JPS6110922B2 - - Google Patents

Info

Publication number
JPS6110922B2
JPS6110922B2 JP8066478A JP8066478A JPS6110922B2 JP S6110922 B2 JPS6110922 B2 JP S6110922B2 JP 8066478 A JP8066478 A JP 8066478A JP 8066478 A JP8066478 A JP 8066478A JP S6110922 B2 JPS6110922 B2 JP S6110922B2
Authority
JP
Japan
Prior art keywords
treatment method
group
weight
mica
silicone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8066478A
Other languages
Japanese (ja)
Other versions
JPS557578A (en
Inventor
Ju Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Momentive Performance Materials Japan LLC
Original Assignee
Toshiba Silicone Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Silicone Co Ltd filed Critical Toshiba Silicone Co Ltd
Priority to JP8066478A priority Critical patent/JPS557578A/en
Publication of JPS557578A publication Critical patent/JPS557578A/en
Publication of JPS6110922B2 publication Critical patent/JPS6110922B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Aftertreatments Of Artificial And Natural Stones (AREA)
  • Paints Or Removers (AREA)
  • Inorganic Insulating Materials (AREA)
  • Insulating Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は有機ケイ素系硬化性物質により無機質
材料の表面を処理する方法に関し、さらに具体的
には前記の処理によつて無機質材料相互あるいは
有機樹脂との結合性をよくし、耐熱性、耐湿性、
電気絶縁性、および機械的強度にすぐれた電気絶
縁材料を形成する方法に関するものである。 従来、無機質材料を処理して耐熱性、耐湿性、
電気的性質などにすぐれた電気絶縁材料を得る方
法として、いくつかの提案がなされている。すな
わち、(イ)オキシムシラン3〜4重量%トルエン溶
液で集成マイカ箔を処理して、シリコーンワニス
で接着した耐水性にすぐれたシリコーンマイカテ
ープ、シリコーンマイカ板を製造する方法(日本
特許第820879号)、(ロ)ガラス強化熱硬化性樹脂お
よびガラス強化熱可塑性樹脂複合材における、ガ
ラス繊維とポリマーの間の接着力を向上させるた
めに、一般式R6SiX3(式中、R6はアミノ基、メ
ルカプト基、ビニル基、エポキシ基、またはメタ
クリロキシ基のような有機官能基であり、Xはケ
イ素に結合している加水分解性のアルコキシ基を
表わす)で示されるシリコーンモノマーでガラス
繊維を処理する方法がある。(イ)の方法において
は、集成マイカ箔は生マイカを焼成あるいは無焼
成によりりん片状に細粉化し、水に分散してから
抄造機で製造されているが、前述のオキシムシラ
ントルエン溶液から成る処理液は水に可溶性でな
いので、集成マイカ箔抄造時に処理を行うことが
できず、処理後の工程において処理を行わなけれ
ばならない不便があり、製造工程および工数の短
縮ができない。それゆえ水に可溶性である処理剤
の開発が望まれていた。(ロ)の方法、すなわちガラ
ス繊維および各種の無機質フイラーなどの補強材
もしくは充填材に、有機質ポリマーから成る複合
材の結合強度を向上させるために、各種のシラン
モノマーを水で稀釈して処理する方法は、γ−ア
ミノプロピルトリエトキシシラン、ビニルトリク
ロロシラン、γ−メタアクリルオキシプロピルト
リメトキシシラン、γ−グリシドオキシプロピル
トリメトキシシランなどの従来用いられているシ
ランモノマーの水溶液が、濃度5重量%以下でな
いと不安定であるという欠点がある。またこれら
のシランモノマーは集成マイカ箔に対しては効果
が不十分で、特殊な付加重合性のシリコーンワニ
スを添加して集成マイカ箔の接着材として使用さ
れる以外、シリコーンマイカ製品には使用されて
いない。 本発明は前述のような欠点を改良すべく、シラ
ン濃度を比較的高くしても安定な水可溶性の溶液
で、無機質材料の処理がしやすく、有機樹脂との
反応性にもすぐれたシリコーン組成物について研
究を行つた結果、本発明によつて提案される。オ
キシムシランまたはその部分加水分解物とアミノ
基含有シランまたはその部分加水分解物とから成
る混合物、またはそれらの反応生成物を主成分と
する水溶液が、無機質材料の表面の改質性にすぐ
れ、有機樹脂との反応性を向上して、耐熱性、耐
湿性、電気絶縁性、機械的強度にすぐれた電気絶
縁材料の製造を可能ならしめることを見出した。 なお、本発明と同様にオキシムシランを用いる
ものに、アルキド樹脂、ポリエステル樹脂、ポリ
エーテル樹脂、エポキシ樹脂、フエノール樹脂、
およびこれらをシリコーン、ポリアミドなどで変
性した水酸基含有塗料用樹脂とケイ素原子に直結
したオキシム基を1分子中に少なくとも2個有す
るオキシムシランとを、樹脂中の水酸基1個あた
りオキシムシラン1モル以上の割合で含有してな
る塗料用樹脂組成物により、保存安定性と常温硬
化性にすぐれた塗膜を形成する方法(特開昭52−
101234号公報)がある。しかしこれは、塗料用シ
リコーン樹脂の硬化促進剤としてオキシムシラン
を用いたもので、無機質材料の処理による耐湿性
などの向上には触れていない。 すなわち、本発明は、無機質材料を、(1)一般式
Si(ONCR2R34-o(式中、R1は1価の炭化水
素基、R2およびR3は、互に同一または相異な
る、水素原子および1価の炭化水素基から成る群
より選ばれた1価の基、nは平均0〜2の数を表
わす)で示されるオキシムシランまたはその部分
加水分解物、1重量部と、(2)一般式ANHR4Si
(OR53(式中、Aは水素原子、アルキル基およ
びアミノアルキル基から成る群より選ばれた1価
の基、R4は2価の炭化水素基、R5は互に同一ま
たは相異なる、炭素数1〜2のアルキル基を表わ
す)で示されるアミノ基含有シランまたはその部
分加水分解物、1〜10重量部とを水系溶媒中で混
合して得た混合物、および前記(1)、(2)の反応生成
物から成る群より選ばれた有機ケイ素系硬化性物
質で処理することを特徴とする、無機質材料の処
理方法に関するものである。 本発明で使用される無機質材料としては、はが
しマイカ、集成マイカのようなマイカ箔、アスベ
スト、ガラスクロスなどが例示される。これらの
無機質材料の中で、硬質のマスコバイト系の集成
マイカ箔が、電気絶縁材料として加工性、経済性
にすぐれるため多く用いられているが、耐湿性が
劣る。本発明で用いられる有機ケイ素系硬化性物
質は、この耐湿性の改質に非常に有効に作用す
る。またアスベストの場合は集成マイカ箔以上に
耐湿性に劣るが、この場合も同様な効果がもたら
される。 本発明に使用される有機ケイ素系硬化性物質
は、(1)オキシムシランまたはその部分加水分解物
と、(2)アミノ基含有シランまたはその部分加水分
解物との、混合物ないし反応生成物であり、反応
生成物に前記(1)、(2)、またはその双方が共存して
いてもさしつかえない。(1)のオキシムシランは、
一般式R Si(ONCR2R34-o(式中、R1、R2、R3
およびnは前述のとおり)で示されるもので、
R1で示される1価の炭化水素基としてはメチル
基、ビニル基、もしくはフエニル基などが例示さ
れるが、原料が容易に得られることから、メチル
基が最も一般的である。またこれは、同種または
異種のものを組合せて使用してもよい。R2およ
びR3は水素原子もしくは1価の炭化水素基であ
り、メチル基、エチル基、プロピル基、ブチル
基、シクロヘキシル基などが例示され、同種また
は異種のものを組合せて使用してもよい。nは0
〜3の範囲で、同一または相異なるものの混合物
でもよいが、良好な硬化性を得るには、平均0〜
2の範囲でなければならない。さらに、良好な架
橋性を示し、かつ容易に入手できる点で、n=1
であることが好ましい。このオキシムシランは、
次のようにして容易に製造できる。たとえば、四
塩化ケイ素、メチルトリクロロシラン、ジメチル
ジクロロシラン、トリメチルクロロシラン、フエ
ニルトリクロロシラン、ジフエニルジクロロシラ
ン、ビニルトリクロロシラン、メチルビニルジク
ロロシランなどのクロロシラン類、またはこれら
の混合物と、アセトオキシム、メチルエチルケト
オキシム、ブチルアルドオキシム、メチルブチル
ケトオキシムなどのオキシム類とを、ピリジンな
どの塩酸捕獲剤の存在下で脱塩酸反応させること
により得られる。このようにして得られたオキシ
ムシランやその部分加水分解物は、次に可溶性の
溶媒に溶解し、10〜30重量%濃度に調整した溶液
として用いるのが実際的である。濃度が10重量%
未満では、多量の溶媒を使用するので効率が悪
く、また、濃度が30重量%を越えると、後述の成
分(2)と混合する際にゲルを発生しやすいからであ
る。溶媒としては、水および成分(1)と混合しうる
ものなら何でもよく、メタノール、エタノール、
イソプロパノールなどの1価のアルコール類やア
セトンが例示されるが、引火性が低く、取扱の容
易な1価のアルコール類を用いることが好まし
い。 (2)のアミノ基含有シランは、一般式ANHR4Si
(OR53(式中、A、R4およびR5は前述のとお
り)で示されるもので、Aとしては水素原子のほ
か、メチル基、エチル基、プロピル基のようなア
ルキル基、β−アミノエチル基のようなアミノア
ルキル基などが例示される。原料が入手しやすい
こと、有効に作用することから水素原子が最も一
般的である。R4が示される2価の炭化水素基と
してはメチレン基、エチレン基、プロピレン基、
ブチレン基などが例示されるが、合成の容易さ、
水溶液中での安定性にすぐれていることから、プ
ロピレン基であることが好ましい。OR5はメトキ
シ基またはエトキシ基である。このアミノ基含有
シランとしてはたとえば、γ−アミノプロピルト
リエトキシシランおよびγ−アミノプロピルトリ
メトキシシランなどがある。また、これらのアミ
ノ基含有シランに若干の水を加え、加温すること
によつて部分加水分解縮合を行つて、その一部ま
たは全部をアミノ基含有シロキサンにすることが
できる。このようなアミノ基含有シランまたはそ
の部分加水分解物を水系溶媒に溶解して好ましく
は5〜10重量%濃度に調整した溶液に、(1)の溶液
を徐々に滴下して混合する。濃度が10重量%を越
すと、(1)と(2)を混合する際の反応が急激に起こ
り、反応を制御しないと好ましくない副反応を起
こしやすい。また、5重量%未満では、生成物の
濃度が薄くなりすぎて、処理の際の効率が悪い。
水系溶媒としては、水、1価のアルコール類、お
よびそれらの混合液が例示されるが、これらのア
ミノ基含有シランおよびその部分加水分解物は水
に溶解するので、水を用いるのが有利である。水
は、滴下の際に発熱を伴うので、急激な発熱をし
ないよう徐々に冷却しながら混合する必要があ
る。このとき、若干の水不溶性ゲル状物が発生す
るが、これは紙または200メツシユ以上の金網
で過すれば容易に除去でき、透明で安定な有機
ケイ素系硬化性物質が得られ、必要により水また
はアルコール類で容易に稀釈して使用することが
できる。このようにして、(1)のオキシムシランま
たはその部分加水分解物と、(2)のアミノ基含有シ
ランまたはその部分加水分解物とを混合すること
により、有機ケイ素系硬化性物質を得ることがで
きる。混合の際に、その一部または全部を反応さ
