JPS6049422B2 - Manufacturing method for copper clad laminates - Google Patents

Manufacturing method for copper clad laminates

Info

Publication number
JPS6049422B2
JPS6049422B2 JP54033256A JP3325679A JPS6049422B2 JP S6049422 B2 JPS6049422 B2 JP S6049422B2 JP 54033256 A JP54033256 A JP 54033256A JP 3325679 A JP3325679 A JP 3325679A JP S6049422 B2 JPS6049422 B2 JP S6049422B2
Authority
JP
Japan
Prior art keywords
copper
silane
condensation catalyst
silanol condensation
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54033256A
Other languages
Japanese (ja)
Other versions
JPS55127438A (en
Inventor
進 古閑
凱夫 中川
光男 丹羽
満範 安喰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP54033256A priority Critical patent/JPS6049422B2/en
Publication of JPS55127438A publication Critical patent/JPS55127438A/en
Publication of JPS6049422B2 publication Critical patent/JPS6049422B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はシラン変性ポリエチレン系樹脂フィルム、シラ
ノール縮合触媒で表面処理した基材及び/又はシラノー
ル縮合触媒を含むエポキシ樹脂プリプレグ並びに銅箔と
を重ね合わせて加圧加熱することにより成形と架橋処理
を同時に行うことを特徴とする銅張積層板の製造方法に
関するものてある。
Detailed Description of the Invention The present invention involves stacking a silane-modified polyethylene resin film, a base material whose surface has been treated with a silanol condensation catalyst and/or an epoxy resin prepreg containing a silanol condensation catalyst, and a copper foil and heating them under pressure. The present invention relates to a method for producing a copper-clad laminate, characterized in that forming and crosslinking are performed simultaneously.

従来の銅張積層板は、エポキシ樹脂等をガラスクロス、
紙、合成繊維布などの基材に含浸、被着せしめてなるプ
リプレグ複数枚に銅箔を重ねて加熱加圧により成形した
ものであることはよく知られている。
Conventional copper-clad laminates are made using epoxy resin, glass cloth, etc.
It is well known that copper foil is layered on multiple sheets of prepreg made by impregnating and adhering to a base material such as paper or synthetic fiber cloth, and then molded by heating and pressing.

しかしこれら積層板は電気機器のプリント配線基板とし
て使用する際、誘電率、誘電正接などの高周波特性が充
分でなく、更に湿度により高周波特性が変化することが
大きな欠点となつている。本発明者らはこの点を鑑み、
高周波特性用材料としてすぐれているポリエチレン系樹
脂を積層板に応用する研究を行い、従来のエポキシ樹脂
等からなる銅張積層板よりもすくれた性能をもつ銅張積
層板の製造方法を発明した。
However, when these laminates are used as printed wiring boards for electrical equipment, they have a major drawback in that they do not have sufficient high frequency properties such as dielectric constant and dielectric loss tangent, and furthermore, their high frequency properties change due to humidity. In view of this, the present inventors
Conducted research on applying polyethylene resin, which is an excellent material for high-frequency properties, to laminates, and invented a method for producing copper-clad laminates that have better performance than conventional copper-clad laminates made of epoxy resin, etc. .

ポリエチレン系樹脂は熱可塑性であるため、耐熱性に劣
りプリント配線基板に必要なハンダ耐熱性を満足するこ
とができない。
Since polyethylene resin is thermoplastic, it has poor heat resistance and cannot satisfy the solder heat resistance required for printed wiring boards.

ポリエチレンを架橋することにより耐熱性が向上するこ
とは公知であり、さらに銅張積層板ては基材と含浸、被
着させる樹脂との密着性が重要てある。一般にポリエチ
レン系樹脂特にエチレン単独重合体はガラスとの密着性
が悪いこともあり、ポリエチレン系樹脂にシラン化合物
をグラフト化したシラン変性ポリエチレン系樹脂を用い
ることにより、この耐熱性とガラスヘの密着性を満足す
ることが可能となつ・た。このシラン変性ポリエチレン
系樹脂について詳しく述べるなら、ポリエチレン系樹脂
を一般式RR’SIY。
It is known that crosslinking polyethylene improves its heat resistance, and in copper-clad laminates, the adhesion between the base material and the resin impregnated and adhered to is important. In general, polyethylene resins, especially ethylene homopolymers, have poor adhesion to glass, so by using a silane-modified polyethylene resin, which is a polyethylene resin grafted with a silane compound, this heat resistance and adhesion to glass can be improved. It was possible to be satisfied. To discuss this silane-modified polyethylene resin in detail, the polyethylene resin has the general formula RR'SIY.

