JPS6046941A - Preparation of preform for optical fiber - Google Patents

Preparation of preform for optical fiber

Info

Publication number
JPS6046941A
JPS6046941A JP58154209A JP15420983A JPS6046941A JP S6046941 A JPS6046941 A JP S6046941A JP 58154209 A JP58154209 A JP 58154209A JP 15420983 A JP15420983 A JP 15420983A JP S6046941 A JPS6046941 A JP S6046941A
Authority
JP
Japan
Prior art keywords
glass
raw material
phosphorus
sintering
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58154209A
Other languages
Japanese (ja)
Other versions
JPH0359018B2 (en
Inventor
Koji Yano
矢野 宏司
Minoru Watanabe
稔 渡辺
Tsunehisa Kyodo
倫久 京藤
Masao Hoshikawa
星川 政雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP58154209A priority Critical patent/JPS6046941A/en
Priority to KR1019840004791A priority patent/KR870000383B1/en
Priority to EP84110123A priority patent/EP0135175B1/en
Priority to CA000461756A priority patent/CA1233709A/en
Priority to AU32354/84A priority patent/AU563400B2/en
Priority to DE8484110123T priority patent/DE3478680D1/en
Publication of JPS6046941A publication Critical patent/JPS6046941A/en
Priority to US07/097,320 priority patent/US4804393A/en
Priority to HK1019/89A priority patent/HK101989A/en
Publication of JPH0359018B2 publication Critical patent/JPH0359018B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/10Non-chemical treatment
    • C03B37/12Non-chemical treatment of fibres or filaments during winding up
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/28Doped silica-based glasses doped with non-metals other than boron or fluorine doped with phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/31Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium

Abstract

PURPOSE:To obtain the titled preform having low transmission loss near at 1.52mum, by hydrolyzing a glass raw material containing a P compound with flame to give a porous glass parent material, vaporizing the P component during sintering of the parent material. CONSTITUTION:A raw material for glass containing 0.01-1mol% P compound (e.g., POCl3) and a combustion gas are jetted from a burner, the raw material for glass is subjected to flame hydrolysis in the combustion gas, and fine particles of glass are piled to give a porous glass parent material. The parent material is then fed to a sintering furnace having 1-20l/min flow rate of He. As P is vaporized at <=1,600 deg.C, the parent material is sintered and made transparent, to give a preform for optical fiber containing <=5X10<-3>wt% P. Consequently, control of dopant distribution is made easy, and the sintering temperature can be lowered.

Description

【発明の詳細な説明】 本発明は光フアイバー用ガラスプリフォームの製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a glass preform for optical fiber.

(従来技術) 光ファイバーの代表的な製法のなかで火炎加水分解反応
を用いたものとしてVAD法と外付けCVD法がある。
(Prior Art) Among the typical manufacturing methods for optical fibers, there are the VAD method and the external CVD method, which use a flame hydrolysis reaction.

VAD法とは特開昭56−33627号公報に示される
ようにバーナーから5IC1!4+Geal P00!
、 BBr3ブよとのガラス原料とト】2゜4! 0□なとのガスを同時に流し、ガラス原料を加水分解し
てガラス微粒子を形成し、軸方向に堆坑させながら所定
のドーlくント分布をもった多孔質ガラス母材を形成し
、I(θなどの雰囲気中で焼結して透明母材とし、線引
きする方法である。
The VAD method is as shown in Japanese Unexamined Patent Publication No. 56-33627, in which 5IC1!4+Geal P00!
, BBr3 buyoto's glass raw material and t】2゜4! 0 □ gas is simultaneously flowed to hydrolyze the glass raw material to form glass fine particles, which are deposited in the axial direction to form a porous glass base material with a predetermined dopant distribution. (This is a method of sintering in an atmosphere such as θ to make a transparent base material, and then drawing a wire.

なお焼結とは多孔質ガラス母材を加熱することにより収
縮させることを言う。
Note that sintering refers to shrinking a porous glass base material by heating it.

また外付けOVD法とは米国特許第3,737,292
号明細書などに示されるように、火炎加水分解で形成さ
れたガラス微粒子を出発棒の側面に一層ずつ付着させ、
一層毎のドーパント濃度を変えることにより、所定のド
ーパント分布を形成させ、その後出発棒なとり除いて脱
水焼結、線引をおこなう方法である。
Also, the external OVD method is described in U.S. Patent No. 3,737,292.
As shown in the specification etc., glass particles formed by flame hydrolysis are attached layer by layer to the side surface of the starting rod,
In this method, a predetermined dopant distribution is formed by changing the dopant concentration in each layer, and then the starting rod is removed, followed by dehydration sintering and wire drawing.

