヒータ14に流入する。流入した過熱蒸
気は給水と熱交換して給水を加熱し、熱交換を終えた加
熱側の流体は過熱度が低下した状態で管路17を経て第
1高圧ヒータ12に回収される。
In the feed water heating device configured as described above, when the extracted air from the square heat turbine 5 becomes superheated steam, the pressure detector 21
The automatic control device 23 which receives the detection output signal of the temperature detector 22 opens the stop valve 19, and the superheated steam flows into the additional heater 14 through the pipe line 16. The inflowing superheated steam exchanges heat with the feed water to heat the feed water, and the fluid on the heating side that has completed the heat exchange is recovered to the first high pressure heater 12 via the pipe 17 in a state where the degree of superheat has decreased.

以上のように作動すると蒸発部1に供給される給水が付
加ヒータ14によって昇温せしめられ、この作用しj蒸
気原動機プラントの通常運転中において行なわれる。こ
のように17て給水の温度を上げるとランキンサイクル
効率が上層してプラント効率が向上することは自明であ
る。
When the operation is performed as described above, the temperature of the water supplied to the evaporator 1 is raised by the additional heater 14, and this effect is carried out during normal operation of the steam motor plant. It is obvious that raising the temperature of the feed water in this way increases the Rankine cycle efficiency and improves the plant efficiency.

従来技術においてはランキンサイタル効率を上列させて
プラント効率を改善するため、最終段の給水加熱器とボ
イラとの間に過熱蒸気を熱源とするトライヒータを設け
ることが行なわれているが、本実施例によれげドライヒ
ータを別途に設j^”することなく、簡単な構成を付設
して付加ヒータ14によりドライヒータを設けたのと同
様の効率向上を達成することができる。
In conventional technology, a triheater using superheated steam as a heat source is installed between the final stage feedwater heater and the boiler in order to improve plant efficiency by increasing Rankine citral efficiency. According to the embodiment, it is possible to achieve the same efficiency improvement as when a dry heater is provided using the additional heater 14 by adding a simple configuration without separately providing a dry heater.

本実施例のように、過熱蒸気供給用の管路16に止弁1
9を設け、かつ、上記の止弁19は管路16に供給はれ
る蒸気が過熱蒸気である場合に開弁するように作動する
自動制御装置23を備えたものとすると、通常運転時に
再熱タービン5の抽気が過熱蒸気になったとべ自動的に
付加ヒータ14をドライヒータとして作動させるように
蒸気系統の切替が行なわれるので)軍転胸2作が容易で
ある。
As in this embodiment, a stop valve 1 is provided in the pipe line 16 for supplying superheated steam.
9, and the stop valve 19 is equipped with an automatic control device 23 that operates to open when the steam supplied to the pipe line 16 is superheated steam. When the bleed air from the turbine 5 becomes superheated steam, the steam system is automatically switched to operate the additional heater 14 as a dry heater, making it easy to make two military changes.

次に、上記と異なる実施例苓−第2図について説明する
。付加ヒータ14の加熱側流体の流出管路に圧力検出器
25と温度センサ26とを設けてその検出出力信号を自
動制御装置23に入力略せ、付加ヒータ14から流用し
た加熱側流体が湿り蒸気若しくは液体になった場合、前
記の止弁19、及び、付加ヒータ14の力uPA流体の
流出管路と第1高圧ヒータ12の〃ll熱流流体流入管
路の間に介装した止弁20を閉弁するように制御する構
成1とし、かつ、上記の閉弁作動と同時に再熱タービン
5の抽気を第1高圧タービン12に供給している管路に
設けた止弁18を開弁させるように構成する。本実施例
のように前記の止弁19に制御手段を設けて、付加ヒー
タ14の7Jl]熱側流体が熱交換後に漏り蒸気又は液
体である場合に止弁19を閉弁させるように構成してお
くと、プラントの運転中に負荷が低下して、+j加上ヒ
ータ14出口蒸気が湿り蒸気若しくは液体になったとき
、自動的に付加ヒータ14をドライヒータとして接糾”
している管路系統を切り替オーて本来の付加ヒータとし
て作動せしめるので運転操作が容易である。
Next, a description will be given of an embodiment shown in FIG. 2, which is different from the above. A pressure detector 25 and a temperature sensor 26 are provided in the outflow pipe of the heating fluid of the additional heater 14, and the detection output signal is inputted to the automatic control device 23, so that the heating fluid diverted from the additional heater 14 is wet steam or When it becomes a liquid, the stop valve 19 and the stop valve 20 interposed between the UPA fluid outflow pipe of the additional heater 14 and the heat flow fluid inflow pipe of the first high pressure heater 12 are closed. In addition, at the same time as the above-mentioned valve closing operation, a stop valve 18 provided in a conduit supplying the extracted air from the reheat turbine 5 to the first high-pressure turbine 12 is opened. Configure. As in this embodiment, the stop valve 19 is provided with a control means so that the stop valve 19 is closed when the hot side fluid of the additional heater 14 is leaked steam or liquid after heat exchange. If this is done, when the load decreases during plant operation and the steam at the outlet of the additional heater 14 becomes wet steam or liquid, the additional heater 14 will be automatically connected as a dry heater.
Operation is easy because the existing pipe system can be switched over to operate as the original additional heater.