(式中Rはケイ素一炭素結合によりケイ素原子に結合し
、そして炭素、水素及ひ所望によJつて酸素により構成
される一価のオレフィン性の不飽和基てあり、各Yは加
水分解可能な有機基てあり、又R’は脂肪性不飽和を含
まない一価の炭化水素基又は基Yてある。)のシランと
1400C以上の温度で、その反応温度における半減期
が6分以7下遊離ラジカル生成化合物の存在下で反応さ
せることによりシラン変性ポリエチレン系樹脂を得るこ
とができる。本発明に使用するポリエチレン系樹脂とし
ては、ポリエチレン単独重合体をはじめエチレンを5唾
量%以上含有するエチレンとこれと共重合可能な他の単
量体との共重合体、例えばエチレン・酢酸ビニル共重合
体、エチレン●プロピレン共重合体、エチレン・アクリ
ル酸共重合体などがある。
(In the formula, R is a monovalent olefinic unsaturated group bonded to a silicon atom through a silicon-carbon bond and composed of carbon, hydrogen, and optionally oxygen, and each Y is hydrolyzable. (R' is a monovalent hydrocarbon group or group Y containing no aliphatic unsaturation. A silane-modified polyethylene resin can be obtained by reacting in the presence of a free radical generating compound. Polyethylene resins used in the present invention include polyethylene homopolymers, copolymers of ethylene containing 5% or more of ethylene, and other monomers copolymerizable with it, such as ethylene/vinyl acetate. Examples include copolymers, ethylene/propylene copolymers, and ethylene/acrylic acid copolymers.

又これら2種以上の混合体も利用できる。このうち高周
波特性からみてポリエチレン単独重合体か最も好ましい
。又本発明の方法に使用されるシランの一般式において
、Rは炭素、水素及び所望によつては酸素により構成さ
れる一価のオレフィン性の不飽和基であり、各Yは加水
分解可能な有機基例えばメトキシ、エトキシ、アセトキ
シ、−ON=C(CH3)2または−NHCH3などで
表わす。
A mixture of two or more of these can also be used. Among these, polyethylene homopolymer is most preferred from the viewpoint of high frequency characteristics. Further, in the general formula of the silane used in the method of the present invention, R is a monovalent olefinic unsaturated group composed of carbon, hydrogen, and optionally oxygen, and each Y is a hydrolyzable Organic groups such as methoxy, ethoxy, acetoxy, -ON=C(CH3)2 or -NHCH3.

R″基は脂肪性不飽和を含まない一価の炭火水素基又は
基Yである。このうち好ましくは3個の加水分解基を有
するもので、特にビニルトリエトキシシラン及びビニル
トリメトキシシランが最も好ましい。シラノール縮合触
媒としての機能を有する物質は広範囲に知られているが
本発明においてはこのような物質の任意のものを使用す
ることができる。このような物質には例えばジブチル錫
ジラウレート、酢酸第一錫、力フリル酸第一錫、ナフテ
ーン酸鉛、力フリル酸亜鉛、2−エチルカプロン酸鉄、
及びナフテン酸コバルトのようなりルボン酸の金属塩が
あり、チタンのエステル及びキレータのような有機金属
化合物、例えばチタン酸テトラブチル、チタン酸テトラ
ノニル及びビス(アセチ!ルアセトニル)ージーイソプ
ロピルチタネートがあり、エチルアミン、ヘキシルアミ
ン、ジブチルアミン及びピリジンのような有機塩基があ
り、並びに鉱酸及び脂肪酸のような酸がある。そのうち
有機錫化合物、例えばジブチル錫ジラウレート、5ジブ
チル錫ジアセテートなどが好ましい。又本発明に使用す
る基材として、ガラスクロス、合成繊維布又は紙などが
使用できる。
The R'' group is a monovalent hydrocarbon group containing no fatty unsaturation or a group Y. Among these, those having three hydrolyzable groups are preferred, with vinyltriethoxysilane and vinyltrimethoxysilane being the most preferred. Preferred. Substances that function as silanol condensation catalysts are widely known, and any such substances can be used in the present invention. Examples of such substances include dibutyltin dilaurate, acetic acid, Stannous, stannous pyrofurylate, lead naphthenate, zinc pyrofurylate, iron 2-ethylcaproate,
There are metal salts of rubonic acids such as cobalt naphthenate and cobalt naphthenate, organometallic compounds such as esters and chelators of titanium, such as tetrabutyl titanate, tetranonyl titanate and bis(acetyl!acetonyl)-diisopropyl titanate, and ethylamine. , hexylamine, dibutylamine and pyridine, and acids such as mineral acids and fatty acids. Among these, organic tin compounds such as dibutyltin dilaurate and 5-dibutyltin diacetate are preferred. Further, as the base material used in the present invention, glass cloth, synthetic fiber cloth, paper, etc. can be used.

