JPS6049810A - Control method of sheet thickness during running in continuous mill - Google Patents

Control method of sheet thickness during running in continuous mill

Info

Publication number
JPS6049810A
JPS6049810A JP58156044A JP15604483A JPS6049810A JP S6049810 A JPS6049810 A JP S6049810A JP 58156044 A JP58156044 A JP 58156044A JP 15604483 A JP15604483 A JP 15604483A JP S6049810 A JPS6049810 A JP S6049810A
Authority
JP
Japan
Prior art keywords
stand
deviation
rolling
rolled
draft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58156044A
Other languages
Japanese (ja)
Other versions
JPH0141407B2 (en
Inventor
Hiroshi Yoshida
博 吉田
Kenji Kataoka
健二 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP58156044A priority Critical patent/JPS6049810A/en
Publication of JPS6049810A publication Critical patent/JPS6049810A/en
Publication of JPH0141407B2 publication Critical patent/JPH0141407B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE:To correct a draft rapidly and surely by detecting the deviations with respect to the reference values of a rolling load and a draft position respectively to estimate the deviations of the temperature of a rolling material and its sheet thickness at the inlet side at the next stand and correcting the draft position in accordance with the results calculated basing on the estimated values. CONSTITUTION:The deviation DELTAPi of a rolling load and the deviation DELTASi of a draft position from respective set reference values are detected respectively by a load cell 2 and a draft position control device 3 at the time of biting the front tip 1a of a material 1 to be rolled by the (i)th stand to estimate the temperature deviation of the material 1 and the sheet thickness deviation at the inlet side at the next (i+1)th stand by performing prescribed calculations by an arithmetic device 4, and the correcting quantity DELTASi+1 of draft position at the (i+1)th stand is calculated basing on the estimated value. Next, the correction of said draft position is performed basing on said calculated value before biting the front tip 1a by the (i+1)th stand. In this way, the draft is corrected rapidly and surely, and the accurate sheet thickness is obtained from the front tip of a coil.

Description

【発明の詳細な説明】 本発明は、連続圧延機における通板時の板厚制御方法に
関覆る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling sheet thickness during sheet passing in a continuous rolling mill.

熱間連続仕上げ圧延機等の通板時にお(Aで、5イルの
先端から良好な板厚を(与るために(ま、予め各スタン
ドの圧下位置を適正な自に設定(セットアツプ)する必
飲がある。
In order to obtain a good sheet thickness from the tip of the 5th mill when passing the sheet through a hot continuous finishing mill, etc., set the rolling position of each stand to the appropriate position (setup) There is a must drink.

従来、各スタンドの圧下位置の設定(ま、過去の圧延デ
ータからの類推、作業者の経験等hIら行われていたが
、最近では圧延理論式(圧延荷重式、変形抵抗式、vJ
fP4温度式など)を駆使して、区↑惇機により行われ
ることが多くなってきた。し力翫しながら、理論計算に
より各スタンドの圧下位置の設定を行ったとしても、実
際にそれらが最311i1となっているとはいい難く、
良好な板厚がコイルの先端から得られるとは限らなかっ
た。そttiよ、セットアツプ計斡に用いる理論式自体
に精度上の問題が存在(ること、及び計算の入力条件と
して必・要な、放制渇度計等により検出される仕上げ圧
延機入側の被圧延材の温度、或いはゲージメータ式等に
より算出される板厚等に検出誤差が存在するからである
。前者の理論式については、圧延実情データの集信によ
り改善され得るが、後者の被圧延材の温度或いは板厚等
に関しては高精度に測定づることは現状では困難である
。特に、温度測定にあっては、被圧延材の表面性状、或
いは水乗り等の問題により、測定値と実際値とが良い違
うことが多々あるだけでなく、セットアツプ計算に必要
なのは板厚方向の平均温度であり、これは実測表面温度
から推定するより仕方がない。
In the past, the rolling position of each stand was set by analogy with past rolling data, operator experience, etc., but recently rolling theory formulas (rolling load formula, deformation resistance formula, vJ
It is increasingly being carried out by Ku↑Atun machine, making full use of fP4 temperature formula, etc. Even if you set the reduction position of each stand using theoretical calculations, it is difficult to say that they are actually at the maximum of 311i1.
Good plate thickness could not always be obtained from the tip of the coil. However, there is a problem with the accuracy of the theoretical formula used for the set-up calculation (and the input condition of the finish rolling mill, which is detected by a release thirst meter, etc.), which is necessary as an input condition for calculation. This is because there is a detection error in the temperature of the rolled material or the plate thickness calculated by the gauge meter formula, etc.The former theoretical formula can be improved by collecting actual rolling data, but the latter. At present, it is difficult to measure the temperature or plate thickness of the rolled material with high precision.In particular, when measuring temperature, the measured value may vary due to problems such as the surface properties of the rolled material or water riding. Not only are there many good differences between the actual values and the actual values, but what is required for set-up calculations is the average temperature in the plate thickness direction, which is no better than estimating it from the actually measured surface temperature.