せて、オキシム基とアミノ基の双方を含む縮合物
にしてもよく、また、このような反応生成物と成
分(1)、成分(2)、またはその双方を共存せしめても
さしつかえない。滴下温度を上げることによつて
この反応は促進される。ただし、あまり反応が進
みすぎると、水ないし水系溶媒に不溶性の高分子
物質を生成するので、反応を制御しなければなら
ない。 こうして得られた有機ケイ素系硬化性物質に用
いられる成分(1)と成分(2)の割合は、成分(1)1重量
部に対して、成分(2)1〜10重量部、好ましくは
1.5〜5重量部の範囲である。成分(1)がこの範囲
より少なすぎると、耐水性の付与など、すぐれた
処理効果が得られないし、逆に多すぎると硬化性
物質は不安定になり、水に不溶性のゲル状物が発
生しやすいからである。なお、硬化性物質中の主
成分含有量は、成分(1)が2〜4重量%、成分(2)が
4〜9重量%の範囲が適当である。この範囲未満
では耐水性を付与する効果が少ないし、この範囲
を越えるとゲル状物が発生しやすくなり不安定で
ある。 このようにして得られた有機ケイ素系硬化性物
質は、水性溶液の形で無機材料の表面の改良に用
いることができる。すなわち、水性溶液として含
浸、塗布などの方法によつて無機質材料の表面に
有機ケイ素系硬化性物質を付着せしめたのち、水
性溶媒を乾燥除去して硬化皮膜を形成せしめる。
含浸、塗布は、たとえばマイカ箔抄造時の水溶液
中に添加、処理液浴の使用、スプレー塗布などの
方法が推奨される。乾燥は通常80〜150℃で10〜
30分間行えば十分である。 無機質材料に対する硬化性物質の付着量は、
0.05〜0.2重量%程度でよく、付着量が少なすぎ
ると十分な処理効果が得られないが、多すぎると
処理された無機質材料が硬くなり、可撓性のよい
絶縁チツプなどが得られない。 このようにして得られた、硬化皮膜により改質
された無機質材料は、そのままの状態で、または
これを加圧成形して、耐湿性を帯びた無機質材料
として用いてもよいが、さらに、これを有機樹脂
で処理することにより、有機樹脂と無機質材料と
の間の結合強度を上げることができる。 有機樹脂としては、主にシリコーン樹脂、エポ
キシ、ポリエステルなどの有機樹脂で変性したシ
リコーン樹脂、イミド樹脂、エポキシ樹脂、ポリ
エステル樹脂、ポリエーテル樹脂などの熱硬化性
樹脂が例示される。なお、本発明の硬化性物質
は、これらの熱硬化性樹脂の分子中に水酸基があ
れば、非常に有効に作用し、樹脂の硬化を促進す
る。 本発明の有機ケイ素系硬化性物質は、マイカ箔
に有用な効果をもたらすオキシムシランをベース
としているが、水溶性化するため、他の有用な成
分であるアミノシランとの配合によりこの問題を
解決した。この有機ケイ素系硬化性物質を集成マ
イカ箔の抄造時に、マイカ箔原料の水分散中に添
加するか、あるいは抄造時集成マイカ箔乾燥工程
前にスプレー塗布するかにより、容易にすぐれた
効果が得られる。またこの有機ケイ素系硬化性物
質はアルコール類にも可溶性であるので、このア
ルコール稀釈液は、従来のオキシムシランのトル
エン溶液と同じ使い方をしても同等の効果が得ら
れる。 本発明は前記のように、水あるいはアルコール
可溶性の有機ケイ素系硬化性物質で、マイカ、ア
スベストなどの無機質材料の表面を改良すること
にあり、その処理性にすぐれ、さらにマトリツク
スとして使用される水酸基含有のシリコーン樹
脂、ポリイミド樹脂、エポキシ樹脂、ポリエステ
ル樹脂などの熱硬化性樹脂材料の硬化促進による
接着性が向上し、耐熱性、耐湿性、電気絶縁性、
機械的強度にすぐれた電気絶縁材料が得られる。 したがつて本発明は、つぎに列記するような特
徴を有する。 (1) 従来の処理方法と比べて、無機質材料と有機
樹脂の相互に有効に反応するため、すぐれた電
気絶縁材料が得られる。 (2) 硬化性物質は保存安定性がよく、必要により
水あるいはアルコール類で稀釈できるので、経
済性にすぐれ、きわめて取扱いやすい。 (3) 集成マイカ箔のように、マイカ箔原料を水に
分散して抄造する場合、硬化性物質を抄造水に
添加したり、あるいは抄造時にスプレー塗布が
容易にでき、集成マイカ箔の改良に有用であ
る。 したがつて本発明は、シリコーン樹脂マイカ積
層板、シリコーン樹脂マイカテープ、シリコーン
樹脂アスベスト板、シリコーン樹脂ガラス積層
板、シリコーン樹脂ガラステープ、およびこれら
に対応するエポキシ樹脂含浸物質、ポリエステル
樹脂含浸物質などの製造に用いられる。 以下、実施例および比較例により本発明の作用
効果を示す。なお、以下の実施例および比較例に
おいて、部はすべて重量部を表わす。 実施例 1 メチルトリス(メチルエチルケトオキシム)シ
ラン3部をメタノール10部に溶解し、別にγ−ア
ミノプロピルトリエトキシシラン7部を中性の水
80部に溶解し、前者の溶液を後者の溶液に、急激
に発熱しないように徐々に滴下しつつ撹拌混合
し、200メツシユ金網で過して透明な硬化性物
質を調製した。この硬化性物質はオキシムシラン
3重量%、アミノ基含有シラン7重量%を含有
し、比重0.990(25℃)、水素イオン濃度10.6であ
る。 得られた硬化性物質を水で約50倍に稀釈して、
厚さ0.08mmの硬質集成マイカ箔に0.2重量%付着
するようにスプレー塗布し、110℃の温度で10分
間脱水乾燥した。しかるのち、シリコーンワニス
TSR125(東芝シリコーン(株)商品名)の樹脂
分20重量%トルエン溶液を集成マイカ箔に10重量
%塗布し、100℃の温度で10分間乾燥した。この
ようにして処理した集成マイカプリプレグ材を7
枚重ね合わせ、180℃の熱板上で55Kg/cm2の圧力を
加え45分間保持して、シリコーンマイカ板を製造
した。 また比較のため前述の硬化性物質のかわりに、
メチルトリス(メチルエチルケトオキシム)シラ
ンの3重量%トルエン溶液(比較例1)、γ−ア
ミノプロピルトリエトキシシランの3重量%トル
エン溶液(比較例2)を用いた他は同一条件で、
また前処理を施さなかつた他は同一条件で(比較
例3)、それぞれシリコーンマイカ板を製造し
た。 これらのシリコーンマイカ板を水に浸漬し、吸
水率、浸水後の曲げ強さ、230℃で48時間の高温
加熱後の特性の変化などを測定したところ、表1
に示すとおりであつた。なお、表中前処理剤の付
着量はマイカの重量に対する重量%で、シリコー
ン樹脂付着量はシリコーンマイカ板中のシリコー
ン樹脂の重量%である。
The present invention relates to a method of treating the surface of an inorganic material with an organosilicon-based curable substance, and more specifically, the above treatment improves the bonding properties of the inorganic materials with each other or with an organic resin, thereby improving heat resistance and moisture resistance. ,
The present invention relates to a method for forming an electrically insulating material with excellent electrical insulation and mechanical strength. Conventionally, inorganic materials have been processed to make them heat resistant, moisture resistant,
Several proposals have been made as methods for obtaining electrically insulating materials with excellent electrical properties. That is, (a) a method for producing silicone mica tapes and silicone mica plates with excellent water resistance bonded with silicone varnish by treating a laminated mica foil with a 3 to 4% by weight toluene solution of oxime silane (Japanese Patent No. 820879). ), (b) In order to improve the adhesion between glass fibers and polymers in glass-reinforced thermosetting resins and glass-reinforced thermoplastic resin composites, the general formula R 6 SiX 3 (wherein R 6 is amino treatment of glass fibers with a silicone monomer having an organic functional group such as a mercapto group, a vinyl group, an epoxy group, or a methacryloxy group, where X represents a silicon-bonded hydrolyzable alkoxy group. There is a way to do it. In method (a), laminated mica foil is produced by pulverizing raw mica into flakes by firing or not firing it, dispersing it in water, and then using a paper-making machine. Since the treatment liquid is not soluble in water, it cannot be treated during the production of laminated mica foil, and there is the inconvenience of having to carry out the treatment in a post-treatment process, making it impossible to shorten the manufacturing process and the number of man-hours. Therefore, it has been desired to develop a treatment agent that is soluble in water. In method (b), reinforcing materials or fillers such as glass fibers and various inorganic fillers are treated with various silane monomers diluted with water in order to improve the bonding strength of composite materials made of organic polymers. The method uses an aqueous solution of conventionally used silane monomers such as γ-aminopropyltriethoxysilane, vinyltrichlorosilane, γ-methacryloxypropyltrimethoxysilane, and γ-glycidoxypropyltrimethoxysilane at a concentration of 5% by weight. % or less, it has the disadvantage of being unstable. In addition, these silane monomers are not sufficiently effective for laminated