基材へのシラノール縮合触媒の表面処理は、ジラノール
縮合触媒を溶解し得る有機溶剤によるシラノール4縮合
触媒の希釈溶液を用いるが、シラノール縮合触媒のエマ
ルジョン溶液を使用することができる。その際シラノー
ル縮合触媒の濃度に制限はないが望ましくは1呼量%以
下である。1呼量%以上では積層板の加熱加圧の際にシ
ラン変性ポリエチレン系樹脂フィルムの架橋速度がはや
くなりすぎて、シラン変性ポリエチレン系樹脂が基材に
充分含浸被着しないうちに架橋し、基材との密着性を低
下させる。
The surface treatment of the silanol condensation catalyst on the substrate uses a diluted solution of the silanol condensation catalyst with an organic solvent capable of dissolving the diranol condensation catalyst, but an emulsion solution of the silanol condensation catalyst can also be used. At this time, there is no limit to the concentration of the silanol condensation catalyst, but it is preferably 1% by volume or less. If the weight is 1% or more, the crosslinking speed of the silane-modified polyethylene resin film will become too fast when the laminate is heated and pressurized, and the silane-modified polyethylene resin will crosslink before the base material is sufficiently impregnated and adhered to the base material. Decreases adhesion to materials.

本発明方法の実施に当つては、まず基材をシラノール縮
合触媒溶液に浸漬させるか又は基材に前記溶液を塗布し
た後に自然乾燥ないしは加熱乾燥して充分に溶剤を蒸発
させる。又積層板用基材にシラノール縮合触媒を含む工
ポキシ樹脂を付着させる方法として通常行われているプ
リプレグ作成方法でもよく、樹脂含浸後適度な半硬化状
態のプリプレグを作る。ここで使用するエポキシ樹脂は
通常使用されるエポキシ樹脂でよく、又硬化剤、促進剤
及び添加剤も任意のも門のが使用できる。エポキシ樹脂
とシラン変性ポリエチレン系樹脂の割合は制限はないが
、シラン変性ポリエチレン系樹脂の割合が多い程高周波
特性が良く、高周波の必要特性によつて割合を選ぶこと
がてきる。この表面処理した基材及び/又はシラノール
縮合触媒を含むエポキシ樹脂プリプレグとシラン変性ポ
リエチレン系フィルムを所望の厚みの積層板になるよう
に重ね合わせ最外層に銅箔を重ねる。これらを加圧加熱
成形するのであるが、成形条件に特に制限はない。温度
は150〜200゜C程度、圧力は30〜100kg/
Cltである。このようにして得られる銅張積層板は従
来のエポキシ樹脂等を用いものに比べて高周波特性にす
ぐれ、さらに吸湿しても高周波特性の変化が小さい。そ
の上使用したシラン変性ポリエチレン系樹脂フィルムは
加熱加圧成形時に基材又はエポキシ樹脂プリプレグと充
分に密着し、さらに基材の表面に塗布されたシラノール
縮合触媒又はエポキシ樹脂プリプレグ中のシラノール縮
合触媒により、架橋反応が進み耐熱性も充分に備えた積
層板となつている。このように本発明は従来のエポキシ
樹脂などの熱硬化性樹脂が使用されている銅張積層板の
分野に高周波特性のすぐれたポリエチレン系樹脂を用い
ることにより、安価でより高周波特性のすぐれた銅張積
層板を製造するものである。以下に本発明の具体例を示
す。
In carrying out the method of the present invention, a substrate is first immersed in a silanol condensation catalyst solution, or the solution is applied to the substrate and then air-dried or heated to evaporate the solvent sufficiently. Alternatively, a prepreg preparation method that is commonly used as a method of attaching an engineered poxy resin containing a silanol condensation catalyst to a substrate for a laminate may be used, and a prepreg in a moderately semi-cured state is produced after being impregnated with the resin. The epoxy resin used here may be a commonly used epoxy resin, and any curing agent, accelerator, and additive may be used. There is no limit to the ratio of the epoxy resin to the silane-modified polyethylene resin, but the higher the ratio of the silane-modified polyethylene resin, the better the high frequency characteristics, and the ratio can be selected depending on the required high frequency characteristics. The surface-treated base material and/or the epoxy resin prepreg containing the silanol condensation catalyst and the silane-modified polyethylene film are laminated to form a laminate of a desired thickness, and the outermost layer is covered with copper foil. Although these are pressurized and heated, there are no particular restrictions on the molding conditions. The temperature is about 150-200°C, the pressure is 30-100kg/
It is Clt. The copper-clad laminate thus obtained has superior high-frequency characteristics compared to conventional epoxy resin-based laminates, and furthermore, even when moisture is absorbed, the high-frequency characteristics change little. Furthermore, the silane-modified polyethylene resin film used adheres well to the base material or epoxy resin prepreg during hot-pressure molding, and is further supported by the silanol condensation catalyst applied to the surface of the base material or the silanol condensation catalyst in the epoxy resin prepreg. The crosslinking reaction progresses, resulting in a laminate with sufficient heat resistance. In this way, the present invention uses polyethylene resin with excellent high frequency characteristics in the field of copper-clad laminates, where conventional thermosetting resins such as epoxy resins have been used, thereby producing copper clad laminates that are inexpensive and have better high frequency characteristics. It manufactures stretched laminates. Specific examples of the present invention are shown below.