以上の点から、良好な板厚を」イル先端から得るために
は、通板中に各スタンドの圧下位置を適正値に修正づる
必要がある。この対策としては、板厚検出にほとんど遅
れのないゲージメータAGC[Au[omatlq G
a1n ControlJを通板時から採用することが
考えられるが、フィードバック制御であるため、圧下装
置の応答が問題となり、」イル先端から良好な板厚を得
るのは困難である。
From the above points, in order to obtain a good plate thickness from the tip of the plate, it is necessary to correct the rolling position of each stand to an appropriate value during sheet threading. As a countermeasure for this, a gauge meter AGC [Au[omatlq G
It is conceivable to use a1n Control J from the time of sheet threading, but since it is feedback control, the response of the rolling down device becomes a problem, and it is difficult to obtain a good sheet thickness from the tip of the sheet.

又、その他の手段として、前段スタンドの圧延何重幅差
を検出し、これより変形抵抗偏差を算出し、変形抵抗偏
差が後段スタンドにおいても同一とな゛ると仮定して、
後段スタンドの圧下位置を短時間内に修正づる方法(特
公昭5l−2061)が提案されでいる。しかしながら
、変形抵抗は、材料温度、圧下率、化学成分の複雑な関
数であり、前段スタンドの変形抵抗から後段スタンドの
変形抵抗を予測づることは困難である。
In addition, as another means, detect the rolling width difference of the front stage stand, calculate the deformation resistance deviation from this, and assume that the deformation resistance deviation is the same in the rear stage stand,
A method has been proposed (Japanese Patent Publication No. 51-2061) for quickly correcting the lowered position of the rear stand. However, the deformation resistance is a complex function of material temperature, rolling reduction, and chemical composition, and it is difficult to predict the deformation resistance of the rear stand from the deformation resistance of the front stand.

本発明は、このような従来の問題点に鑑みて為されたも
のであって、応答が速く、計算結果に信頼性があり、圧
下修正を確実に行うことができる連続圧延機にお1プる
通板時の板厚制御方法を提供し、コイルの先端から正確
な板厚が得るようにづることを目的としている。
The present invention was made in view of these conventional problems, and is a one-pull continuous rolling mill that has quick response, reliable calculation results, and can reliably correct the rolling reduction. The purpose of this paper is to provide a method for controlling sheet thickness during sheet threading, and to obtain accurate sheet thickness from the tip of the coil.