mica foils, and are not used for silicone mica products except when a special addition-polymerizable silicone varnish is added and used as an adhesive for laminated mica foils. Not yet. In order to improve the above-mentioned drawbacks, the present invention has developed a silicone composition that is a water-soluble solution that is stable even at relatively high silane concentrations, is easy to treat inorganic materials, and has excellent reactivity with organic resins. As a result of research on the object, the present invention is proposed. A mixture of oxime silane or a partial hydrolyzate thereof and an amino group-containing silane or a partial hydrolyzate thereof, or an aqueous solution containing the reaction product thereof as a main component, has excellent properties for modifying the surface of inorganic materials. It has been discovered that by improving the reactivity with resin, it is possible to produce an electrically insulating material with excellent heat resistance, moisture resistance, electrical insulation, and mechanical strength. In addition, as in the present invention, oxime silane is used in alkyd resins, polyester resins, polyether resins, epoxy resins, phenol resins,
and a hydroxyl group-containing paint resin modified with silicone, polyamide, etc., and an oxime silane having at least two oxime groups in one molecule directly bonded to a silicon atom, in an amount of 1 mole or more of oxime silane per hydroxyl group in the resin. A method for forming a coating film with excellent storage stability and room-temperature curability using a coating resin composition containing
101234). However, this uses oxime silane as a curing accelerator for silicone resins for paints, and does not mention the improvement of moisture resistance through treatment of inorganic materials. That is, the present invention provides an inorganic material having the general formula R 1 o Si(ONCR 2 R 3 ) 4-o (wherein R 1 is a monovalent hydrocarbon group, and R 2 and R 3 are mutually oxime silane or its partial hydrolyzate represented by a monovalent group selected from the group consisting of a hydrogen atom and a monovalent hydrocarbon group, where n is the same or different from the group consisting of a hydrogen atom and a monovalent hydrocarbon group, where n represents an average number of 0 to 2; 1 part by weight and (2) general formula ANHR 4 Si
(OR 5 ) 3 (wherein A is a monovalent group selected from the group consisting of a hydrogen atom, an alkyl group and an aminoalkyl group, R 4 is a divalent hydrocarbon group, and R 5 are the same or different) A mixture obtained by mixing 1 to 10 parts by weight of a different amino group-containing silane (representing an alkyl group having 1 to 2 carbon atoms) or a partial hydrolyzate thereof in an aqueous solvent, and (1) The present invention relates to a method for treating an inorganic material, characterized in that it is treated with an organosilicon-based curable substance selected from the group consisting of the reaction products of (2). Examples of inorganic materials used in the present invention include peelable mica, mica foil such as laminated mica, asbestos, and glass cloth. Among these inorganic materials, hard muscovite-based laminated mica foil is often used as an electrical insulating material because of its excellent workability and economical efficiency, but its moisture resistance is poor. The organosilicon-based curable substance used in the present invention acts very effectively on this moisture resistance modification. Although asbestos has lower moisture resistance than laminated mica foil, the same effect can be achieved in this case as well. The organosilicon-based curable substance used in the present invention is a mixture or reaction product of (1) oxime silane or its partial hydrolyzate and (2) amino group-containing silane or its partial hydrolyzate. , the above (1), (2), or both may coexist in the reaction product. The oxime silane (1) is
General formula R 1 o Si(ONCR 2 R 3 ) 4-o (where R 1 , R 2 , R 3
and n are as described above),
Examples of the monovalent hydrocarbon group represented by R 1 include a methyl group, a vinyl group, and a phenyl group, but the methyl group is the most common because the raw material is easily obtained. Moreover, these may be used in combination of the same type or different types. R 2 and R 3 are hydrogen atoms or monovalent hydrocarbon groups, and examples thereof include methyl, ethyl, propyl, butyl, and cyclohexyl groups, and the same or different types may be used in combination. . n is 0
-3, and may be the same or a mixture of different ones, but in order to obtain good curability, the average
Must be in the range 2. Furthermore, n=1
It is preferable that This oxime silane is
It can be easily manufactured as follows. For example, silicon tetrachloride, chlorosilanes such as methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, phenyltrichlorosilane, diphenyldichlorosilane, vinyltrichlorosilane, methylvinyldichlorosilane, or mixtures thereof, and acetoxime, methyl ethyl keto It is obtained by subjecting oximes such as oxime, butyraldoxime, and methylbutylketoxime to a dehydrochlorination reaction in the presence of a hydrochloric acid scavenger such as pyridine. It is practical to dissolve the oxime silane or its partial hydrolyzate thus obtained in a soluble solvent and use it as a solution adjusted to a concentration of 10 to 30% by weight. Concentration is 10% by weight
