JPS6047766B2 - crystal oscillation circuit - Google Patents

crystal oscillation circuit

Info

Publication number
JPS6047766B2
JPS6047766B2 JP15895878A JP15895878A JPS6047766B2 JP S6047766 B2 JPS6047766 B2 JP S6047766B2 JP 15895878 A JP15895878 A JP 15895878A JP 15895878 A JP15895878 A JP 15895878A JP S6047766 B2 JPS6047766 B2 JP S6047766B2
Authority
JP
Japan
Prior art keywords
voltage
node
crystal
amplifier
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15895878A
Other languages
Japanese (ja)
Other versions
JPS5580907A (en
Inventor
徹 秋山
勉 大岸
正之 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP15895878A priority Critical patent/JPS6047766B2/en
Publication of JPS5580907A publication Critical patent/JPS5580907A/en
Publication of JPS6047766B2 publication Critical patent/JPS6047766B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Oscillators With Electromechanical Resonators (AREA)

Description

【発明の詳細な説明】 本発明は水晶発振回路に関するものてあり、発振出力振
巾を小さくすることにより不要輻射を抑え、且つ集積回
路(IC)化を容易にしたものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a crystal oscillation circuit, which suppresses unnecessary radiation by reducing the oscillation output amplitude and facilitates integration into an integrated circuit (IC).

水晶発振回路はその周波数安定度が他の発振回路に比較
して優れているので、最近各種のデジタル機器に数多く
用いられるようになつてきた。
Since crystal oscillation circuits have superior frequency stability compared to other oscillation circuits, they have recently come to be used in a large number of various digital devices.

第1図は従来の水晶発振回路を示すものである。1は自
己バイアス用の抵抗2が接続された位相反転増幅器、3
は水晶振動子、4と5、6は夫々周波数微調整用の抵抗
とコンデンサーである。
FIG. 1 shows a conventional crystal oscillation circuit. 1 is a phase inversion amplifier to which a self-biasing resistor 2 is connected; 3
is a crystal oscillator, and 4, 5, and 6 are resistors and capacitors for frequency fine adjustment, respectively.

ここで、例えば、位相反転増幅器1として市販のC−M
OSロジックICを用いれば、その発振出力振巾は印加
された電源電圧に達する。斯様に発振出力振巾が大きく
なると不要輻射が問題となる。また、PLL(位相同期
ループ)シンセサイザー方式受信機のようなデジタル回
路とアナログ回路とが混在しているような機器に於いて
は他の信号に及ぼす障害も無視出来ない。殊にIC化が
進んだ場合には後者が問題となつて来る。斯かる欠点を
解消するには、第2図に示す如き水晶発振回路が考えら
れる。
Here, for example, a commercially available C-M
If an OS logic IC is used, its oscillation output amplitude will reach the applied power supply voltage. When the oscillation output amplitude increases in this way, unnecessary radiation becomes a problem. Furthermore, in devices such as PLL (phase-locked loop) synthesizer receivers in which digital circuits and analog circuits coexist, interference with other signals cannot be ignored. The latter becomes a problem especially when the use of ICs progresses. In order to eliminate this drawback, a crystal oscillation circuit as shown in FIG. 2 can be considered.