本発明は、連続圧延機に通板する際に、被圧延材の先端
が上流からi番目のスタンドに噛み込まれた時点で、当
該i番目のスタンドの圧延荷重の基準値、及び圧下位置
の基¥=饋からの夫々の偏差量を検出し、これらの偏差
量により次スタンドである1+1番目のスタンドでの被
圧延材回度偏差及び入側板厚偏差を予測し、この予測値
により該1+1番目のスタンドの圧下位置の修正社を碑
出し、被圧延材の先端が1+1N目のスタンドに噛み込
まれる前に、該i+1番目のスタンドの圧下位置の修正
を行うこととして上記目的を達成したものである。
In the present invention, when the tip of the material to be rolled is bitten into the i-th stand from upstream when the material is passed through a continuous rolling mill, the reference value of the rolling load of the i-th stand and the rolling position of the material are determined. Detect the respective deviation amounts from the base ¥=feed, use these deviation amounts to predict the rolled material rotation deviation and entry side plate thickness deviation at the next stand, 1+1, and use these predicted values to calculate the 1+1. The above objective is achieved by displaying the correction value of the rolling position of the 1st stand and correcting the rolling position of the i+1th stand before the tip of the material to be rolled is bitten by the 1+1Nth stand. It is.

本発明は、例えば熱間速続仕上げ圧延(ホットストリッ
ジミル仕上げ圧延)にあっては、板厚変動の主たる原因
は温度変動であり、該温度変動は荷重変動として認識で
きることに着目し、上記構成を想到したしのである。
The present invention focuses on the fact that, for example, in hot rapid continuous finish rolling (hot streak mill finish rolling), the main cause of sheet thickness variation is temperature variation, and that temperature variation can be recognized as load variation. I came up with the composition.

以下図面を用いて本発明の詳細な説明する。The present invention will be described in detail below using the drawings.

第1図に示づように、本発明法は、被圧延材1の先端1
aが上流からi番目のスタンド〈以下、単にiスタンド
と称づ)に噛み込まれた時点で設定基準値からの圧延荷
重偏差ΔP+、圧下位置幅差ΔS+を、夫々ロードセル
2、圧下位置制御具@3より検出し、これら圧延荷重偏
差ΔP+、圧下位置@差ΔSiから、演算機4に於いて
所定の演算を行うことにより、次スタンドである1+1
スタンドの被圧延材温度偏差及び入側板厚偏差を予測し
、この予測値により該1+1番目のスタンドの圧下位置
修正量ΔS国−を算出し、被圧延材1の先端1aが次ス
タンドに噛み込まれる前に、i+1スタンドの圧下位置
の修正を行うものである。図において、5は張力測定用
のルーパーである。
As shown in FIG. 1, the method of the present invention applies
When a is caught in the i-th stand from the upstream (hereinafter simply referred to as i-stand), the rolling load deviation ΔP+ and the rolling position width difference ΔS+ from the set reference value are determined by the load cell 2 and the rolling position controller, respectively. @3, and from these rolling load deviation ΔP+ and rolling position @difference ΔSi, the computer 4 performs a predetermined calculation to determine the next stand 1+1.
The temperature deviation of the material to be rolled and the deviation of the plate thickness at the entrance side of the stand are predicted, and the rolling position correction amount ΔS country - of the 1+1st stand is calculated based on the predicted values, and the tip 1a of the material to be rolled 1 is bitten by the next stand. This is to correct the lowering position of the i+1 stand before it is lowered. In the figure, 5 is a looper for measuring tension.

前記圧延?i!i重偏差八P+へ及び圧下位置幅差ΔS
1から圧下位置修正値ΔS I41−を算出する方法に
ついて以下に説明する。
Said rolling? i! i fold deviation 8P+ and reduction position width difference ΔS
A method of calculating the rolled down position correction value ΔS I41- from 1 is described below.

先端1aが1スタンドに噛み込まれた時の圧延荷重P1
がその予測値と異なり同偏差ΔPiが生ずる原因は、圧
延理論式が正しいとすると、その時の入側板厚H1、被
圧延材温度11、後方張力tb+及び圧下位置81が、
セットアツプ計算で使用しt:mから変動しているIこ
めである。従って、その時の圧延荷重偏差ΔP1は次式
で表現される。
Rolling load P1 when the tip 1a is caught in one stand
is different from the predicted value and the same deviation ΔPi occurs because, assuming the rolling theoretical formula is correct, the entrance plate thickness H1, the temperature of the rolled material 11, the rear tension tb+, and the rolling position 81 at that time are,
This is the I value used in the setup calculation and varying from t:m. Therefore, the rolling load deviation ΔP1 at that time is expressed by the following equation.