ここで屈折率上昇用ドーパントの一例としてリンが挙げ
られる。例えばP2O5は、屈折率を上昇させるととも
に、その吸湿性によりOH含量を少な(することができ
、より低損失のガラスを得られる。又、石英ガラスの軟
化点を下げて成形加工を容易にする。リンを屈折率を高
めるドーパントとして使った例としては、たとえば特公
昭5(5−28852号公報に、vAD法によりP2O
5換算で2重量%のリンを含有した透明母材を製造した
実施例が示されている。(以下。
Here, phosphorus is an example of a dopant for increasing the refractive index. For example, P2O5 not only increases the refractive index but also reduces the OH content due to its hygroscopic property, making it possible to obtain a glass with lower loss.It also lowers the softening point of quartz glass, making it easier to form. As an example of using phosphorus as a dopant to increase the refractive index, for example, in Japanese Patent Publication No. 5-28852, P2O
An example is shown in which a transparent matrix containing 2% by weight of phosphorus (calculated as 5%) was produced. (below.

ガラス中のリンの含有量はP2O5換算の重量%とする
。〕 また、特開昭54−134128号公報にはリンをP2
O5換算で4重量%含有したプリフォームの例が示され
ているし、米国特許第4.559,175号明細書につ
いてもリン含有したプリフォームの記述がある。
The content of phosphorus in the glass is expressed as weight percent in terms of P2O5. ] Also, in Japanese Patent Application Laid-open No. 54-134128, phosphorus is
An example of a preform containing 4% by weight in terms of O5 is shown, and a preform containing phosphorus is also described in US Pat. No. 4,559,175.

ところで最近、伝送損失の最も小さい1.55μm帯を
使った伝送実験がはじまるにつれて、1.55μm帯の
伝送損失の検討がなされてきた。しかしリンを含んだフ
ァイバでは1.52μm付近にP−0−Hの吸収が存在
するため、伝送損失が太き(なることが知られている。
By the way, as transmission experiments using the 1.55 μm band, which has the smallest transmission loss, have recently begun, transmission loss in the 1.55 μm band has been studied. However, it is known that in a fiber containing phosphorus, P-0-H absorption exists in the vicinity of 1.52 μm, resulting in a large transmission loss.

しかし、 vAD法などの、ガラス微粒子から成る多孔
質ガラス母材の焼結工程をともなう光フアイバープリフ
ォームの製法においては、リンをまった(含まない多孔
質ガラス母材を透明化す′るためには、透明化温度が高
いため、高温の焼結炉が必要となり、炉心管、ヒーター
等の寿命や電源保温材の大型化が必要などの点で好まし
くない。この伝送損失を実用上問題にならない程度に押
えるためには、リンの量を5X10−3重量%以下にす
る必要があることが本発明者らの研究によりわかった。
However, in optical fiber preform manufacturing methods such as the vAD method that involve a sintering process of a porous glass base material made of fine glass particles, phosphorus is added (in order to make the porous glass base material that does not contain phosphorus transparent). Since the transparentization temperature is high, a high-temperature sintering furnace is required, which is undesirable in terms of the lifespan of the furnace core tube, heater, etc., and the need to increase the size of the power insulation material.This transmission loss does not pose a practical problem. Through research conducted by the present inventors, it has been found that in order to suppress the amount of phosphorus to a certain extent, it is necessary to reduce the amount of phosphorus to 5×10 −3% by weight or less.

さらに多孔質ガラス母材の5ち屈折率上昇用ドーパント
であるGo の分布は、堆積温度すなわちスス表面温度
に依存し、このスス表面温度は火炎中のpoat、又は
P2O5の濃度に依存するので原料中のリンの化合物の
濃度によって制御することができることも本発明者らは
研究途上に見出した。
Furthermore, the distribution of Go, which is a dopant for increasing the refractive index of the porous glass base material, depends on the deposition temperature, that is, the soot surface temperature, and this soot surface temperature depends on the concentration of poat or P2O5 in the flame. The present inventors also discovered during the course of their research that the phosphorus content can be controlled by the concentration of the phosphorus compound therein.