即ち、水晶発振出力を相互に逆方向に並列接続された二
個のシリコンダイオード8、9と電位発生回路にて構成
されたクランプ回路にてクランプするものである。斯か
る構成により位相反転増幅器1の動作点を変化させずに
シリコンダイオードの順方向のしきい値電圧O、7Vの
2倍の1.4Vの振幅に発振出力を抑えることが出来、
ICの外部端子に不要輻射を生じるような大きな信号が
出ないようにすることが出来Jる。第2図に示す回路に
於いては電位発生回路として位相反転増幅器10を利用
し、その入力端と出力端を直接若しくは抵抗性負荷を介
して接続して直流電圧を得るようにしたものであり、第
2図に示す回路はIC化が容易である。従つて2つの7
位相反転増幅器1、10を同一半導体基板上に形成した
場合には、温度条件、素子パラメータをほぼ等しくする
ことが可能てあり、以つて位相反転増幅器1の直流作動
電圧とノードNoの電圧を略一致させることができるか
ら、結局ノードN2の電圧を安定にクランプ出来る。7
は例えば後続するデジタル回路を駆動するのに必要な振
幅までに発振出力を増幅する為の位相反転増幅器であり
、ICにて形成されるものであつて増幅器1と同一動作
点に設定しておく。
That is, the crystal oscillation output is clamped by a clamp circuit composed of two silicon diodes 8 and 9 connected in parallel in opposite directions and a potential generation circuit. With this configuration, the oscillation output can be suppressed to an amplitude of 1.4V, which is twice the forward threshold voltage O of the silicon diode, 7V, without changing the operating point of the phase inversion amplifier 1.
It is possible to prevent large signals that would cause unnecessary radiation from being output to the external terminals of the IC. In the circuit shown in FIG. 2, a phase inverting amplifier 10 is used as a potential generating circuit, and its input and output terminals are connected directly or through a resistive load to obtain a DC voltage. , the circuit shown in FIG. 2 can be easily integrated into an IC. Therefore two 7s
When the phase-inverting amplifiers 1 and 10 are formed on the same semiconductor substrate, it is possible to make the temperature conditions and element parameters approximately equal, so that the DC operating voltage of the phase-inverting amplifier 1 and the voltage at node No. Since they can be made to match, the voltage at node N2 can be stably clamped after all. 7
is a phase inversion amplifier for amplifying the oscillation output to the amplitude required to drive the subsequent digital circuit, for example, and is formed by an IC and is set at the same operating point as amplifier 1. .

ところて、第2図の回路は発振出力振巾(第2図のノー
ドN2の点)は非常に小さくて電源電圧に依存せずしか
も安定に発振するが、発振出力振巾を小さくするために
は、位相反転増幅器10の出力インピーダンスを小さく
しなければならないという欠点があつた。本発明は斯か
る欠点を解消したものであり、以下、第3図に示す本発
明の一実施例及びその動作波形図(第4図)を参照して
詳述する。尚、第3図に於いて、第2図と同一の構成素
子には第2図と同一の図番を付しており、位相反転増幅
器1,7,10の直流動作電圧はほぼ等しく設定されて
いる。ノードN3とノードN2との電圧差が大きくなつ
てダイオードのしきい値電圧(シリコンダイオードの場
合、約0.7■)に達すると、ダイオード9がオンして
期間(t1)に入る。
By the way, the circuit in Figure 2 has a very small oscillation output amplitude (node N2 in Figure 2) and oscillates stably without depending on the power supply voltage, but in order to reduce the oscillation output amplitude, had the disadvantage that the output impedance of the phase inversion amplifier 10 had to be made small. The present invention eliminates such drawbacks, and will be described in detail below with reference to an embodiment of the present invention shown in FIG. 3 and its operational waveform diagram (FIG. 4). In addition, in FIG. 3, the same components as in FIG. 2 are given the same figure numbers as in FIG. ing. When the voltage difference between the node N3 and the node N2 increases and reaches the threshold voltage of the diode (approximately 0.7 .mu. in the case of a silicon diode), the diode 9 is turned on and a period (t1) begins.

