JPS6050417A - Automatic testing apparatus for industrial instrument - Google Patents

Automatic testing apparatus for industrial instrument

Info

Publication number
JPS6050417A
JPS6050417A JP15875283A JP15875283A JPS6050417A JP S6050417 A JPS6050417 A JP S6050417A JP 15875283 A JP15875283 A JP 15875283A JP 15875283 A JP15875283 A JP 15875283A JP S6050417 A JPS6050417 A JP S6050417A
Authority
JP
Japan
Prior art keywords
signal
test
under test
instrument under
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15875283A
Other languages
Japanese (ja)
Inventor
Takashi Yoshioka
隆 吉岡
Takahiro Fudeyasu
筆保 隆弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP15875283A priority Critical patent/JPS6050417A/en
Publication of JPS6050417A publication Critical patent/JPS6050417A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

PURPOSE:To stabilize the output in the shortest time as possible and to perform measurement quickly, by keeping a value, so that it is larger than the original testing signal for a initial specified time period, during which the testing signal is inputted to an instrument under test. CONSTITUTION:A CPU14 generates a specified signal in accordance with a program (a) and a waveform list (b) of a memory 15. The signal is inputted to an I/O interface 13, a DA converter 16, and a signal generating part 17. A signal E1, whose rising is quicker than the original testing signal, is inputted to an instrument under test. The output signal from the instrument under test is inputted to the CPU14 through a measuring part 11, an AD converter 12, and the I/O interface 13, and pass or fail is judged. The result is displayed on a display part 18 and a printing part 19. Thus the output is stabilized in a short time, and the measurement is performed quickly.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は計測分野で使用される工業1器の自動試験装
置、特に被試験計器に入力する試験入力信号に特徴を有
゛する工業計器自動試験装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to automatic test equipment for industrial instruments used in the measurement field, particularly industrial instruments that are characterized by the test input signal input to the instrument under test. Regarding automatic test equipment.

(ロ)従来技術 工業バ1器には、電気信号あるいは空気圧信号のいずれ
かを入力・出力信号とするものや電気信号を入力信号、
空気圧信号を出力信号とするもの、さらにその逆のもの
等がある。従来、これらの、に業計器の直線性精度を測
定するのに、外部から例えばその計器のスパンの0%、
25%、50%、75%、100%に相当する信号を入
力し、それに対応した出力信号値を測定し、その値から
精度をrtl算していた。この外部から与える信号は、
ゴー動切替か、第1図に示すよ・うに一定時間(tl)
ずつ与えるか、あるいは被試験計器の出力をチェックし
、出力が安定したら、被試験ni器のデータをサンプリ
ングし、次の試験値を被試験1器に入力する等の方法で
与えられていた。しかしながら、これらの試験信号はい
ずれも例えば0%、25%・・・100%といった一定
の値をある時間与えるものであるため、例えばmV変換
器とがアイソレータといった時定数の長い一次遅れの入
力をもつ計器の場合、どうしても1つのデータを与える
時間幅が長くなり、迅速な測定ができないという欠点が
あった。すなわち時定数をTとすると、ステップ応答に
対して定常値の99%、99.9%、99.99%にな
る時間はそれぞれ4.6 T、6.9T、9.2Tとな
り、例時定数Tを1秒、計器の精度を0.5%とすると
、99.9%のレー・ルに達するには6.9秒もの時間
を要した。
(b) Conventional technology industrial bars include those that use either electrical signals or pneumatic signals as input/output signals, and those that use electrical signals as input/output signals.
There are some that use air pressure signals as output signals, and others that do the opposite. Conventionally, to measure the linearity accuracy of these industrial instruments, for example, 0% of the span of the instrument was measured from the outside.
Signals corresponding to 25%, 50%, 75%, and 100% were input, the corresponding output signal values were measured, and the accuracy was calculated from the values. This external signal is
Go motion switching or fixed time (tl) as shown in Figure 1.
Alternatively, the output of the instrument under test was checked, and when the output became stable, the data of the two instruments under test was sampled, and the next test value was input to the instrument under test. However, since all of these test signals give a constant value such as 0%, 25%...100% for a certain period of time, it is difficult to connect the mV converter to the input of a first-order delay with a long time constant such as an isolator. However, in the case of a meter that has two types of data, it inevitably takes a long time to provide one piece of data, which has the disadvantage of not being able to perform quick measurements. In other words, if the time constant is T, the times at which the step response becomes 99%, 99.9%, and 99.99% of the steady value are 4.6 T, 6.9 T, and 9.2 T, respectively. Assuming that T is 1 second and the accuracy of the instrument is 0.5%, it took 6.9 seconds to reach 99.9% rail.