更に異なる実施例を第2図について次に述べる。A further different embodiment will now be described with reference to FIG.

再熱タービン5に負荷検出線27を設けてその検出出力
信”rk自動制徒1装置23に入力せしめ、負荷が予め
設定した値よりも低くなったとき前記の止弁19、同2
0’r−閉弁さぜ、止弁24を開弁させるように構成す
る。
A load detection line 27 is provided in the reheat turbine 5, and its detection output signal is inputted to the automatic control system 23, and when the load becomes lower than a preset value, the stop valve 19 and the stop valve 2 are activated.
0'r - The stop valve 24 is configured to open when the valve is closed.

この実施例によれば、プラントの負荷が急激に減少して
汽水分′R器15からドレンが発生して伺加ヒータ14
に流入する状態となったとき、自動的に付加ヒータ14
の加熱側流体の管路を切り替え、ドライヒータとして作
用していた付加ヒータ14を自動的に本来の付加ヒータ
としての作用を行なわせることができるので運転操作が
容易である。
According to this embodiment, when the load of the plant suddenly decreases, drain is generated from the brackish water 'R' device 15 and the water is drained from the additional heater 14.
When the flow reaches the state, the additional heater 14 is automatically turned on.
The operation is easy because the additional heater 14, which was acting as a dry heater, can be automatically made to function as the original additional heater by switching the heating side fluid conduit.

上述の実施例においては再熱タービン5の抽気を付加ヒ
ータ14の熱源として使用する構成であるが、本発明を
実地に適用する場合、再熱タービン以外の油気若しくは
排気である過熱蒸気を付加ヒータの熱源として用いるこ
ともできる。
In the above embodiment, the extracted air from the reheat turbine 5 is used as a heat source for the additional heater 14, but when the present invention is actually applied, superheated steam that is oil or exhaust gas other than the reheat turbine is added. It can also be used as a heat source for a heater.

第3図は付加ヒータにおける過熱度の吸収割合(横軸に
%で示す)と、プラントの効率向上(縦軸に%で示す)
との関係を示す図表であって、過熱度のエンタルピ換算
142 k cat/ Kg+の過熱蒸気を使用した場
合のものである。この条件において、過熱度のうちの9
0%の熱量により給水温度を上昇させるとプラント効率
が0.34%向上することがわかる。
Figure 3 shows the absorption rate of superheat in the additional heater (shown in % on the horizontal axis) and the improvement in plant efficiency (shown in % on the vertical axis).
This is a chart showing the relationship between the superheating degree and the enthalpy of 142 kcat/Kg+ when superheated steam is used. Under these conditions, 9 of the superheat
It can be seen that increasing the feed water temperature by 0% of the heat amount improves the plant efficiency by 0.34%.

例えば70万KWの発電設備において燃料単価上8円/
kca7  として試算すると、034%の効率向上に
よる年間の燃料費節減は2億9千万円となる。
For example, in a 700,000 KW power generation facility, the fuel unit price is 8 yen/
Based on a trial calculation based on kca7, the annual fuel cost savings due to an efficiency improvement of 0.34% will be 290 million yen.