まず、ノードN1の電圧が高くなり、それを反転増幅し
たノードN2の電圧が低くなる。ダイオード9を介して
接続されるノードN3の電圧は低くなり、ノードN4の
電圧も抵抗11を介して低くなる。そうするとノードN
4の電圧を反転増幅したノードN3の電圧はダイオード
9を介してノードN2の電圧をクランプする働きが強く
なる。また、ノードN,の電圧はノードN2の電圧とノ
ードN3の電圧とを、抵抗11と抵抗12とで分割した
値となり、このような全ての条件が満されるようにノー
ド(Nl,N2,N3,N4)の電圧はバランスする。
従つて、抵抗11を抵抗12に比べて小さくすれば、ノ
ードN2の電圧の変化がそのままノードN4に伝達され
る3ので、ノードNl,N2の電圧振巾が小さくなり、
ノードN3,N4の電圧振巾が大きくなつた状態でバラ
ンスする。さて再びノードN1の電圧が低くなり、ノー
ドN2の電圧が高くなると、それに伴いノードN4の4
電圧も高くなる。
First, the voltage at node N1 becomes high, and the voltage at node N2, which is inverted and amplified, becomes low. The voltage at node N3 connected via diode 9 becomes low, and the voltage at node N4 also becomes low via resistor 11. Then node N
The voltage at node N3, which is inverted and amplified from the voltage at node N4, has a stronger effect of clamping the voltage at node N2 via diode 9. Further, the voltage at the node N is a value obtained by dividing the voltage at the node N2 and the voltage at the node N3 by the resistor 11 and the resistor 12, and the voltage at the node (Nl, N2, The voltages of N3 and N4) are balanced.
Therefore, if the resistor 11 is made smaller than the resistor 12, the change in the voltage at the node N2 will be transmitted as is to the node N4, so the voltage amplitude at the nodes Nl and N2 will be reduced.
Balance is achieved in a state where the voltage amplitudes of nodes N3 and N4 are increased. Now, when the voltage at node N1 decreases again and the voltage at node N2 increases, the voltage at node N4 increases.
The voltage will also increase.

こうしてノードN3の電圧がノードN2の電圧をクラン
プする働きが弱まり、ついにノードN2とノードN3の
電圧差がダイオードのしきい値電圧以下になつてダイオ
ード9はオフし、期間(T.)に移行する。期間ちに於
いては、ダイオード8,9は共にオフ状態にあるから、
ダイオードによるクランプ作用はなくなり、ノードN2
の電圧は急激に高くなり、ノードN3,N4の電圧は抵
抗11,12を介してバランスするように変化する。
In this way, the clamping effect of the voltage at node N3 on the voltage at node N2 weakens, and finally the voltage difference between nodes N2 and N3 becomes less than the threshold voltage of the diode, turning off diode 9 and transitioning to period (T.). do. During this period, both diodes 8 and 9 are in the off state, so
The clamping effect by the diode disappears, and the node N2
The voltage at nodes N3 and N4 suddenly increases, and the voltages at nodes N3 and N4 change through resistors 11 and 12 so as to be balanced.

つまりノードN3の電圧は急激に小さくなる。尚、第4
図に於いてノードN4の電圧が一定で位相反転増幅器1
0の直流動作電圧(これはノードN4の平均電圧川こ略
等しい)より高くしてあるのは説明の簡単化の為である
。例えば、期間しの初期にノードN4の電圧か上記直流
動作電圧より低い仮定すれはノードN3の電圧は高いま
まで、ノードN2の電圧も急激に高くなるのでノードN
4の電圧も急激に高く・なり、従つてノードN3の電圧
も急激に小さくなる。斯様にしてノードN2とノードN
3との電圧差がダイオードのしきい値電圧に達すると、
ダイオード8がオンして今度はこのダイオード8による
クランプが働く(T3期間)。
In other words, the voltage at node N3 decreases rapidly. Furthermore, the fourth
In the figure, when the voltage at node N4 is constant, phase inverting amplifier 1
The reason why this is set higher than the DC operating voltage of 0 (which is approximately equal to the average voltage of node N4) is to simplify the explanation. For example, if it is assumed that the voltage at node N4 is lower than the above DC operating voltage at the beginning of the period, the voltage at node N3 will remain high and the voltage at node N2 will also rise rapidly, so node N
The voltage at node N3 also increases rapidly, and therefore the voltage at node N3 also decreases rapidly. In this way, node N2 and node N
When the voltage difference between 3 and 3 reaches the threshold voltage of the diode,
Diode 8 is turned on and clamping by diode 8 is now activated (period T3).