ΔP r = (aP/aH)+・ΔH1+(aP/さ
Tri・ΔT1 + (aP/?3Lb) I・Δt1)1+(aP/a
s) 1・ΔS1・・・(1)ここで、Δl−1+、Δ
Tl、Δ【旧、ΔS1は、夫々の基準1id(セットア
ツプ値)からの偏差、添字iハス’;tント7fj14
、(aP/aH)、(aP/81−)、(clP、/’
c)tll)、iP/as)は、夫々荷重に及ぼづ入側
板厚、被圧延材温度、後方張力、圧下位置の影響係数で
ある。この影響係数は、理論式或いは工程実験によりめ
ることができる。
ΔP r = (aP/aH)+・ΔH1+(aP/SaTri・ΔT1 + (aP/?3Lb) I・Δt1)1+(aP/a
s) 1・ΔS1...(1) Here, Δl-1+, Δ
Tl, Δ[old, ΔS1 is the deviation from the respective reference 1id (setup value), subscript ihas'; tnt7fj14
, (aP/aH), (aP/81-), (clP, /'
c. This influence coefficient can be determined by a theoretical formula or process experiment.

(1)式を被圧延材温度偏差Δ゛「唇について解くと次
式が導かれる。
Solving equation (1) for the temperature deviation of the rolled material Δ゛' lips leads to the following equation.

従って、被圧延材温度偏差へT1は、圧延荷重偏差ΔP
+、入側根wlli差△1−1i、Δ後方張力偏差Δ(
b;、圧下位置偏差ΔS1が検出できれば(2)式より
まる。ここで圧延TfJ重偏差ΔP+、圧下位置偏差Δ
S+は直接検出できる。又、入側板厚偏差ΔH1は上流
スタンド(1−1スタンド)の出側板厚偏差(ゲージメ
ータ板厚偏差)Δl+ 1−1に等しく、次式で表わさ
れる。
Therefore, the rolling material temperature deviation T1 is the rolling load deviation ΔP
+, inlet root lli difference △1-1i, Δ posterior tension deviation Δ(
b; If the rolling position deviation ΔS1 can be detected, the equation (2) can be used. Here, rolling TfJ weight deviation ΔP+, rolling position deviation Δ
S+ can be detected directly. Further, the inlet side plate thickness deviation ΔH1 is equal to the outlet side plate thickness deviation (gauge meter plate thickness deviation) Δl+1-1 of the upstream stand (stand 1-1), and is expressed by the following equation.

Δ Hi= Δ h+−+= Δ ’S t−+ + 
Δ P t−+ /’ M r−+・・・(3) ここで、fvl i=1は、i −1スタンドでのミル
定数である。
Δ Hi= Δ h+−+= Δ 'S t−+ +
Δ P t-+ /' M r-+ (3) Here, fvl i=1 is the Mill constant at i-1 stand.

ところで、後方張力偏差△[旧だ(プは、通販時に検出
覆ることが非常に困難である。なぜなら、後り張力tb
iはルーパー5の軸に取り付(プたテンションメータ或
いはルーパー発生トルクから検出できるが、コイル先端
1aが1スタンド通過直後は、1−1スタンドのルーパ
ー5は上昇中で、ストリップと接触していないか、接触
していても非常に不安定な状態にあるからである。しか
しながら、後方張力B差Δtb+の荷重に及は1影響は
小さいと考えられるので、実際にはこの後方張力偏差Δ
tbiは無視して被圧延材温度偏差ΔT1を計算しでも
よい。従って、(2)式は(4)式のようになる。
By the way, it is very difficult to detect and cover the rear tension deviation △
i is attached to the shaft of the looper 5 (it can be detected from the tension meter or the torque generated by the looper), but immediately after the coil tip 1a passes the 1st stand, the looper 5 of the 1-1 stand is rising and is not in contact with the strip. This is because there is no difference in the rear tension B, or even if they are in contact, it is in a very unstable state.However, it is thought that the influence of the rear tension difference B Δtb+ on the load is small, so in reality, this rear tension deviation Δtb+ has a small effect on the load.
The temperature deviation ΔT1 of the rolled material may be calculated by ignoring tbi. Therefore, equation (2) becomes equation (4).