したがって、ガラス微粒子を積層させた多孔質ガラス母
材の段階ではリンを含有しておりドーパント分布制御を
容易とし、さらに焼結透明化温度はリンを全(含まない
多孔質ガラス母材より低(透明化を容易にするが、焼結
後線引きして得られたファイバーにおいて゛はリンの含
量が5×10−3重量%以下であって伝送損失を小さく
した光フアイバー用プリフォームが望ましいものと考え
られる。
Therefore, the porous glass base material in which glass fine particles are laminated contains phosphorus, making it easy to control the dopant distribution, and the sintering transparency temperature is lower than that of the porous glass base material that does not contain all phosphorus. It is considered desirable to use an optical fiber preform with a phosphorus content of 5 x 10-3% by weight or less and a low transmission loss in the fiber obtained by drawing after sintering to facilitate transparency. It will be done.

(発明の目的) 本発明者は以上の困難を克服すべく努力した結果多孔質
ガラス母体の段階ではリンをドープするが、焼結の段階
ではリンを揮散させて、得られた透明母材のす/の含有
量を5×10 重量%以下にする本発明の方法に到達し
た。
(Purpose of the Invention) As a result of efforts made by the present inventor to overcome the above-mentioned difficulties, the present inventor doped phosphorus at the stage of forming a porous glass matrix, but evaporated the phosphorus at the stage of sintering. The method of the present invention has been achieved in which the content of S/ is 5 x 10% by weight or less.

(発明の構成) 本発明の要旨は (1) ガラス用原料および燃焼ガスをバーナーより噴
出せしめ、該ガラス原料を燃焼ガス中で火炎加水分解し
、ガラス微粒子を積層させて多孔質ガラス母材となし、
これを焼結透明化し、光フアイバ用プリフォームを製造
する方法において、該ガラス原料にリンの化合物を加え
、そして得られる多孔質ガラス母材の焼結時にリン分を
揮散させることを特徴とする上記方法。
(Structure of the Invention) The gist of the present invention is (1) A raw material for glass and a combustion gas are ejected from a burner, the raw material for glass is flame-hydrolyzed in the combustion gas, and glass fine particles are laminated to form a porous glass base material. none,
A method for producing an optical fiber preform by sintering and making it transparent is characterized by adding a phosphorus compound to the glass raw material and volatilizing the phosphorus content during sintering of the obtained porous glass base material. The above method.

(2) ガラス原料に加えるリンの化合物の全ガラス原
料中に占める割合を0.01〜1モル%とし、得られた
多孔質ガラス母材の焼結透明化時におけるHe 流量を
1石/分以上とすることを特徴とする特許請求の範囲第
1項記載の光ファイバの製造方法。
(2) The proportion of the phosphorus compound added to the glass raw material in the total glass raw material is 0.01 to 1 mol%, and the He flow rate during sintering and transparency of the obtained porous glass base material is 1 stone/min. A method for manufacturing an optical fiber according to claim 1, characterized in that the method is as follows.

(3) 多孔質ガラス母材の焼結時にリン分を揮散させ
て得られるプリフォーム中のリン含量を5 X 10−
’重量%以下とすることを特徴とする特許請求の範囲第
1項又は第2項記戦の方法。
(3) The phosphorus content in the preform obtained by volatilizing the phosphorus content during sintering of the porous glass base material is 5 x 10-
% by weight or less.

ところにある。There it is.

透明母材中のリン含有量を小さくするためには、■多孔
質ガラス体製造工程で添加するリン用原料ガス供給量を
小さくする。■焼結工程において雰囲気のガス流量を一
足以上にし、多孔質ガラス体から揮散するリン化合物を
炉外へとり除く、という2つの方法がある。
In order to reduce the phosphorus content in the transparent base material, (1) reduce the supply amount of the raw material gas for phosphorus added in the porous glass body manufacturing process; (2) There are two methods: increasing the gas flow rate in the atmosphere to more than one foot in the sintering process and removing phosphorus compounds volatilized from the porous glass body to the outside of the furnace.

■の方法では上述したようなリンによるドーパント分布
制御および、焼結温度を下げる効果が期待できな(なる
。そこで本発明者らは■の方法について以下のように検
討した。
The method (2) cannot be expected to control the dopant distribution using phosphorus and reduce the sintering temperature as described above. Therefore, the present inventors investigated the method (2) as follows.

本発明者は、原料のPace3の供給量と焼結工程での
He 流量、透明化後の透明母材の中のP2O5の含有
量の関係を調べるため、バーナーへ供給する原料中のリ
ンの量を変えた数本の多孔質ガラス体を試作し、これを
Heの流量Ol、113.543.2013の4条件で
焼結し、得られた透明母材を分析、P2O5の量を定量
した。
In order to investigate the relationship between the supply amount of raw material Pace 3, the He flow rate in the sintering process, and the content of P2O5 in the transparent base material after transparentization, the present inventor investigated the amount of phosphorus in the raw material supplied to the burner. Several porous glass bodies with different values were prototyped and sintered under four conditions: He flow rate O1, 113.543.2013, and the resulting transparent base material was analyzed to quantify the amount of P2O5.