期間T4の動作は期間T2の動作と同様である。例とし
て、位相反転増幅器1,10として市販のC−MOS(
ナショナルセミコンダクター社製74C00)を用い、
3としてIMHZの水晶振動子、5,6として夫々20
0PFのコンデンサー、2として330KΩの抵抗、4
として1KΩの抵抗、8,9としてシリコンダイオード
、11,12として夫々3.3KΩの抵抗を用いたとき
、ノードN2の電圧は1.1■PPとなつた。
The operation during period T4 is similar to the operation during period T2. As an example, commercially available C-MOS (
Using National Semiconductor's 74C00),
IMHZ crystal oscillator as 3, 20 each as 5 and 6
0PF capacitor, 2 as 330KΩ resistor, 4
When a resistor of 1 KΩ is used as , silicon diodes are used as 8 and 9, and resistors of 3.3 KΩ are used as 11 and 12, the voltage at node N2 becomes 1.1 PP.

また、同様の条件で抵抗11を1.5KΩとしたときは
0.6■PPとなつた。尚、第3図に示す回路に於いて
、11,12は抵抗て説明したが、抵抗性のものであれ
ば良く例えばFETのようなもので構成しても良い。以
上述べた本発明に依れば、グイオードのオン、オフに拘
らす発振出力電圧を常に検出し、ダイオードがオンの期
間は位相反転出力電圧でクランプし、オフの期間には予
め逆極性の電圧を発生させておく(例えば期間ちに於い
てノードN3の電圧を下げる)ようにしたものであるか
ら、第2図図示の回路に比較してダイオードのオンの期
間が長く、且つ位相反転増幅器10の出力インピーダン
スを左程小さくする必要はなく、抵抗11の値を小さく
すればノードN2の電圧振巾は小さくなる。更に、2つ
の位相反転増幅器1,10を同一半導体基板上に形成し
た場合には、両者の直流動作電圧を略一致させることが
、発振出力電圧を安定にクランプ出来る。尚、第3図図
示の回路をIC化した場合、端子はノードN1とN2で
あり、IC外部のアナログ回路等に対する影響を小さく
することが可能であり、IC内部の信号としては位相反
転増幅器7の出力を利用すればよい。
Further, when the resistance 11 was set to 1.5 KΩ under the same conditions, the resistance was 0.6 PP. In the circuit shown in FIG. 3, 11 and 12 have been described as resistors, but they may be made of resistive elements, such as FETs. According to the present invention described above, the oscillation output voltage regardless of whether the diode is on or off is always detected, and during the period when the diode is on, it is clamped with the phase-inverted output voltage, and during the period when the diode is off, the oscillation output voltage is clamped with the reverse polarity voltage in advance. (for example, by lowering the voltage at node N3 after a certain period), the period in which the diode is on is longer than in the circuit shown in FIG. It is not necessary to make the output impedance of the node N2 so small; if the value of the resistor 11 is made small, the voltage amplitude at the node N2 becomes small. Furthermore, when the two phase-inverting amplifiers 1 and 10 are formed on the same semiconductor substrate, the oscillation output voltage can be stably clamped by making the DC operating voltages of both substantially the same. In addition, when the circuit shown in FIG. 3 is integrated into an IC, the terminals are nodes N1 and N2, and it is possible to reduce the influence on analog circuits outside the IC, and the signal inside the IC is connected to the phase inversion amplifier 7. You can use the output of

【図面の簡単な説明】 第1図は従来の水晶発振回路図、第2図はクランプ回路
を有する水晶発振回路図、第3図は本発明に係る水晶発
振回路図、第4図はその動作波形図てある。 1,10・・・・・位相反転増幅器、3・・・・・・水
晶振動子、8,9・・・・・・クランプ用ダイオード。
[Brief Description of the Drawings] Fig. 1 is a conventional crystal oscillation circuit diagram, Fig. 2 is a crystal oscillation circuit diagram with a clamp circuit, Fig. 3 is a crystal oscillation circuit diagram according to the present invention, and Fig. 4 is its operation. There is a waveform diagram. 1, 10... Phase inversion amplifier, 3... Crystal resonator, 8, 9... Clamp diode.