一方、先端が++1スタンドに噛み込まれる時の入側板
厚偏差ΔH国、被圧延材温度偏差△1°国は圧延WJ重
漕差ΔP+、圧下位冒偏差ΔS+、被圧延材温度偏差Δ
T +を用いて、次式により計算される。
On the other hand, when the tip is bitten by the ++1 stand, the entry side plate thickness deviation ΔH country, the temperature deviation of the rolled material △1° country is the rolling WJ load difference ΔP+, the rolling side pressure deviation ΔS+, and the temperature deviation of the rolled material Δ
It is calculated by the following formula using T +.

ΔH+++ ”’Δ111=ΔS1+ΔP+/M+・・
・(5) ΔTト+”F−ri・ΔT1 ・・・(6)ここで、F
 T +は、圧延スケジュールによって決まる定数であ
る。
ΔH+++ ”'Δ111=ΔS1+ΔP+/M+...
・(5) ΔT+”F−ri・ΔT1 ・・・(6) Here, F
T+ is a constant determined by the rolling schedule.

よつτ、前記入側板厚偏差ΔH+++、被圧延材温1&
4ΔT +++によって発生すると予想されるi+1ス
タンドでの出側板厚偏差Δli DI−は、次式で計算
される。
Yotsu τ, said entrance side plate thickness deviation ΔH+++, temperature of rolled material 1&
The exit plate thickness deviation Δli DI− at the i+1 stand, which is expected to occur due to 4ΔT +++, is calculated by the following formula.

又、1+1スタンドの出側板厚II +++を目標通り
(Δh +++ = O)にするための圧下位置の修正
量ΔS+、1−は、(7)式の出側板厚偏差ΔII +
41−を使って次式で計算される。
In addition, the correction amount ΔS+, 1− of the reduction position in order to make the exit side plate thickness II +++ of the 1+1 stand as the target (Δh +++ = O) is the exit side plate thickness deviation ΔII + in equation (7).
It is calculated using the following formula using 41-.

以上の手順を整理づると、被圧延材1の先端1aがiス
タンドに噛み込まれた時点で、(Δ)圧延荷重偏差ΔP
+、圧下位I!偏差ΔS1を直接的にめ、又、入側板厚
偏差ΔH1を上流の+ −1スタンドでの出側板厚偏差
Δ11ト1として(3)式によりめる;(B)このめた
ΔP+、ΔS1、Δl−4+を用いて、(2)式、具体
的には後方張力偏差Δtbiを無視した(4)式にて1
スタンドでの被圧延u温度l差Δ1−1をめる:(C)
このめたΔT1を用い°(、被圧延材温度偏差△1−国
を(6)式によりめ、又、t+1スタンドでの入側板厚
偏差ΔH、+、を(5)式よりめる:(D)このめたΔ
T +++、ΔHillを用いて、発生Jると予想され
る++1スタンドでの出側板厚偏差Δ111やl−を(
7)式よりめる:(E)このめたΔ1+ I◆1−を用
いて、i+1スタンドでの出側板厚hト電を目標通り(
Δb kl ” O)にするための圧下位置の修正量Δ
Stやl′を(8)式によりめる:ものである。
To summarize the above steps, when the tip 1a of the material to be rolled 1 is bitten by the i-stand, (Δ) rolling load deviation ΔP
+, pressure lower I! Determine the deviation ΔS1 directly, and set the inlet side plate thickness deviation ΔH1 at the upstream + -1 stand as the outlet side plate thickness deviation Δ11 to 1 using equation (3); (B) The obtained ΔP+, ΔS1, Using Δl-4+, 1 in equation (2), specifically, equation (4) ignoring the rear tension deviation Δtbi.
Calculate the difference Δ1-1 between the temperature of the rolled material and the temperature at the stand: (C)
Using the obtained ΔT1, the temperature deviation of the rolled material Δ1−country is determined by the formula (6), and the entrance plate thickness deviation ΔH,+, at the t+1 stand is determined by the formula (5): ( D) Konmeteta Δ
Using T +++ and ΔHill, the exit side plate thickness deviation Δ111 and l− at the ++1 stand that are expected to occur are (
7) From the formula: (E) Using the obtained Δ1+ I◆1-, the exit side plate thickness h at the i+1 stand is set as the target (
Amount of correction Δ of the reduction position to achieve Δb kl ” O)
St and l' are determined by equation (8):