以上眸述したように、本発明の給水加熱装置は、質流蒸
気発生装置と、該蒸気発生装置からの蒸気により駆動さ
れる蒸気タービンと、該蒸気タービンに接続した発電機
と、上記の蒸気タービンから供給される加熱蒸気によっ
て蒸気発生装置に供給する給水を加熱するための給水加
熱器と、上記の蒸気発生装置と給水加熱器との間に設置
されて蒸気発生装置から供給される液体を熱源として上
記の給水を加熱するための付加給水加熱器を備えた発電
プラントにおいて、前記の蒸気タービンの抽気と排気と
のいずれか一方を付加給水加熱器の熱源として供給する
管路を設けると共に、上記の付加給水加熱器において熱
ダ換を終えた加熱側の流体を給水加熱器に回収する管路
を設けることにより、付加ヒータを備メーた貫流ボイラ
を設けた蒸気原動機プラントにおいて、付加ヒータを活
用して通常運転時のプラントの効率を向上させるという
優れた実用的効果を奏し、単に運転コストを低減するの
みでなくエネルギー資源を節約するという社会的要請に
貢献するところが極めて太きい。
As described above, the feedwater heating device of the present invention includes a quality flow steam generator, a steam turbine driven by the steam from the steam generator, a generator connected to the steam turbine, and the above-mentioned steam generator. A feed water heater for heating the feed water supplied to the steam generator by heated steam supplied from the turbine, and a feed water heater installed between the above steam generator and the feed water heater to heat the liquid supplied from the steam generator. In a power generation plant equipped with an additional feedwater heater for heating the above-mentioned feedwater as a heat source, a conduit is provided for supplying either the bleed air or exhaust air of the steam turbine as a heat source to the additional feedwater heater, By providing a pipe line for recovering the heating side fluid that has completed heat exchange in the above-mentioned additional feedwater heater, the additional heater can be used in a steam power plant equipped with a once-through boiler equipped with an additional heater. It has an excellent practical effect of improving the efficiency of plants during normal operation, and it greatly contributes to the social demand of not only reducing operating costs but also saving energy resources.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は貫流蒸気発生装置と付加給水加熱器とを備えた
蒸気原動機プラントの蒸気系統図、第2図は本発明の給
水加熱装置の一実施例を備えた蒸気原動機プラントの蒸
気系統図、第3図は過熱度の吸収割合と効率向上との関
係を示す図表である。 1・・・恭発部、5・・・再熱タービン、1o・・・脱
気器、11・・・給水ポンプ、12・・・第1高ξEヒ
ータ、13・・・第2高圧ヒータ、14・・・付加ヒー
タ、15・・・汽水分離器、16.17・・・管路、1
8,19.20・・・止弁、21.25・・・圧力検出
5.22.26・・・温度検出器、23・・・自動制御
装置、27・・・負荷検Lb器。 第 Z  図 ■ 3 図  1 旧
FIG. 1 is a steam system diagram of a steam power plant equipped with a once-through steam generator and an additional feedwater heater, and FIG. 2 is a steam system diagram of a steam power plant equipped with an embodiment of the feedwater heating device of the present invention. FIG. 3 is a chart showing the relationship between the absorption rate of superheat degree and efficiency improvement. DESCRIPTION OF SYMBOLS 1... Regeneration part, 5... Reheat turbine, 1o... Deaerator, 11... Water supply pump, 12... First high ξE heater, 13... Second high pressure heater, 14...Additional heater, 15...Brackish water separator, 16.17...Pipeline, 1
8,19.20...Stop valve, 21.25...Pressure detection 5.22.26...Temperature detector, 23...Automatic control device, 27...Load detector Lb device. Figure Z ■ 3 Figure 1 Old

Claims (1)