If the concentration is less than 30% by weight, a large amount of solvent is used, resulting in poor efficiency, and if the concentration exceeds 30% by weight, gels are likely to form when mixed with component (2), which will be described later. The solvent may be anything as long as it is miscible with water and component (1), such as methanol, ethanol,
Examples include monohydric alcohols such as isopropanol and acetone, but it is preferable to use monohydric alcohols that have low flammability and are easy to handle. The amino group-containing silane (2) has the general formula ANHR 4 Si
(OR 5 ) 3 (in the formula, A, R 4 and R 5 are as described above), where A can be a hydrogen atom, an alkyl group such as a methyl group, an ethyl group or a propyl group, or a β Examples include aminoalkyl groups such as -aminoethyl group. Hydrogen atoms are the most common because raw materials are easily available and they work effectively. Divalent hydrocarbon groups represented by R 4 include methylene group, ethylene group, propylene group,
Examples include butylene groups, but ease of synthesis,
A propylene group is preferred because it has excellent stability in an aqueous solution. OR 5 is a methoxy group or an ethoxy group. Examples of the amino group-containing silane include γ-aminopropyltriethoxysilane and γ-aminopropyltrimethoxysilane. Further, by adding a small amount of water to these amino group-containing silanes and heating them, partial hydrolysis condensation can be carried out to convert part or all of the silanes into amino group-containing siloxanes. The solution (1) is gradually added dropwise to a solution in which such an amino group-containing silane or a partially hydrolyzed product thereof is dissolved in an aqueous solvent and adjusted to a concentration of preferably 5 to 10% by weight. If the concentration exceeds 10% by weight, a reaction occurs rapidly when (1) and (2) are mixed, and unless the reaction is controlled, undesirable side reactions are likely to occur. Moreover, if it is less than 5% by weight, the concentration of the product becomes too thin, resulting in poor processing efficiency.
Examples of the aqueous solvent include water, monohydric alcohols, and mixtures thereof; however, since these amino group-containing silanes and their partial hydrolysates dissolve in water, it is advantageous to use water. be. Since water generates heat when added dropwise, it is necessary to gradually cool it while mixing to prevent sudden heat generation. At this time, some water-insoluble gel is generated, but this can be easily removed by passing it through paper or a wire mesh of 200 mesh or more.A transparent and stable organosilicon-based curable material is obtained, and if necessary Alternatively, it can be easily diluted with alcohol and used. In this way, an organosilicon-based curable substance can be obtained by mixing (1) oxime silane or its partial hydrolyzate with (2) amino group-containing silane or its partial hydrolyzate. can. During mixing, part or all of them may be reacted to form a condensate containing both oxime groups and amino groups, and such reaction products and components (1), (2), Or, it is okay to let both of them coexist. This reaction is accelerated by increasing the drop temperature. However, if the reaction proceeds too much, a polymer substance that is insoluble in water or an aqueous solvent will be produced, so the reaction must be controlled. The ratio of component (1) and component (2) used in the organosilicon-based curable material thus obtained is 1 to 10 parts by weight, preferably 1 to 10 parts by weight of component (2) to 1 part by weight of component (1).
It ranges from 1.5 to 5 parts by weight. If the amount of component (1) is too small than this range, excellent treatment effects such as imparting water resistance cannot be obtained, and on the other hand, if it is too large, the curable substance becomes unstable and a gel-like substance insoluble in water is generated. This is because it is easy to do. The content of the main components in the curable material is suitably in the range of 2 to 4% by weight for component (1) and 4 to 9% by weight for component (2). If it is less than this range, the effect of imparting water resistance will be small, and if it exceeds this range, gel-like substances will be likely to occur and it will be unstable. The organosilicon-based curable substance thus obtained can be used in the form of an aqueous solution to improve the surface of inorganic materials. That is, an organosilicon-based curable substance is attached to the surface of an inorganic material by impregnation or coating as an aqueous solution, and then the aqueous solvent is removed by drying to form a cured film.
For impregnation and application, recommended methods include, for example, adding it to an aqueous solution during mica foil papermaking, using a treatment liquid bath, and spraying. Drying is usually at 80-150℃ for 10~
30 minutes is enough. The amount of hardenable substance attached to inorganic material is