実施例1 高密度ポリエチレン(昭和油化製シヨウレツクスMI=
0.89/1紛)100重量部をヒニルトリメトキシシ
ラン2重量部及びジクミルパーオキシド0.2重量部と
共に攪拌器により充分にブレンドし、該混合物を下記の
条件で507077!φ押出機(シングルスクリュー、
圧縮比3.5、L/D=24で)ストランド状に押出し
カッティングして造粒した。
Example 1 High-density polyethylene (Showa Yuka Shorex MI=
0.89/1 powder) was sufficiently blended with 2 parts by weight of hinyltrimethoxysilane and 0.2 parts by weight of dicumyl peroxide using a stirrer, and the mixture was mixed under the following conditions. φ extruder (single screw,
The mixture was extruded and cut into strands (at a compression ratio of 3.5 and L/D=24) and granulated.

(生成物A) バレル帯 ヘッドダイ ClC2C3C4HDl5Ol9O25 O22O22O22O(0C) スクリュー回転数70r′Pml吐出量:23k9/H
rOこの生成物Aを50rr0nφ押出機とインフレー
シヨンダイにより200μのフィルムとした。
(Product A) Barrel band Head die ClC2C3C4HDl5Ol9O25 O22O22O22O (0C) Screw rotation speed 70r'Pml discharge amount: 23k9/H
rO This product A was made into a 200μ film using a 50rr0nφ extruder and an inflation die.

基材てあるシラン処理した厚さ0.21r1r1nのガ
ラス織布にシラノール縮合触媒であるジブチル錫ジラウ
レートの1%キシレン溶液を充分塗布した後、90℃で
1紛間溶剤であるキシレンを蒸発させるために乾燥させ
た。フィルムと表面処理したガラス織布と35μの銅箔
とを第1図のよに重ね合わせ、加熱温度170′C1圧
力80k9/Cdてブレス成形及び架橋処理を行つた。
この銅張積層板について特性を調べた結果を第1表に示
す。実施例2 低密度ポリエチレン(住友化学製スミカセン、MI=1
.59/1吟)5呼量部とエチレン−アクリル酸共重合
体(エツソ社製デクソン、MI=1.5ダ/W分)(4
)重量部をビニルトリエトキシシラン1.5重量部及び
ジクミルパーオキシド0.1重量部と共に攪拌器により
充分ブレンドし、該混合物を実施例1と同一の押出機で
下記の条件で造粒した。
After sufficiently coating a 1% xylene solution of dibutyltin dilaurate, which is a silanol condensation catalyst, on a silane-treated glass woven fabric with a thickness of 0.21r1r1n, which is the base material, at 90 ° C. dried. The film, surface-treated glass woven fabric and 35μ copper foil were laminated as shown in FIG. 1, and press molding and crosslinking were carried out at a heating temperature of 170'C and a pressure of 80k9/Cd.
Table 1 shows the results of investigating the characteristics of this copper-clad laminate. Example 2 Low density polyethylene (Sumikasen, manufactured by Sumitomo Chemical, MI=1
.. 59/1 gin) and ethylene-acrylic acid copolymer (Dexon manufactured by Etsuso, MI = 1.5 Da/W min) (4
) was thoroughly blended with 1.5 parts by weight of vinyltriethoxysilane and 0.1 part by weight of dicumyl peroxide using a stirrer, and the mixture was granulated using the same extruder as in Example 1 under the following conditions. .