(ハ)目的 この発明の目的は、上記に鑑み、出来るだけ短時間で出
力が安定し、測定が迅速に行える工業計器自動試験装置
を提供することである。
(c) Purpose In view of the above, it is an object of the present invention to provide an automatic industrial instrument testing device that can stabilize the output in as short a time as possible and perform measurements quickly.

(ニ)構成 上記目的を達成するために、この発明の工業計器自動試
験装置は、試験信号を被試験計器に入力する当初の一定
時間、本来試験信号として加える値よりも大なる値で発
生ずるようにし、被試験計器の出力が、早期に所定値と
なるようにしている。
(D) Structure In order to achieve the above object, the automatic industrial instrument testing device of the present invention generates a test signal at a value larger than the value originally added as a test signal for a certain period of time at the beginning of inputting the test signal to the instrument under test. This ensures that the output of the instrument under test reaches a predetermined value quickly.

すなわら、この発明の工業計器自動試験装置は、被試験
計器に入力するため試験信号を出力する信号発生部と、
前記被試験計器の出力信号を受けて試験測定を行う測定
部と、種々の被試験ム;器の異なる遅れ時定数に対応し
て、所定の試験入力信号Eiより大きい値KEiと、そ
の値を出力する時間゛Fを含む波形パターンを予め記憶
する波形リスト記憶手段と、前記被試験計器の遅れ時定
数を入力する手段と、入力された被試験計器の遅れ時定
数に応答して前記波形リスト記憶手段より、対応する前
記KEi値、及び時間Tを導出する手段とを備え、前記
信号発生部より測定開始′■゛時間はKEiの信号を出
力し、T時間後はE iの信男を発生ずるようにしてい
る。
In other words, the industrial instrument automatic testing device of the present invention includes a signal generator that outputs a test signal to be input to the instrument under test;
A measuring section that receives the output signal of the instrument under test and performs test measurements, and a measuring section that receives the output signal of the instrument under test, and a value KEi that is larger than a predetermined test input signal Ei, and a value KEi that is larger than a predetermined test input signal Ei, in response to different delay time constants of the various instruments under test. a waveform list storage means for pre-storing a waveform pattern including an output time ゛F; a means for inputting a delay time constant of the instrument under test; and a means for storing the waveform list in response to the input delay time constant of the instrument under test. means for deriving the corresponding KEi value and time T from the storage means; the signal generating section outputs a signal of KEi at the measurement start time; and after time T, a signal of Ei is outputted; I'm trying to make it happen.

(ホ)実施例 以下、実施例により、この発明をさらに1iTi細に説
明する。
(E) Examples Hereinafter, the present invention will be explained in further detail with reference to Examples.

第2図は実施例の工業計器自動試験装置を用いて、被試
験計器を試験する場合の概略接続図を示し、自動試験装
置1より試験信号ETが被試験計器2に入力され、この
試験入力信号EIに応答して被試験計器2より出力信号
EOが導出され、自動試験装置1に取込まれて測定され
る状態を示している。
FIG. 2 shows a schematic connection diagram when testing a meter under test using the automatic test device for industrial meters according to the embodiment. This shows a state in which an output signal EO is derived from the instrument under test 2 in response to the signal EI, and is taken into the automatic test equipment 1 and measured.