The amount may be about 0.05 to 0.2% by weight; if the amount is too small, a sufficient treatment effect will not be obtained, but if it is too large, the treated inorganic material will become hard, making it impossible to obtain insulating chips with good flexibility. The thus obtained inorganic material modified with a cured film may be used as it is, or may be pressure-molded and used as a moisture-resistant inorganic material. By treating the material with an organic resin, the bond strength between the organic resin and the inorganic material can be increased. Examples of organic resins include silicone resins modified with organic resins such as silicone resins, epoxy, and polyesters, and thermosetting resins such as imide resins, epoxy resins, polyester resins, and polyether resins. In addition, the curable substance of the present invention acts very effectively and promotes curing of the resin if there is a hydroxyl group in the molecule of these thermosetting resins. The organosilicon-based curable material of the present invention is based on oxime silane, which has a useful effect on mica foil, but this problem was solved by blending it with aminosilane, another useful ingredient, to make it water-soluble. . Excellent effects can be easily obtained by adding this organosilicon-based curable substance to the water dispersion of mica foil raw materials during papermaking of laminated mica foil, or by spraying it before the drying process of laminated mica foil during papermaking. It will be done. Furthermore, since this organosilicon-based curable substance is also soluble in alcohols, this alcohol diluted solution can be used in the same manner as a conventional toluene solution of oxime silane to obtain the same effect. As mentioned above, the present invention is to improve the surface of inorganic materials such as mica and asbestos with a water- or alcohol-soluble organosilicon hardening substance, which has excellent processability and also has hydroxyl groups used as a matrix. Adhesion is improved by accelerating the curing of thermosetting resin materials such as silicone resin, polyimide resin, epoxy resin, and polyester resin, which improves heat resistance, moisture resistance, electrical insulation,
An electrically insulating material with excellent mechanical strength can be obtained. Therefore, the present invention has the following features. (1) Compared to conventional processing methods, the inorganic material and organic resin react effectively with each other, resulting in an excellent electrically insulating material. (2) Curable substances have good storage stability and can be diluted with water or alcohol if necessary, making them economical and extremely easy to handle. (3) When making paper by dispersing mica foil raw materials in water, such as laminated mica foil, it is possible to add a curable substance to the papermaking water or to easily spray it during paper making, which can be used to improve laminated mica foil. Useful. Therefore, the present invention provides silicone resin mica laminates, silicone resin mica tapes, silicone resin asbestos boards, silicone resin glass laminates, silicone resin glass tapes, and corresponding epoxy resin-impregnated substances, polyester resin-impregnated substances, etc. Used in manufacturing. Hereinafter, the effects of the present invention will be illustrated by Examples and Comparative Examples. In addition, in the following examples and comparative examples, all parts represent parts by weight. Example 1 3 parts of methyltris(methylethylketoxime)silane was dissolved in 10 parts of methanol, and 7 parts of γ-aminopropyltriethoxysilane was dissolved in neutral water.
The former solution was gradually added dropwise to the latter solution while stirring to avoid sudden heat generation, and the mixture was stirred and passed through a 200-mesh wire gauze to prepare a transparent curable material. This curable material contains 3% by weight of oxime silane and 7% by weight of amino group-containing silane, has a specific gravity of 0.990 (at 25°C), and a hydrogen ion concentration of 10.6. The obtained curable substance was diluted approximately 50 times with water,
It was spray applied to a hard laminated mica foil with a thickness of 0.08 mm so that it adhered at 0.2% by weight, and dehydrated and dried at a temperature of 110°C for 10 minutes. Afterwards, silicone varnish
A 20% by weight toluene solution of TSR125 (trade name of Toshiba Silicone Corporation) resin was applied to a laminated mica foil at 10% by weight and dried at a temperature of 100°C for 10 minutes. The laminated mica prepreg material treated in this way was
The sheets were piled up, and a pressure of 55 kg/cm 2 was applied and held for 45 minutes on a hot plate at 180°C to produce a silicone mica plate. Also, for comparison, instead of the above-mentioned hardening substance,
The same conditions were used except that a 3% by weight toluene solution of methyltris(methylethylketoxime)silane (Comparative Example 1) and a 3% by weight toluene solution of γ-aminopropyltriethoxysilane (Comparative Example 2) were used.
In addition, silicone mica plates were manufactured under the same conditions except that no pretreatment was performed (Comparative Example 3). These silicone mica plates were immersed in water and the water absorption rate, bending strength after immersion in water, and changes in properties after high-temperature heating at 230°C for 48 hours were measured, and the results are shown in Table 1.
It was as shown in. In addition, in the table, the adhesion amount of the pretreatment agent is weight % with respect to the weight of mica, and the adhesion amount of silicone resin is the weight % of the silicone resin in the silicone mica plate.