(生成物B) バレル帯 ヘッドダイ ClC2C3C4HDl2Ol5O2O O23O2lO2lO(℃) スリユー回転数70rpm1吐出量:20kg/HrO
この生成物Bを印順φ押出機とインフレーシヨン,2ダ
イにより厚み300μのフィルムを成形した。
(Product B) Barrel band Head die ClC2C3C4HDl2Ol5O2O O23O2lO2lO (℃) Slew rotation speed 70 rpm 1 discharge amount: 20 kg/HrO
This product B was molded into a film with a thickness of 300 μm using an Injun φ extruder, an inflation machine, and 2 dies.

基材であるシラン処理した厚さ0.18wmガラス織布
にシラノール縮合触媒であるジブチル錫ジアセテートの
5%エマルジョン溶液を充分に塗布し、100℃×1紛
間水分を蒸発させて乾燥させた。フィルムと表面処理し
たガラス織布と35μの銅箔とを第1図のように重ね合
わせ、加熱温度160′C1圧力50kg/Crlでブ
レス成形及び架橋処理を行つた。この銅張積層板につい
て特性を調べた結果を第1表に示す。実施例3 (1)エピコート1001 (シェル化学製) 100(重量部)(2)ジシ
アンジアミド 4(3)ベンジルジメチルアミ
ン 0.2 (4)ジブチル錫ジラウレート 2 (5)メチルセロソルブ 50 (6)メチルエチルケトン 50 上記(1)〜(6)の材料を混合溶解して樹脂ワニスを
゛作る。
A 5% emulsion solution of dibutyltin diacetate as a silanol condensation catalyst was sufficiently applied to a 0.18 wm thick silane-treated glass woven fabric as a base material, and the powder was dried at 100°C x 1 to evaporate the water content. . The film, surface-treated glass woven fabric, and 35 μm copper foil were laminated as shown in FIG. 1, and press molding and crosslinking were performed at a heating temperature of 160′C and a pressure of 50 kg/Crl. Table 1 shows the results of investigating the characteristics of this copper-clad laminate. Example 3 (1) Epicote 1001 (Shell Chemical Co., Ltd.) 100 (parts by weight) (2) Dicyandiamide 4 (3) Benzyldimethylamine 0.2 (4) Dibutyltin dilaurate 2 (5) Methyl cellosolve 50 (6) Methyl ethyl ketone 50 A resin varnish is prepared by mixing and dissolving the materials (1) to (6) above.

次にシラン処理した厚み0.18wrmのガラス繊維織
布に樹脂付着量が4鍾量%になるように該樹脂ワニスを
塗布乾燥し、半硬化状態のプリプレグを得る。該プリプ
レグと実施例1と同じシラン変性高密度ポリエチレン樹
脂フィルムと銅箔とを第1図のように重ね合わせ、加熱
温度170℃圧力50kg/Cll、加熱時間6紛でブ
レス成形及び架橋処理を行つた。この銅張積層板の特性
を第1表に示す。実施例1〜3と比較例(ガラスベーパ
ー基材工)ポキシ銅張積層板の従来品)の特性さら判る
ように、本発明方法による銅張積層板は従来の高周波用
銅張積層板にくらべ、高周波特性が良く、しかも吸湿に
よる変化も少なく、高周波特性のすぐれた銅張積層板が
得られるのてある。
Next, the resin varnish was applied to a silane-treated glass fiber woven fabric having a thickness of 0.18 wrm so that the resin adhesion amount was 4% by weight and dried to obtain a semi-cured prepreg. The prepreg, the same silane-modified high-density polyethylene resin film and copper foil as in Example 1 were superimposed as shown in Figure 1, and press molding and crosslinking were performed at a heating temperature of 170°C and a pressure of 50 kg/Cl for a heating time of 6 pieces. Ivy. Table 1 shows the properties of this copper-clad laminate. Characteristics of Examples 1 to 3 and Comparative Example (conventional product of glass vapor base material poxy copper clad laminate) As can be seen, the copper clad laminate made by the method of the present invention has a higher performance than the conventional copper clad laminate for high frequency use. It is possible to obtain a copper-clad laminate with good high-frequency characteristics and little change due to moisture absorption, and with excellent high-frequency characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による銅張積層板の構成の断面図。 1はシラン変性ポリエチレン系樹脂フィルム、2はシラ
ノール縮合触媒で表面処理した基材又はシラノール縮合
触媒を含むエポキシ樹脂プリプレグ、3は銅箔。
FIG. 1 is a sectional view of the structure of a copper-clad laminate according to the present invention. 1 is a silane-modified polyethylene resin film, 2 is a base material surface-treated with a silanol condensation catalyst or an epoxy resin prepreg containing a silanol condensation catalyst, and 3 is a copper foil.