第3図は、この発明の1実施例を示す工業計器自動試験
装置のブロック図である。同図において、11は被試験
計器の出力信号(たとえば電気信号)EOを受ける測定
部であり、この電気信号EOはA/D変換器12でアナ
ログ信号からデジタル信号に変換され、I10インタフ
ェース13を経て、CPU (マイクロプロセツサ)1
4に取込まれるようになっている。15はCPU14用
のプログラム、l&述する波形リスト等を記憶するメモ
リである。11は被試験計器に入力する試験信号EIを
発生ずる信号発生部である。信号発生部11よゲ出力さ
れる試験信号Elは電気信号又は空気圧信号であり、C
PU14よりデジタル信号で出力され、I10インタフ
ェースI3を経て、D / A変換器16でアナログ信
号に変換され、信号発生部17に加えられる信号に対応
するものである。
FIG. 3 is a block diagram of an industrial instrument automatic testing device showing one embodiment of the present invention. In the figure, reference numeral 11 denotes a measurement unit that receives an output signal (for example, an electrical signal) EO from the instrument under test. After that, CPU (microprocessor) 1
It is now being incorporated into 4. Reference numeral 15 denotes a memory for storing programs for the CPU 14, a waveform list described above, and the like. Reference numeral 11 denotes a signal generating section that generates a test signal EI to be input to the instrument under test. The test signal El outputted from the signal generator 11 is an electric signal or a pneumatic signal, and C
This corresponds to a signal that is output as a digital signal from the PU 14, passed through the I10 interface I3, converted into an analog signal by the D/A converter 16, and applied to the signal generator 17.

この試験信号Elの波形は第4図に示すように、立上が
りl&T1は本来的な試験信号E】のに信のKEiであ
り、その後は所定値Eiの倍力である。
As shown in FIG. 4, the waveform of this test signal El is such that the rising edge 1&T1 is KEi, which is the true value of the original test signal E, and after that, the waveform is doubled to a predetermined value Ei.

上記K及びTIは、被試験計器の遅れ時定数によって決
まるものであり、各種の時定数に対応するK及び1゛1
の値が波形リストとじて、予めメモリ15に記憶されて
いる。18は測定信号あるいは発生信号を表示する表示
部、19は同しく測定信号あるいは発生信号をプリント
アウト である。20は設定部であって、測定部、発生部の電気
信号、空気圧信号の種別等を設定するキーの他、被試験
1器の時定数が既知であればごれを指定する既知指定キ
ー、及びその時定数を人力するためのキーを備えている
The above K and TI are determined by the delay time constant of the instrument under test, and the K and TI corresponding to various time constants are
The values of are stored in the memory 15 in advance as a waveform list. Reference numeral 18 indicates a display section for displaying the measured signal or generated signal, and 19 indicates a printout of the measured signal or generated signal. Reference numeral 20 denotes a setting section, in addition to keys for setting the types of electrical signals and pneumatic signals of the measuring section, generation section, etc., a known specification key for specifying dirt if the time constant of the device under test is known; It is also equipped with a key to manually set the time constant.

CPUI 4ば、メモリ15に記憶されるプ1′1グラ
ムにしたがい、試験入力信号の発生、測定信号の取込等
、一連の試験測定のための処理を実行j゛る。
In accordance with the program stored in the memory 15, the CPU 4 executes a series of processes for test measurement, such as generation of test input signals and acquisition of measurement signals.

次に、以」二のように構成される]−業計器自動試験装
置の試験測定処理動作を第5図に示すフローチャートを
参照して説明する。なお被試験計器としてmV変換器を
例にとることとする。mV変換器の時定数が既知の場合
は、測定者は設定部20で時定数既知の指定と時定数の
設定を行う。時定数が未知の場合は既知指定の設定を行
わない。
Next, the test and measurement processing operation of the industrial instrument automatic testing apparatus configured as follows will be described with reference to the flowchart shown in FIG. Note that a mV converter will be taken as an example of the instrument under test. If the time constant of the mV converter is known, the measurer uses the setting section 20 to designate the known time constant and set the time constant. If the time constant is unknown, do not set the known specification.