【表】【table】

【表】 実施例 2 実施例1の硬化性物質を用いて、同様に厚さ
0.04mmの集成マイカ箔にスプレー塗布乾燥処理し
たものを2枚と、厚さ0.03mmのガラスクロス1枚
とを重ね合わせて、シリコーンワニスTSR117
(東芝シリコーン(株)商品名)の40重量%キシ
レン溶液を330g/m2の割合で塗布し、100℃で30
分間乾燥してから15mm幅にカツトして、可撓性に
富んだシリコーンマイカガラステープを製造し
た。 上記によつて得たシリコーンマイカガラステー
プを5×18×350mmのアルミバーに1/2ラツプで
200mm長さに4回巻したモデル絶縁コイルを作成
してから、150℃で20時間加熱処理を施してシリ
コーンマイカガラスを一体化せしめた。次いでこ
の絶縁層上に第1図に示すように、100mm幅の電
極を設け、95%RHの湿気中に放置して吸湿日数
による絶縁抵抗の変化を測定したところ、第2図
の曲線Aに示すような測定値を得た。尚、第1図
に示す絶縁モデルコイルにおいて、1はシリコー
ンマイカガラステープ、2はガード電極(アルミ
箔)、3は側電極(アルミ箔)、4は側電極
(アルミ導体)である。 比較のため、硬化性物質による前処理を行わな
いほかは上記の例と同一条件で製造したシリコー
ンマイカガラス絶縁組織について、同じ条件で吸
湿日数による絶縁抵抗の変化を測定した結果は、
第2図の曲線Bのとおりであつた。 第2図から明らかなように、本発明によつた場
合は抵抗値の低下が少なく、耐水性のすぐれたシ
リコーンマイカ製品を得ることができた。 実施例 3 実施例1の硬化性物質をメタノールで約30倍に
稀釈した稀釈液を用いて、0.8mm厚のアスベスト
紙ベストロンGT−8(ジヨンスマンビル社商品
名)に含浸処理し、100℃で20分間乾燥した。乾
燥後の硬化性物質の付着量は0.63重量%であつ
た。しかるのち、シリコーンワニスTSR125の樹
脂分30重量%トルエン溶液をベストロンGT−8
に28重量%塗布し、100℃で15分間乾燥し、これ
らを10枚重ね合わせ180℃の熱板上で100Kg/cm2
圧力を加え1時間保持してシリコーンアスベスト
板を製造した。 また比較のため、上記の硬化性物質のかわりに
メチルトリス(メチルエチルケトオキシムシラ
ン)の3重量%メタノール溶液で同様にアスベス
ト紙処理を行つたもの(比較例4)、および前処
理を施さなかつたもの(比較例5)について、他
の条件を同一にしてシリコーンアスベスト板を製
造した。 これらのシリコーンアスベスト板の特性は表2
に示すとおりであつた。
[Table] Example 2 Using the curable material of Example 1, the thickness was determined in the same way.
Two sheets of 0.04 mm laminated mica foil spray-coated and dried and one sheet of 0.03 mm thick glass cloth were layered together and silicone varnish TSR117 was applied.
A 40% by weight xylene solution (trade name of Toshiba Silicone Co., Ltd.) was applied at a rate of 330g/ m2 , and
After drying for a minute, it was cut into 15 mm width to produce a highly flexible silicone mica glass tape. 1/2 wrap the silicone mica glass tape obtained above onto a 5 x 18 x 350 mm aluminum bar.
After creating a model insulated coil wound four times to a length of 200 mm, it was heat-treated at 150°C for 20 hours to integrate silicone mica glass. Next, as shown in Figure 1, a 100 mm wide electrode was placed on this insulating layer and left in a humidity of 95% RH to measure the change in insulation resistance depending on the number of days of moisture absorption. The measurements shown were obtained. In the insulated model coil shown in FIG. 1, 1 is a silicone mica glass tape, 2 is a guard electrode (aluminum foil), 3 is a side electrode (aluminum foil), and 4 is a side electrode (aluminum conductor). For comparison, the change in insulation resistance with the number of days of moisture absorption was measured under the same conditions for a silicone mica glass insulation structure manufactured under the same conditions as in the above example except that no pretreatment with a hardening substance was performed.The results are as follows.
It was as shown in curve B in Figure 2. As is clear from FIG. 2, in the case of the present invention, it was possible to obtain a silicone mica product with little decrease in resistance value and excellent water resistance. Example 3 Using a diluent obtained by diluting the hardening substance of Example 1 approximately 30 times with methanol, 0.8 mm thick asbestos paper Vestron GT-8 (trade name of Jones Manville Co., Ltd.) was impregnated with 100 Dry for 20 minutes at °C. The amount of curable material deposited after drying was 0.63% by weight. After that, a 30% by weight toluene solution of silicone varnish TSR125 was added to Vestron GT-8.
A silicone asbestos board was manufactured by applying 28% by weight of the silicone asbestos to the silicone asbestos, drying it at 100°C for 15 minutes, stacking 10 sheets together and applying a pressure of 100 kg/cm 2 on a hot plate at 180°C and holding it for 1 hour. For comparison, asbestos paper was similarly treated with a 3% methanol solution of methyl tris (methyl ethyl ketoxime silane) instead of the above-mentioned hardening substance (Comparative Example 4), and asbestos paper was not pretreated (Comparative Example 4). As for Comparative Example 5), a silicone asbestos board was manufactured under the same conditions. The properties of these silicone asbestos boards are shown in Table 2.
It was as shown in.

【表】 実施例 4 シリコーンワニスTSR117の代わりにエポキシ
樹脂を用いるほかは実施例2と同様にして、エポ
キシマイカガラステープを製造した。ただし、エ
ポキシ樹脂は次の配合のものを用い、160℃で5
分間乾燥してプリプレグを調製した。 エピコート1001(シエル化学社商品名) 80部 エピコート154(シエル化学社商品名) 20部 ジシアンジアミド 4部 ベンジルジメチルアミン 0.2部 エチレングリコールモノメチルエーテル 約80部 上記によつて得たエポキシマイカガラステープ
を実施例2と同様にしてモデル絶縁コイルを作成
してから、160℃で1時間加熱処理を施して、エ
ポキシマイカガラスを一体化せしめた。次いで実
施例2と同様にして、絶縁抵抗の耐湿変化を測定
したところ、第3図の曲線Cで示すような測定値
を得た。 比較のため、硬化性物質による前処理を行わな
いほかは上記と同一条件で製造することによつて
得られたエポキシマイカガラス絶縁組織につい
て、同じ条件で絶縁抵抗の耐湿変化を測定した結
果は、第3図に曲線Dで示すとおりであつた。 実施例2と同様に、本発明方法によつた場合は
抵抗値の低下が少なく、エポキシ樹脂ともよく適
合して、耐水性にすぐれたエポキシマイカ製品を
得ることができた。 実施例 5 表3に示す原料を用い、実施例1と同様にして
硬化性物質51〜56を調製した。ただし、硬化性物
質51に用いたγ−アミノプロピルトリエトキシシ
ランの部分加水分解物は、該シラン100部に水11
部を加え、75〜80℃で、生成するエタノールを留
去しながら1時間加熱することによつて得られた
ものをそのまま用いた。 こうして得られた硬化性物質を用い、以下、実
施例1と同様の方法で厚さ0.5mmのシリコーンマ
イカ板を製造して、その吸水率、曲げ強さの浸水
による変化、体積抵抗率の吸湿後の変化を測定し
たところ、表4に示すような結果が得られた。
[Table] Example 4 An epoxy mica glass tape was produced in the same manner as in Example 2 except that epoxy resin was used instead of silicone varnish TSR117. However, the following formulation of epoxy resin should be used, and the
A prepreg was prepared by drying for a minute. Epicoat 1001 (trade name of Ciel Kagaku Co., Ltd.) 80 parts Epicoat 154 (trade name of Ciel Kagaku Co., Ltd.) 20 parts dicyandiamide 4 parts benzyldimethylamine 0.2 parts ethylene glycol monomethyl ether Approximately 80 parts The epoxy mica glass tape obtained in the above manner was used as an example. A model insulated coil was created in the same manner as in 2, and then heat treated at 160°C for 1 hour to integrate the epoxy mica glass. Next, in the same manner as in Example 2, changes in insulation resistance against humidity were measured, and measured values as shown by curve C in FIG. 3 were obtained. For comparison, the moisture resistance change in insulation resistance was measured under the same conditions for an epoxy mica glass insulation structure obtained by manufacturing under the same conditions as above except that no pretreatment with a hardening substance was performed. It was as shown by curve D in FIG. As in Example 2, when the method of the present invention was used, it was possible to obtain an epoxy mica product with little decrease in resistance, good compatibility with epoxy resin, and excellent water resistance. Example 5 Curable substances 51 to 56 were prepared in the same manner as in Example 1 using the raw materials shown in Table 3. However, the partial hydrolyzate of γ-aminopropyltriethoxysilane used for curable substance 51 was prepared by mixing 100 parts of the silane with 11 parts of water.
The mixture was heated at 75 to 80° C. for 1 hour while distilling off the ethanol produced, and the resulting product was used as it was. Using the curable material obtained in this way, a silicone mica plate with a thickness of 0.5 mm was manufactured in the same manner as in Example 1, and its water absorption rate, change in bending strength due to water immersion, and moisture absorption volume resistivity. When the subsequent changes were measured, the results shown in Table 4 were obtained.