そしてこのめられた圧下位置の修正量ΔS i+t′を
基に、被圧延材1の先端1aがt+1スタンドに噛み込
まれる前に、該1+1スタンドの圧下位置の修正を行う
ものである。
Based on the determined correction amount ΔS i+t' of the rolling position, the rolling position of the 1+1 stand is corrected before the tip 1a of the material to be rolled 1 is bitten by the t+1 stand.

この結果、被圧延材は各スタンドを通過するごとに、常
に上流スタンドでの検出値を基にして所定の板厚となる
よう圧下位置修正されることになり、被圧延材は、その
先端から所定の板厚に仕上げられることになる。
As a result, each time the material to be rolled passes through each stand, the rolling position is corrected based on the detected value at the upstream stand so that the thickness is the specified thickness, and the material to be rolled is The board will be finished to a predetermined thickness.

第1表は、7スタンド熱間連続仕上げ圧延機におい゛C
1本発明を実施した場合のコイル先端の板厚精度(最終
出側板厚偏差の標準偏差)を従来法(無制御)のそれと
比較した結果を示す。表より明らかなように、先端の厚
み不良が大幅に改善され(いることが確認できる。
Table 1 shows the
1. The results of comparing the plate thickness accuracy (standard deviation of the final exit side plate thickness deviation) at the tip of the coil when the present invention is implemented with that of the conventional method (no control) are shown. As is clear from the table, it can be confirmed that the thickness defects at the tip have been significantly improved.

以上説明した通り、本発明によれば、被圧延材の先端部
分から所定板厚を確実に確保することができ、歩留りの
良好な圧延を実施することが可能となる。
As explained above, according to the present invention, it is possible to reliably secure a predetermined thickness from the tip of the material to be rolled, and it is possible to perform rolling with a good yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る連続圧延機における通板時の板
厚制御方法が採用された連続圧延機の一実施例を示す制
御ブロック図である。 ΔP1・・・圧延荷重l!ii差、ΔSt・・・圧下位
置偏差、ΔS kl−・・・圧下修正値、 ΔT’ +・・・被圧延材湿度偏差、 ΔH1・・・入側板厚偏差。 代理人 島 矢 論 (ばか1名 第1図
FIG. 1 is a control block diagram showing an embodiment of a continuous rolling mill in which the method for controlling plate thickness during sheet passing in a continuous rolling mill according to the present invention is adopted. ΔP1...Rolling load l! ii difference, ΔSt...rolling position deviation, ΔS kl-...rolling correction value, ΔT'+...rolled material humidity deviation, ΔH1...inlet side plate thickness deviation. Agent Shima Yaron (one idiot Figure 1)

Claims (1)