【特許請求の範囲】 1、貫流蒸気発生装置と、該蒸気発生装置からの蒸気に
より駆動される蒸気タービンと、該蒸気タービンに接続
した発電機と、上記の蒸気タービンから供給される加熱
蒸気によって蒸気発生装置に供給する給水を加熱するた
めの給水加熱器と、上記の蒸気発生装置と給水加熱器と
の間に設置されて蒸気発生装置から供給される流体を熱
源として上記の給水を加熱するための付加給水加熱器を
備1えた発電プラントにおいて、前記の蒸気タービンの
抽気と排気とのいずれか一方を付加給水加熱器の熱源と
して供給する管路を設けると共に、上記の付加給水加熱
器において熱交換を終えた加熱側の流体を給水加熱器に
回収する管路を設けたことを特徴とする給水加熱装置。 2、前記の蒸気タービンの抽気と排気とのいずれか一方
を付加給水加熱器に供給する管路は止弁を有するものと
し、かつ、上記の止弁は該管路に供給される蒸気が過熱
蒸気である場合に開弁するように作動する制御手段を備
えたものとすることを特徴とする特許請求の範囲第1項
に記載の給水加熱装置。 3、前記の蒸気タービンの抽気と排気とのいずれか一方
を付加給水加熱器に供給する管路は止弁を有するものと
し、かつ、上記の止弁は付加給水加熱器において熱交換
を終えた加熱側の流体が滞り蒸気である場合と流体であ
る場合とにおいて閉弁するように作動する制御手段を備
えたものであることを特徴とする特許請求の範囲第1項
、又は同第2項に記載の給水加熱器。 4、前記の蒸気タービンは負荷検出器を備えたものとす
ると共に、前記の蒸気タービンの抽気と排気とのいずれ
か一方を付加給水加熱器に供給する管路は止弁を設けた
ものとし、かつ、上記の負荷検出器の検出値が予め設定
した値よりも低い場合に上記の止弁を閉弁せしめるよう
に作動する制御手段を設けたことを特徴とする特許請求
の範囲第1項、同第2項、又は同第3項に記載の給水加
熱装置。
[Claims] 1. A once-through steam generator, a steam turbine driven by steam from the steam generator, a generator connected to the steam turbine, and heated steam supplied from the steam turbine. A feedwater heater for heating the feedwater supplied to the steam generator; and a feedwater heater installed between the steam generator and the feedwater heater to heat the feedwater using the fluid supplied from the steam generator as a heat source. In a power generation plant equipped with an additional feedwater heater for the purpose of the present invention, a pipeline is provided for supplying either the bleed air or the exhaust gas of the steam turbine as a heat source for the additional feedwater heater, and in the additional feedwater heater, A feed water heating device characterized by being provided with a conduit for collecting the fluid on the heating side after heat exchange to the feed water heater. 2. The pipe line that supplies either the extracted air or the exhaust air from the steam turbine to the additional feed water heater shall have a stop valve, and the stop valve shall be used to prevent the steam supplied to the pipe line from being overheated. The feed water heating device according to claim 1, further comprising a control means that opens the valve when the water is steam. 3. The pipe line that supplies either the extracted air or the exhaust gas from the steam turbine to the additional feedwater heater shall have a stop valve, and the stop valve shall terminate heat exchange in the additional feedwater heater. Claim 1 or 2 is characterized in that it is equipped with a control means that operates to close the valve when the fluid on the heating side is stagnant steam and when it is fluid. Feed water heater as described in. 4. The steam turbine is equipped with a load detector, and the pipe that supplies either the bleed air or the exhaust air from the steam turbine to the additional feedwater heater is equipped with a stop valve, Claim 1, further comprising a control means that operates to close the stop valve when the detected value of the load detector is lower than a preset value. The feed water heating device according to Item 2 or Item 3 of the same.
JP11838182A 1982-07-09 1982-07-09 Feed water heating equipment Pending JPS5910714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11838182A JPS5910714A (en) 1982-07-09 1982-07-09 Feed water heating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11838182A JPS5910714A (en) 1982-07-09 1982-07-09 Feed water heating equipment

Publications (1)

Publication Number Publication Date
JPS5910714A true JPS5910714A (en) 1984-01-20

Family

ID=14735287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11838182A Pending JPS5910714A (en) 1982-07-09 1982-07-09 Feed water heating equipment

Country Status (1)

Country Link
JP (1) JPS5910714A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7654420B2 (en) 2004-12-24 2010-02-02 The Procter And Gamble Company Discharge container

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7654420B2 (en) 2004-12-24 2010-02-02 The Procter And Gamble Company Discharge container

Similar Documents

Publication Publication Date Title
US4651533A (en) Protection-driving method of a feedwater heater and the device thereof
JP3897891B2 (en) Combined cycle power plant
US3277651A (en) Steam power plant including a forced flow steam generator and a reheater
JP2004515673A (en) Fuel heating apparatus and method for combined gas and steam turbine equipment
US6250258B1 (en) Method for starting up a once-through heat recovery steam generator and apparatus for carrying out the method
RU2153081C1 (en) Combined-cycle-plant and its operating process
CN104533554B (en) A kind of new and effective water supply heat back system for single reheat unit
US2802114A (en) Method and apparatus for the generation of power
US5836162A (en) Feedwater heater drain recycle system
US3271961A (en) Start-up system for forced flow vapor generator
JPS5910714A (en) Feed water heating equipment
JP7066572B2 (en) Temporary piping system for boiler blow-out and boiler blow-out method
JPS6035104A (en) Super high-temperatue, high-pressure steam turbine plant
JPS6160242B2 (en)
CN206681807U (en) A kind of TRT transformed based on medium temperature and medium pressure waste heat, complementary energy electricity generation system
JP3065794B2 (en) Feed water heating device
JPH029244B2 (en)
US3361117A (en) Start-up system for forced flow vapor generator and method of operating the vapor generator
JP2531801B2 (en) Exhaust heat recovery heat exchanger controller
JPH05322105A (en) Device for heating feedwater for boiler
SU765515A1 (en) Power unit
JP2708406B2 (en) Startup control method for thermal power plant
JP5164560B2 (en) Leakage inspection method for low-pressure feed water heater
JPH0250004A (en) Control system of pressure inside deaerator
JPS59180011A (en) Heat recovering apparatus of steam turbine plant