【表】【table】

【表】【table】

【表】 実施例 6 メチルトリス(メチルエチルケトオキシム)シ
ラン2部を、0.5重量%の水を含むエタノール30
部に溶解し、エタノールの還流温度に加温撹拌し
ながらγ−アミノプロピルトリエトキシシラン7
部を滴下して、両シランを部分共加水分解し、副
生した少量のゲル状物を別して、両シランの共
縮合体のエタノール溶液を得た。これを59部の水
で稀釈したものを硬化性物質として用いたほかは
実施例2と全く同様にして、シリコーンマイカガ
ラステープを製造した。 このようにして得られたシリコーンマイカガラ
ステープの常態、および95%RHの湿気中に28日
間放置後の絶縁抵抗を測定したところ、それぞれ
2.8×1013Ωおよび1.0×1012Ωであつた。 実施例 7 マスコバイト系硬質マイカ屑を強制水流中で物
理的に細片化した無焼成マイカ片5部を水95部中
に分散せしめ、これに実施例1で調製した硬化性
物質1部を添加して撹拌した。この分散体を丸網
式抄紙機を用いて、常法により集成マイカ箔を抄
造することにより、マイカ片の表面に硬化性物質
が約0.2%付着した厚さ0.12mmの集成マイカ箔を
得、これを100℃の温度で10分間加熱することに
より、硬化性物質を硬化せしめた。このものは、
硬化性物質を付着せしめない集成マイカ箔に比べ
て、吸水性が低く、耐湿性がすぐれていた。すな
わち、硬化性物質を添加して抄造した集成マイカ
箔、および比較のために硬化性物質を添加しない
で得た集成マイカ箔を30mm×100mmに切断して作
成した試験片の長さ方向の一端を水に湿したとこ
ろ、比較集成マイカが水の吸上げ現象を示したの
に対して、硬化性物質を添加して抄造した集成マ
イカ箔は、水の吸上げ現象を示さず、また水によ
る剥離現象は認られなかつた。また、水平に置い
た試験片の表面の水滴の接触角は90゜で、水によ
る濡れ現象は示さなかつた。 実施例 8 実施例7に用いたのと同様の無焼成マイカ片5
部と水95部より、丸網式抄紙機によつて集成マイ
カ箔を抄造する際に、巻取工程前の湿潤状態で、
実施例1で調製した硬化性物質を水で約30倍に稀
釈して得た処理液0.3部を噴霧塗装することによ
り、表面に硬化性物質を0.2%付着した厚さ0.08
mmの集成マイカ箔を得た。これを100℃の温度で
10分間加熱して、硬化性物質を硬化せしめたとこ
ろ、集成マイカ箔はすぐれた耐水性を示した。 この集成マイカ箔を、実施例1と同様にしてシ
リコーンワニスTSR125を塗布、硬化せしめ、実
施例1と同様の条件で測定を行つたところ、吸湿
後の体積抵抗率8.8×1015Ω・cm、高温加熱後の
吸水率0.87%の値を示した。
[Table] Example 6 Two parts of methyltris(methylethylketoxime)silane were added to 30% of ethanol containing 0.5% by weight of water.
7 of γ-aminopropyltriethoxysilane while heating and stirring to the reflux temperature of ethanol.
was added dropwise to partially co-hydrolyze both silanes, and a small amount of by-produced gel was separated to obtain an ethanol solution of a co-condensate of both silanes. A silicone mica glass tape was produced in exactly the same manner as in Example 2, except that this diluted with 59 parts of water was used as the curable material. The insulation resistance of the silicone mica glass tape obtained in this way was measured in the normal state and after being left in a humidity of 95% RH for 28 days.
They were 2.8×10 13 Ω and 1.0×10 12 Ω. Example 7 5 parts of unfired mica pieces obtained by physically cutting muscovite-based hard mica scraps into pieces in a forced water stream were dispersed in 95 parts of water, and 1 part of the curable material prepared in Example 1 was added to this. Add and stir. By using this dispersion to make a laminated mica foil in a conventional manner using a circular mesh paper machine, a laminated mica foil having a thickness of 0.12 mm with about 0.2% of the curable substance adhered to the surface of the mica pieces was obtained. The curable material was cured by heating this at a temperature of 100° C. for 10 minutes. This thing is
Compared to laminated mica foil to which no hardening substance is attached, it has lower water absorption and excellent moisture resistance. That is, one end in the length direction of a test piece made by cutting a laminated mica foil made by adding a curable substance and a laminated mica foil obtained without adding a curable substance to a size of 30 mm x 100 mm for comparison. When moistened with water, the comparative laminated mica exhibited a water wicking phenomenon, whereas the laminated mica foil made by adding a hardening substance did not exhibit the water wicking phenomenon, and No peeling phenomenon was observed. In addition, the contact angle of water droplets on the surface of the test piece placed horizontally was 90°, and no wetting phenomenon due to water was observed. Example 8 Unfired mica piece 5 similar to that used in Example 7
When making laminated mica foil using a circular wire paper machine from 95 parts of water and 95 parts of water, in a wet state before the winding process,
By spraying 0.3 part of the treatment solution obtained by diluting the curable substance prepared in Example 1 approximately 30 times with water, the surface was coated with a thickness of 0.08 cm with 0.2% of the curable substance attached.
A laminated mica foil of mm was obtained. This at a temperature of 100℃
When heated for 10 minutes to cure the curable material, the laminated mica foil exhibited excellent water resistance. This laminated mica foil was coated with silicone varnish TSR125 and cured in the same manner as in Example 1, and measured under the same conditions as in Example 1. The volume resistivity after moisture absorption was 8.8×10 15 Ω・cm; The water absorption rate after high temperature heating was 0.87%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はシリコーンマイカテープ絶縁モデルコ
イルの斜視図であり、寸法単位はmmである。第2
図はシリコーンマイカガラステープ絶縁モデルコ
イルの吸湿日数と絶縁抵抗との関係を示すグラフ
であり、第2図において、Aは実施例2に示され
るように、本発明によつて得られたシリコーンマ
イカガラステープ、Bは硬化性物質による処理を
行わないシリコーンマイカガラステープを用いて
作成したそれぞれモデルコイルのグラフである。
第3図はエポキシマイカガラステープ絶縁モデル
コイルの吸湿日数と絶縁抵抗との関係を示すグラ
フであり、第3図において、Cは実施例4に示さ
れるように、本発明によつて得られたエポキシマ
イカガラステープ、Dは硬化性物質による処理を
行わないエポキシマイカガラステープを用いて作
成したそれぞれモデルコイルのグラフである。 1……シリコーンマイカガラステープ、2……
ガード電極(アルミ箔)、3……側電極(アル
ミ箔)、4……側電極(アルミ導体)。
FIG. 1 is a perspective view of a silicone mica tape insulation model coil, and the dimensions are in mm. Second
The figure is a graph showing the relationship between the number of days of moisture absorption and the insulation resistance of a silicone mica glass tape insulation model coil. Glass tape and B are graphs of model coils made using a silicone mica glass tape that was not treated with a curable substance.
FIG. 3 is a graph showing the relationship between the number of days of moisture absorption and insulation resistance of an epoxy mica glass tape insulation model coil. In FIG. D is a graph of a model coil created using an epoxy mica glass tape and an epoxy mica glass tape that is not treated with a curable substance. 1... Silicone mica glass tape, 2...
Guard electrode (aluminum foil), 3... side electrode (aluminum foil), 4... side electrode (aluminum conductor).