Claims (1)

【特許請求の範囲】 1 増幅器の入出力端間に水晶振動子を接続することに
より構成された水晶発振器と、入出力端間に抵抗性負荷
が接続された位相反転増幅器と、一端が前記水晶発振器
の出力端に他端が前記位相反転増幅器の出力端に接続さ
れたクランプ回路と、一端が前記水晶発振器の出力端に
他端が前記位相反転増幅器の入力端に接続された抵抗性
負荷とよりなる水晶発振回路。 2 クランプ回路が並列接続されたダイオードよりなる
特許請求の範囲第1項記載の水晶発振回路。 3 増幅器と位相反転増幅器が同一基板上に集積回路化
されており、これらの直流動作電圧を略一致させたこと
を特徴とする特許請求の範囲第1項または第2項記載の
水晶発振回路。
[Scope of Claims] 1. A crystal oscillator configured by connecting a crystal resonator between the input and output terminals of an amplifier, a phase inversion amplifier having a resistive load connected between the input and output terminals, and one end connected to the crystal oscillator. a clamp circuit having one end connected to the output end of the oscillator and the other end connected to the output end of the phase inversion amplifier; and a resistive load having one end connected to the output end of the crystal oscillator and the other end connected to the input end of the phase inversion amplifier. A crystal oscillation circuit consisting of 2. The crystal oscillator circuit according to claim 1, wherein the clamp circuit comprises diodes connected in parallel. 3. The crystal oscillation circuit according to claim 1 or 2, wherein the amplifier and the phase inversion amplifier are integrated on the same substrate, and their DC operating voltages are made substantially the same.
JP15895878A 1978-12-13 1978-12-13 crystal oscillation circuit Expired JPS6047766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15895878A JPS6047766B2 (en) 1978-12-13 1978-12-13 crystal oscillation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15895878A JPS6047766B2 (en) 1978-12-13 1978-12-13 crystal oscillation circuit

Publications (2)

Publication Number Publication Date
JPS5580907A JPS5580907A (en) 1980-06-18
JPS6047766B2 true JPS6047766B2 (en) 1985-10-23

Family

ID=15683053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15895878A Expired JPS6047766B2 (en) 1978-12-13 1978-12-13 crystal oscillation circuit

Country Status (1)

Country Link
JP (1) JPS6047766B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6258200U (en) * 1985-10-01 1987-04-10
JPS6259659U (en) * 1985-10-01 1987-04-13

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5102584B2 (en) * 2007-11-13 2012-12-19 日本電波工業株式会社 Crystal oscillator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6258200U (en) * 1985-10-01 1987-04-10
JPS6259659U (en) * 1985-10-01 1987-04-13

Also Published As

Publication number Publication date
JPS5580907A (en) 1980-06-18

Similar Documents

Publication Publication Date Title
US5016260A (en) Modulator and transmitter
JPH02262714A (en) Duty control circuit device
US6369622B1 (en) Clock doubler circuit with RC-CR phase shifter network
JPH09116412A (en) Voltage generation circuit
JPH10290127A (en) Current/voltage conversion ic and photoelectric conversion ic
US6498539B2 (en) Highly accurate voltage controlled oscillator with RC circuit
JPS6047766B2 (en) crystal oscillation circuit
JPS585594B2 (en) rectifier circuit
JPS6125241B2 (en)
JPS6226606B2 (en)
JPH11346125A (en) Srpp circuit
JP2808927B2 (en) Frequency discriminator
KR100197842B1 (en) A variable reactance circuit
JPH03283905A (en) Piezoelectric oscillator
JPH07321649A (en) Voltage controlled oscillator and pll circuit
JP2684837B2 (en) Differential amplifier circuit
JPS6138264Y2 (en)
JPH11205095A (en) Voltage control oscillation circuit
JPH10200334A (en) Voltage control oscillator
JPH04312005A (en) Amplifier circuit
JPH10224153A (en) Super reproducing and demodulating circuit, and transistor device for oscillation
JPS62281616A (en) Ecl output circuit
JPS599445Y2 (en) transistor detection circuit
JPH04273711A (en) Transistor circuit
JP2794055B2 (en) CR constant control circuit