【特許請求の範囲】[Claims] (1)連続圧延機に通板づる際に、被圧延材の先端が上
流から1番目のスタンドに噛み込まれた時点で、 当該1番目のスタンドの圧延荷重の基準値、及び圧下位
置の基準値からの夫々の偏差量を検出し、これらの偏差
量により次スタンドであるi+1番目のスタンドでの被
圧延材ai1度偏差及び入側板厚偏差を予測し、 この予測餡により該1+1番目のスタンドの圧下位置の
修正量を算出し、 被圧延平Δの先端がi千1番目のスタンドに噛み込まれ
るl1flに、該i+1番目のスタンドの圧下位置の修
正を行うことを特徴とでる連続圧延機における通板時の
板厚制御方法。
(1) When the material to be rolled is passed through a continuous rolling mill, when the tip of the material to be rolled is bitten by the first stand from upstream, the reference value of the rolling load of the first stand and the reference value of the rolling position are determined. The amount of deviation from each value is detected, and based on these deviation amounts, the 1 degree deviation in ai of the rolled material and the deviation in the entrance plate thickness at the i+1st stand, which is the next stand, are predicted. A continuous rolling mill characterized in that the correction amount of the rolling position of the i+1th stand is corrected at l1fl when the tip of the rolled flat Δ is bitten by the i,100th stand. A method for controlling plate thickness during sheet threading.
JP58156044A 1983-08-26 1983-08-26 Control method of sheet thickness during running in continuous mill Granted JPS6049810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58156044A JPS6049810A (en) 1983-08-26 1983-08-26 Control method of sheet thickness during running in continuous mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58156044A JPS6049810A (en) 1983-08-26 1983-08-26 Control method of sheet thickness during running in continuous mill

Publications (2)

Publication Number Publication Date
JPS6049810A true JPS6049810A (en) 1985-03-19
JPH0141407B2 JPH0141407B2 (en) 1989-09-05

Family

ID=15619089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58156044A Granted JPS6049810A (en) 1983-08-26 1983-08-26 Control method of sheet thickness during running in continuous mill

Country Status (1)

Country Link
JP (1) JPS6049810A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05126204A (en) * 1991-10-30 1993-05-21 Kinugawa Rubber Ind Co Ltd Vibration-proof rubber bush

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52142650A (en) * 1976-05-24 1977-11-28 Kawasaki Steel Co Automatic thickness control device of rolling mill
JPS537391A (en) * 1976-07-09 1978-01-23 Hitachi Ltd Measuring apparatus for reflection factor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52142650A (en) * 1976-05-24 1977-11-28 Kawasaki Steel Co Automatic thickness control device of rolling mill
JPS537391A (en) * 1976-07-09 1978-01-23 Hitachi Ltd Measuring apparatus for reflection factor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05126204A (en) * 1991-10-30 1993-05-21 Kinugawa Rubber Ind Co Ltd Vibration-proof rubber bush

Also Published As

Publication number Publication date
JPH0141407B2 (en) 1989-09-05

Similar Documents

Publication Publication Date Title
JPS6049810A (en) Control method of sheet thickness during running in continuous mill
KR100780423B1 (en) Tension operation control system of hot strip mill and its control method
JPS6277110A (en) Dimension and shape straightening apparatus for hot rolling steel plate
JP3521081B2 (en) Strip width control method in hot finishing mill
JPH07164031A (en) Device for estimating and controlling warp caused by rolling
JPS6111124B2 (en)
JP2005254287A (en) Method for suppressing nose warping of material to be rolled
JP2968647B2 (en) Strip width control method in hot rolling
JP2692544B2 (en) Method and device for controlling temperature of hot rolling mill
JP3205130B2 (en) Strip width control method in hot rolling
JPS626713A (en) Temperature control method for rolling stock in outlet side of hot rolling mill
JPH0413411A (en) Method for controlling strip thickness when strip is passed through in hot continuous mill
JP3403330B2 (en) Strip width control method in hot rolling
JPH0636929B2 (en) Method for controlling strip width of rolled material
JP5565214B2 (en) Thickness control method of rolling mill
JPH0413413A (en) Method for controlling strip thickness at passing time on hot continuous rolling mill
JP3040044B2 (en) Method of controlling width of hot rolled steel sheet
JP3152524B2 (en) Method of controlling thickness of rolled material in hot continuous rolling
JPH11277141A (en) Method for centering rolled stock
JP2005186085A (en) Thickness change controller for travelling plate in continuous cold rolling machine
JP2758275B2 (en) Rolling tip warpage control method
JPH02187207A (en) Method for controlling roll grinding
JP3646622B2 (en) Sheet width control method
US4991418A (en) Method for determining temperature of metal to be rolled by hot strip mill and apparatus for performing the same
JPH07256323A (en) Speed control method for hot rolling mill