Claims (1)

【特許請求の範囲】 1 無機質材料を、(1)一般式R Si
(ONCR2R34-o(式中、R1は1価の炭化水素基、
R2およびR3は、互に同一または相異なる、水素
原子および1価の炭化水素基から成る群より選ば
れた1価の基、nは平均0〜2の数を表わす)で
示されるオキシムシランまたはその部分加水分解
物、1重量部と、(2)一般式ANHR4Si(OR53(式
中、Aは水素原子、アルキル基およびアミノアル
キル基から成る群より選ばれた1価の基、R4
2価の炭化水素基、R5は互に同一または相異な
る、炭素数1〜2のアルキル基を表わす)で示さ
れるアミノ基含有シランまたはその部分加水分解
物、1〜10重量部とを、水系溶媒中で混合して得
た混合物、および前記(1)、(2)の反応生成物から成
る群より選ばれた有機ケイ素系硬化性物質で処理
することを特徴とする、無機質材料の処理方法。 2 (1)がオキシムシランである、特許請求の範囲
第1項記載の処理方法。 3 (1)のR1がメチル基である、特許請求の範囲
第1項記載の処理方法。 4 (1)のnが1である、特許請求の範囲第1項記
載の処理方法。 5 (2)がアミノ基含有シランである、特許請求の
範囲第1項記載の処理方法。 6 (2)のR4がプロピレン基である、特許請求の
範囲第1項記載の処理方法。 7 (1)を10〜30重量%の1価のアルコール溶液と
して用いる、特許請求の範囲第1項記載の処理方
法。 8 (2)のAが水素原子である、特許請求の範囲第
1項記載の処理方法。 9 (2)を5〜10重量%水溶液として用いる、特許
請求の範囲第1項記載の処理方法。 10 (2)を1.5〜5重量部用いる、特許請求の範
囲第1項記載の処理方法。 11 無機質材料としてマイカを用いる、特許請
求の範囲第1項記載の処理方法。 12 無機質材料としてアスベストを用いる、特
許請求の範囲第1項記載の処理方法。 13 硬化性物質の付着量が無機質材料の0.05〜
0.2重量%である、特許請求の範囲第1項記載の
処理方法。 14 無機質材料を有機ケイ素硬化性物質で処理
したのち、さらに有機樹脂で処理することを特徴
とする、特許請求の範囲第1項記載の処理方法。 15 有機樹脂がシリコーン樹脂である、特許請
求の範囲第14項記載の処理方法。 16 有機樹脂がエポキシ樹脂である、特許請求
の範囲第14項記載の処理方法。
[Claims] 1. An inorganic material having the general formula R 1 o Si
(ONCR 2 R 3 ) 4-o (wherein R 1 is a monovalent hydrocarbon group,
R 2 and R 3 are monovalent groups selected from the group consisting of a hydrogen atom and a monovalent hydrocarbon group, which are the same or different from each other; n is an oxime represented by an average number of 0 to 2; 1 part by weight of silane or its partial hydrolyzate; , R 4 is a divalent hydrocarbon group, R 5 is the same or different alkyl group having 1 to 2 carbon atoms) or a partial hydrolyzate thereof, 1- 10 parts by weight in an aqueous solvent, and an organosilicon-based curable substance selected from the group consisting of the reaction products of (1) and (2) above. A method for processing inorganic materials. 2. The treatment method according to claim 1, wherein (1) is oxime silane. 3. The treatment method according to claim 1, wherein R 1 in (1) is a methyl group. 4. The processing method according to claim 1, wherein n in (1) is 1. 5. The treatment method according to claim 1, wherein (2) is an amino group-containing silane. 6. The treatment method according to claim 1, wherein R 4 in (2) is a propylene group. 7. The treatment method according to claim 1, wherein (1) is used as a 10 to 30% by weight monohydric alcohol solution. 8. The treatment method according to claim 1, wherein A in (2) is a hydrogen atom. 9. The treatment method according to claim 1, wherein (2) is used as a 5 to 10% by weight aqueous solution. 10(2) in an amount of 1.5 to 5 parts by weight. 11. The treatment method according to claim 1, wherein mica is used as the inorganic material. 12. The treatment method according to claim 1, wherein asbestos is used as the inorganic material. 13 The amount of hardenable substance adhered to is 0.05 to 0.05 of that of inorganic materials.
The treatment method according to claim 1, wherein the amount is 0.2% by weight. 14. The treatment method according to claim 1, wherein the inorganic material is treated with an organosilicon curable substance and then further treated with an organic resin. 15. The treatment method according to claim 14, wherein the organic resin is a silicone resin. 16. The treatment method according to claim 14, wherein the organic resin is an epoxy resin.
JP8066478A 1978-07-03 1978-07-03 Method of treating inorganic material Granted JPS557578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8066478A JPS557578A (en) 1978-07-03 1978-07-03 Method of treating inorganic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8066478A JPS557578A (en) 1978-07-03 1978-07-03 Method of treating inorganic material

Publications (2)

Publication Number Publication Date
JPS557578A JPS557578A (en) 1980-01-19
JPS6110922B2 true JPS6110922B2 (en) 1986-04-01

Family

ID=13724623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8066478A Granted JPS557578A (en) 1978-07-03 1978-07-03 Method of treating inorganic material

Country Status (1)

Country Link
JP (1) JPS557578A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS578247A (en) * 1980-06-17 1982-01-16 Toshiba Silicone Co Ltd Room temperature curable polyorganosiloxane composition
JPS58130181A (en) * 1982-01-23 1983-08-03 電気化学工業株式会社 Manufacture of lightweight foamed concrete
JPH07107601B2 (en) * 1985-07-26 1995-11-15 富士写真フイルム株式会社 Silver halide color photographic light-sensitive material
JP2007216071A (en) * 2005-11-04 2007-08-30 Dainippon Ink & Chem Inc Asbestos treatment agent

Also Published As

Publication number Publication date
JPS557578A (en) 1980-01-19

Similar Documents

Publication Publication Date Title
EP1765929B1 (en) High thermal conductivity organic-inorganic resin materials with grafted functional groups bridging the organic part to the inorganic part and porous materials comprising the resin
US8039530B2 (en) High thermal conductivity materials with grafted surface functional groups
JP5050310B2 (en) Method for producing novel silicone polymer, silicone polymer produced by the method, thermosetting resin composition, resin film, metal foil with insulating material, insulating film with double-sided metal foil, metal-clad laminate, multilayer metal-clad Laminated board and multilayer printed wiring board
JPH0680122B2 (en) Silane coupling agent composition
JPS62132889A (en) Organosilane
JP5672073B2 (en) Curing agent for epoxy resin, curable resin composition, and cured product thereof
JPS6123221B2 (en)
JPS6110922B2 (en)
JPS6324624B2 (en)
US3790527A (en) Flexible tack free silicone resins
US4244911A (en) Mica-silicone composites
US3223577A (en) Silylated polyepoxides
US4029635A (en) Silicone resins useful for forming mica laminate
DE3852987T2 (en) Silicon-containing polyimide prepolymer, cured products derived therefrom and processes for their production.
CN110240618B (en) Phosphorus-containing amination coupling agent and preparation method and application thereof
EP0049128A1 (en) Insulated electrical coil
JP2009091330A (en) Silane compound, and glass fiber base material treated with its hydrolyzate
JPH069937A (en) Polyorganosiloxane composition for binder
JP2864898B2 (en) Silicone resin molded article and method for producing the same
JP2001284753A (en) Prepreg for printed wiring board and laminated board
JP3427465B2 (en) Modifier for composite material, method for producing the same, and composite material
JPS6026499B2 (en) Manufacturing method of epoxy resin composite material
JP4581242B2 (en) Binder for glass fiber nonwoven fabric, glass fiber nonwoven fabric and glass fiber reinforced resin
JPS5917670B2 (en) laminate board
JPS5935312A (en) Method of producing lumped mica sheet