Claims (1)

【特許請求の範囲】[Claims] 1 シラン変性ポリエチレン系樹脂フィルム、シラノー
ル縮合触媒で表面処理した基材及び/又はシラノール縮
合触媒を含むエポキシ樹脂プリプレグ並びに銅箔とを重
ね合わせて加圧加熱することにより成形と架橋処理を同
時に行うことを特徴とする銅張積層板の製造方法。
1 Simultaneous molding and crosslinking treatment by stacking a silane-modified polyethylene resin film, a base material surface-treated with a silanol condensation catalyst and/or an epoxy resin prepreg containing a silanol condensation catalyst, and copper foil and heating under pressure. A method for manufacturing a copper-clad laminate, characterized by:
JP54033256A 1979-03-23 1979-03-23 Manufacturing method for copper clad laminates Expired JPS6049422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54033256A JPS6049422B2 (en) 1979-03-23 1979-03-23 Manufacturing method for copper clad laminates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54033256A JPS6049422B2 (en) 1979-03-23 1979-03-23 Manufacturing method for copper clad laminates

Publications (2)

Publication Number Publication Date
JPS55127438A JPS55127438A (en) 1980-10-02
JPS6049422B2 true JPS6049422B2 (en) 1985-11-01

Family

ID=12381417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54033256A Expired JPS6049422B2 (en) 1979-03-23 1979-03-23 Manufacturing method for copper clad laminates

Country Status (1)

Country Link
JP (1) JPS6049422B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4499145A (en) * 1982-04-19 1985-02-12 Sumitomo Bakelite Company Limited Metal-clad laminate and process for producing the same
JPS6011354A (en) * 1983-07-01 1985-01-21 住友ベークライト株式会社 Composite laminated board
JPS61154940A (en) * 1984-12-28 1986-07-14 住友ベークライト株式会社 Manufacture of copper lined laminated board

Also Published As

Publication number Publication date
JPS55127438A (en) 1980-10-02

Similar Documents

Publication Publication Date Title
US4755424A (en) Polyimide film having improved adhesive properties
JPH05162237A (en) Manufacture of composite laminated board
JPS6049422B2 (en) Manufacturing method for copper clad laminates
CN1145977C (en) Method for making micaceous product preferably in form of mica ribbon and resulting product
DE3313579A1 (en) METAL-LAMINATED LAMINATE AND METHOD FOR PRODUCING THE SAME
US3959410A (en) Butadiene grafted ethylene-vinyl acetate hot melt adhesive
JPH03211891A (en) Manufacture of copper-plated laminated board
JPS61154940A (en) Manufacture of copper lined laminated board
JPS58181641A (en) Metal lined board and its manufacture
CN109628012B (en) Moisture-proof, high-temperature-resistant and low-dielectric-constant hot-melt adhesive film and preparation method thereof
JPS58181640A (en) Metal lined board and its manufacture
JP3366047B2 (en) Insulated wire for multi-wire wiring board and multi-wire wiring board using this insulated wire
JPS58181639A (en) Metal lined board and its manufacture
JPS59221324A (en) Manufacture of composite laminate board
JPS58201399A (en) Method of producing radio wave absorber
JPS6122625B2 (en)
JPS6110922B2 (en)
JPS5968990A (en) Printed circuit board
JPH09293988A (en) Manufacture of shielding plate for multilayer printed wiring board
JPS59138444A (en) Manufacture of metal lined fiber reinforced plastic sheet
JPS6011354A (en) Composite laminated board
JPH08104859A (en) Flexible circuit board
JPS6122628B2 (en)
CN116514412A (en) Modified glass bead and preparation method and application thereof
JPS6129868B2 (en)