動作がスタ〜)・すると、まずステップS T 1で被
試験計器、すなわちmV変換器の時定数が既知か否か判
定する。設定部20で既知指定がなされていないと、こ
の’I′lJ定はNoとなり、続いてステップST2で
被試験計器に一定の大きさの信号、例えば100%の信
号〔第6図(a)参照〕を入力する。そして、この入力
波形に応答する被試験体の出力波形〔第6図(b)参照
〕をモニタする(ステップ5T3)。このモニタにより
、被試験計器の時定数を算出する。そして次のステップ
ST4に移る。
When the operation starts, first in step ST1 it is determined whether the time constant of the meter under test, that is, the mV converter is known. If known designation is not made in the setting section 20, this 'I'lJ constant becomes No, and then in step ST2, a signal of a certain magnitude, for example, a signal of 100%, is sent to the instrument under test [Fig. 6 (a)] Reference]. Then, the output waveform of the test object in response to this input waveform (see FIG. 6(b)) is monitored (step 5T3). This monitor calculates the time constant of the instrument under test. Then, the process moves to the next step ST4.

ステップSTIで、時定数が既知の場合は、ステップS
T2、ST3の処理は不要であり、直ちにステップST
4に移る。ステップST4では、設定入力されたあるい
は波形入力で算出された時定数に基づき、メモリ15の
波形リストを参照し、最適の試験入力信号波形を抽出す
る。ごの試験入力信号波形は、第6図(c)の通りであ
るが、この信号波形の高さh及び幅twは、−次遅れの
時定数に対応することになる。この試験入力信号が第6
図(c)に示す波形で被試験計器に入力されると、その
出力波形は第6図(d)に示す波形となり、早期に所定
レベルに達するので、この出力値の安定により、最後に
目的とする直線性の測定を実行する(ステップ5T5)
In step STI, if the time constant is known, step S
Processing in T2 and ST3 is not necessary, and step ST is performed immediately.
Move on to 4. In step ST4, the optimum test input signal waveform is extracted by referring to the waveform list in the memory 15 based on the time constant that has been set or input or calculated by inputting the waveform. The test input signal waveform for each test is as shown in FIG. 6(c), and the height h and width tw of this signal waveform correspond to the time constant of the -order lag. This test input signal is the sixth
When the waveform shown in Figure (c) is input to the instrument under test, its output waveform becomes the waveform shown in Figure 6 (d), which quickly reaches the predetermined level. Execute the linearity measurement as follows (Step 5T5)
.

ここで、入力波形Elの決定方法の1例を第4図を参照
して説明する。
Here, one example of a method for determining the input waveform El will be explained with reference to FIG.

第4図のように、波形立上がりから時間′1゛1経過後
まで所定の入力値に対しα%大きな信号を入力し、出力
の立」二がりを速め、定常値の手前で所定の入力Ejに
戻すと、この場合の出力EOはEO=KEi (1−e
−〒)4−fEi−KEi−工! J」r (1−e”)l (1−e 丁 ) で表せる。
As shown in Fig. 4, a signal that is α% larger than the predetermined input value is input until time '1゛1 has elapsed from the rise of the waveform, the output rises faster, and the predetermined input Ej is increased just before the steady value. , the output EO in this case is EO=KEi (1-e
-〒)4-fEi-KEi-工! It can be expressed as J"r (1-e")l (1-e cho).