第1図は実験の結果をグラフに示したもので、横軸には
バーナ1本当りの全ガラス原料中のPOO/3の含有率
(モル%)を示し縦軸には透明化後のガラス中のP2O
5含有率を示す。
Figure 1 shows the results of the experiment in a graph, where the horizontal axis shows the content (mol%) of POO/3 in the total glass raw material per burner, and the vertical axis shows the glass after transparentization. P2O inside
5 content.

このグラフから判明したことはリンの含有量を5X10
’wt% 以下にするためには焼結時の【(θ 光景0
石/分の場合、原料ガス中のPOC1!3をo、o o
 sモル%以下にする必要があるが、この上限値は焼結
時のf(e流量を上げることにより増加させることがで
きる。即ちHe量5A/分では5 X 10””モル%
、20石/分では1モル%となる。またリンの流量が全
ガラス原料ガス中の0.01モル%以下であれば、多孔
質母体形成時の温度制御が困難になるばかりでな(、焼
結においても1700℃以上の高温が必要となり、炉心
管などの寿命が短か(なる。一方Hθを20p/分以上
流すことはコスト上極めて困難である。なおリン用原料
としてpoat、を示したがP]/3. pci5など
他のリン化合物を原料としてもよい。
What we found from this graph is that the phosphorus content was 5X10
'wt% or less, during sintering [(θ sight 0
In the case of stone/min, POC1!3 in the raw material gas is o, o o
s mol% or less, but this upper limit can be increased by increasing the flow rate of f(e) during sintering. In other words, at a He amount of 5 A/min, 5 x 10"" mol%
, it becomes 1 mol% at 20 stones/min. Furthermore, if the flow rate of phosphorus is less than 0.01 mol% of the total frit gas, it will not only be difficult to control the temperature during the formation of the porous matrix (also, high temperatures of 1700°C or higher will be required for sintering). , the life of the reactor core tube etc. will be short (this will be the case.On the other hand, it is extremely difficult to flow Hθ over 20 p/min due to cost.Poat is shown as the raw material for phosphorus, but P]/3. Other phosphorus such as pci5) A compound may be used as a raw material.

以上の条件はシングルモードファイバ用多孔質ガラス母
材の場合でも適用される。シングルモードファイバ用多
孔質ガラス母材の場合はPの添加は焼結を容易にするば
かりでな(、スス付中のスス表面温度分布を均一にしか
さ密度を均一にして多孔質ガラス母材のわれ率を下げる
効果がある。
The above conditions also apply to the porous glass base material for single mode fiber. In the case of a porous glass base material for single-mode fibers, the addition of P not only makes sintering easier (but also makes the soot surface temperature distribution uniform during soot application, and makes the soot density uniform). It has the effect of lowering the share ratio.

実施例−1 VAD法において1本の同心円状多重管)(−ナーを使
い、マルチモードコアイノく用多孔質ガラス母材を製造
し次にこれを焼結炉で透明化した。
Example 1 A porous glass base material for a multi-mode core was produced using a VAD method using a concentric multi-tube (-ner), and then it was made transparent in a sintering furnace.

多孔質ガラス母体形成時の原料流量および焼結条件を第
1表に示す。なお以下に述べる原料およびHeの流量は
標準状態(0℃、1気圧)における値である。
Table 1 shows the raw material flow rate and sintering conditions during the formation of the porous glass matrix. Note that the flow rates of raw materials and He described below are values under standard conditions (0° C., 1 atm).

第1表 透明化後のリンの含有量を測定したところ7×10−4
%であった。得られたファイバーのΔn−1%、コア径
は50μm、ファイバー外径は125μmであり、その
伝送損失波長曲線を第2図に示す。第2図からあきらか
なよ5に1.52μm付近のP−0−Hの吸収は認めら
れない。
Table 1: Measuring the phosphorus content after clearing: 7 x 10-4
%Met. The obtained fiber had a Δn-1%, a core diameter of 50 μm, and a fiber outer diameter of 125 μm, and its transmission loss wavelength curve is shown in FIG. It is clear from FIG. 2 that no absorption of P-0-H in the vicinity of 1.52 μm is observed.