今、例えば入力KEiの信号をT1時間与えて、出力波
形の立上がりを速め、時間T1の時点で出力値Eaが定
常値の99%となるようにし、そのTI=Tとすれば、
すなわち時間T1を時定数Tと等しくすれば、 K (1−G−’) =0.99 、−、に=1.6 となる。また最終値が定常値の99.9%に達した時に
測定を行うものとすると 0.99Ei+ (1−0,99)Ei=1」1 (1−e T ) −0,999Ei これを解いて(但しTI=’F) t = 3t3 T このtは出力値が定常値の999%に達するまでの時間
を示し、ステップ入力で同じ出力を得るに要する時間6
,9Tに比べて約2である(第4図のEO:入力波形E
■に対する応答、ESSニステップ力tこ対する応答を
参照)。
Now, for example, if the input KEi signal is applied for a time T1 to speed up the rise of the output waveform so that the output value Ea becomes 99% of the steady value at time T1, and TI=T, then
That is, if time T1 is made equal to time constant T, then K (1-G-') = 0.99, -, = 1.6. Also, assuming that the measurement is performed when the final value reaches 99.9% of the steady value, 0.99Ei+ (1-0,99)Ei=1''1 (1-e T ) -0,999Ei Solve this. (However, TI='F) t = 3t3 T This t indicates the time until the output value reaches 999% of the steady value, and the time required to obtain the same output with step input6
, 9T (EO in Figure 4: input waveform E
(Response to ESS Nistep force t)).

以上より、被試験計器の時定数が既知であれば、」二記
試験入力信4EyのK及びT1が決定できるから、時定
数T″に対応して、最も立」二がりを速くするK及びT
1を予めめておき、これをリストとして珂己憶しておけ
ばよい。
From the above, if the time constant of the instrument under test is known, K and T1 of test input signal 4Ey can be determined. T
1 in advance and memorize it as a list.

(へ)効果 この発明の工業計器自動試験装置によれば、被試験計器
に入力する試験信号を、立上がり時の所定時間T1だけ
所定値Eiよりも大なる値KEiとし、所定時間T1経
過後は、試験のための所定値Eiとするものであるから
、被試験計器が一次遅れ時定数を持つものであっても出
力波形を速く立上がらせることができ、所要の測定を迅
速に行うことができる。
(f) Effects According to the automatic industrial instrument testing device of the present invention, the test signal input to the instrument under test is set to a value KEi that is larger than the predetermined value Ei for a predetermined time T1 at the time of rising, and after the predetermined time T1 has elapsed. , is set as the predetermined value Ei for the test, so even if the instrument under test has a first-order lag time constant, the output waveform can be made to rise quickly, and the required measurements can be performed quickly. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の工業計器の直線性を測定する場合の入力
波形の1例を示す図、第2図はこの発明の実施例の工業
計器自動試験装置の使用時の接続状態を示す概略図、第
3図はこの発明の1実施例を示す]工業計器自動試験装
置のブロック図、第4図は同1ゴ動試験装置より出力さ
れる試験入力信号及びその出力応答波形を示す図、第5
図は同自動試験装置の制御ジローチャー1・、第6図は
同自動試験装置を用いて被試験計器を試験する場合の動
作を説明するだめの被試験計器の入出力波形図である。 11:測定部、 11CP[J、 15:メモリ、 17:信号発生部、 20:設定部 特許出願人 株式会社島津製作所 代理人 弁理士 中 利 茂 信 第1図 第2図 第5図・ 第6図
FIG. 1 is a diagram showing an example of an input waveform when measuring the linearity of a conventional industrial meter, and FIG. 2 is a schematic diagram showing the connection state when using the industrial meter automatic test device according to the embodiment of the present invention. , FIG. 3 shows one embodiment of the present invention] A block diagram of an industrial instrument automatic testing device; FIG. 4 is a diagram showing a test input signal outputted from the motion testing device and its output response waveform; 5
The figure shows the control girometer 1 of the automatic test apparatus, and FIG. 6 is an input/output waveform diagram of the instrument under test for explaining the operation when testing the instrument under test using the automatic test apparatus. 11: Measuring section, 11CP [J, 15: Memory, 17: Signal generation section, 20: Setting section Patent applicant Shimadzu Corporation Representative Patent attorney Shin Naka Toshige Figure 1 Figure 2 Figure 5 and 6 figure

Claims (1)

【特許請求の範囲】[Claims] (1)被試験計器に入力するため試験信号を出力する信
号発生部と、前記被試験計器の出力信号を受けて試験測
定を行う測定部と、種々の被試験計器の異なる遅れ時定
数に対応して、所定の試験入力信号Eiより大きい値K
Eiと、その値を出力する時間Tを含む波形パターンを
予め記憶する波形リスト記憶手段と、前記被試験計器の
遅れ時定数を入力する手段と、入力された被試験1器の
遅れ時定数に応答して前記波形リスト記憶手段より、対
応する前記KEi値、及び時間Tを導出する手段とを備
え、前記信号先住部より測定開始7時間はKEiの信号
を出力し、T時間後はEiの信号を発生するようにした
ことを特徴とする工業計器自動試験装置。
(1) A signal generation section that outputs a test signal for input to the instrument under test, a measurement section that receives the output signal of the instrument under test and performs test measurements, and supports different delay time constants of various instruments under test. Then, a value K larger than the predetermined test input signal Ei
waveform list storage means for storing in advance a waveform pattern including Ei and a time T for outputting the value; means for inputting a delay time constant of the instrument under test; and a means for deriving the corresponding KEi value and time T from the waveform list storage means in response, and outputs the KEi signal from the signal processing section for 7 hours from the start of measurement, and outputs the Ei signal after time T. An automatic test device for industrial instruments, characterized in that it generates a signal.
JP15875283A 1983-08-30 1983-08-30 Automatic testing apparatus for industrial instrument Pending JPS6050417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15875283A JPS6050417A (en) 1983-08-30 1983-08-30 Automatic testing apparatus for industrial instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15875283A JPS6050417A (en) 1983-08-30 1983-08-30 Automatic testing apparatus for industrial instrument

Publications (1)

Publication Number Publication Date
JPS6050417A true JPS6050417A (en) 1985-03-20

Family

ID=15678556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15875283A Pending JPS6050417A (en) 1983-08-30 1983-08-30 Automatic testing apparatus for industrial instrument

Country Status (1)

Country Link
JP (1) JPS6050417A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63205513A (en) * 1987-02-20 1988-08-25 Hitachi Electronics Eng Co Ltd Error correction system
JPH0372221A (en) * 1989-08-11 1991-03-27 Nagano Technical Service:Kk Abnormality diagnostic apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63205513A (en) * 1987-02-20 1988-08-25 Hitachi Electronics Eng Co Ltd Error correction system
JPH0372221A (en) * 1989-08-11 1991-03-27 Nagano Technical Service:Kk Abnormality diagnostic apparatus

Similar Documents

Publication Publication Date Title
KR970707485A (en) DIGITAL TRIMMING OF ON-CHIP ANALOG COMPONENTS
JP2001324552A (en) Power supply current measuring unit and semiconductor test system
JPS6050417A (en) Automatic testing apparatus for industrial instrument
JPH09119853A (en) Method and apparatus for correction of output value of sensor
JPH09184871A (en) Automatic calibrating apparatus for semiconductor testing system
JP3071875B2 (en) IC test equipment
JPS63285480A (en) Semiconductor tester
JPS5815866Y2 (en) Calibration device
JPH0371669B2 (en)
JP2001221657A (en) Signal converter circuit and test system
JPS61125601A (en) Controller with potentiometer
JP3469369B2 (en) Electric measuring instrument
SU991342A2 (en) Measuring device statistical error determination method
JP2581404B2 (en) IC handling equipment
JPH1183596A (en) Testing equipment of capacitance system sensor
JPS61117466A (en) Measuring method of propagation delay time
JP3223396B2 (en) LSI tester program converter
JPS5951369A (en) Automatic characteristic measuring apparatus
JP2001153915A (en) Ic tester, and testing method for ic
SU1365002A1 (en) Device for measuring parameters of linear integral voltage stabilizers
JPH02105726A (en) Method for inspecting nonlinearity of a/d converter
KR100200714B1 (en) Test method and apparatus for integrated circuit
SU815693A1 (en) Voltage divider testing method
JP2000338142A (en) Method and device for digital measurement
JP2944307B2 (en) A / D converter non-linearity inspection method