実施例−2 VAD法において多重管バーナーを3本使い。Example-2 Three multi-tube burners are used in the VAD method.

シングルモードファイバ用多孔質ガラス1せ材を製造し
た。1本はコア用バーナーであり残りの2本はクラッド
用バーナーである。多孔質ガラス母材形成時の原料流量
および焼結条件を第2表に示す。また得られたファイバ
ーの伝送損失波長曲線を第5囚に示す。
A porous glass laminated material for single mode fiber was manufactured. One burner is for the core and the remaining two are burners for the cladding. Table 2 shows the raw material flow rate and sintering conditions during the formation of the porous glass base material. Furthermore, the transmission loss wavelength curve of the obtained fiber is shown in Figure 5.

第2表 透明ガラス化後のリンの含有量を分析したところ2X1
0wt% であった。得られたファイバーのコア径は8
.5μm、Δn=0.27%、ファイバー外径は125
μmであり、第3図に示すように1.52μm付近にお
けるP−OHの吸収は認められない。
Table 2 Analysis of phosphorus content after transparent vitrification 2X1
It was 0wt%. The core diameter of the obtained fiber was 8
.. 5μm, Δn=0.27%, fiber outer diameter is 125
.mu.m, and as shown in FIG. 3, no absorption of P-OH is observed in the vicinity of 1.52 .mu.m.

なお実施例1,2においては焼結温度が1600℃の場
合について述べているが、リンの揮散は多孔質ガラス母
体が室温から最高温度の1600℃に昇温する過程でお
こり、焼結温度とはその最高温度を示すものでリンの揮
散温度ではない。
In addition, in Examples 1 and 2, the case where the sintering temperature is 1600°C is described, but the volatilization of phosphorus occurs during the process of heating the porous glass matrix from room temperature to the maximum temperature of 1600°C, and the sintering temperature and indicates the maximum temperature, not the volatilization temperature of phosphorus.

(発明の効果) 以上の実施例からも明らかなように本発明の方法によれ
ば、多孔質ガラス母材製造工程においてはドーパント分
布制御を容易にしかつ焼結温度を下げる効果のあるリン
を原料中に添加しておいて、透明化時に上記の添加した
リンを揮散させ、最終的には透明母材中のリンを低減さ
せるので、1.52μm付近での伝送損失の少なりi7
フイバー用プリフォームを製造することができる。
(Effects of the Invention) As is clear from the above examples, according to the method of the present invention, phosphorus, which is effective in facilitating dopant distribution control and lowering the sintering temperature, is used as a raw material in the porous glass base material manufacturing process. The added phosphorus is volatilized during transparentization, and the phosphorus in the transparent base material is finally reduced, resulting in less transmission loss around 1.52 μm.
Preforms for fibers can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はガラス原料中のpocz6含有率とHe流量を
変えることによるガラス中のP2O5含有率の変化を示
すグラフであり、第2図および第3図はそれぞれ実施例
1および2で得られた光ファイバーの伝送損失波長曲線
を示す図である。 代理人 内 1) 明 代理人 萩 原 亮 −
Figure 1 is a graph showing the change in the P2O5 content in the glass by changing the pocz6 content in the glass raw material and the He flow rate, and Figures 2 and 3 are graphs showing the changes in the P2O5 content in the glass obtained in Examples 1 and 2, respectively. FIG. 3 is a diagram showing a transmission loss wavelength curve of an optical fiber. Agents 1) Akira’s agent Ryo Hagiwara −

Claims (3)

【特許請求の範囲】[Claims] (1) ガラス用原料および燃焼ガスをバーナーより噴
出せしめ、該ガラス原料を燃焼ガス中で火炎加水分解し
、ガラス微粒子を積層させて多孔質ガラス母材となし、
これを焼結透明化し、光フアイバー用プリフォームを製
造する方法において、該ガラス原料にリンの化合物を加
え、そして得られる多孔質ガラス母材の焼結時にリン分
を揮散させることを特徴とする上記方法。
(1) A raw material for glass and a combustion gas are ejected from a burner, the raw material for glass is flame-hydrolyzed in the combustion gas, and glass fine particles are laminated to form a porous glass base material,
A method for manufacturing an optical fiber preform by sintering and making it transparent is characterized by adding a phosphorus compound to the glass raw material and volatilizing the phosphorus content during sintering of the obtained porous glass base material. The above method.
(2) ガラス原料に〃nえるリンの化合物の全ガラス
原料中に占める割合を0.01〜1モル%とし、得られ
た多孔質ガラス母材の焼結透明化時におけろHe流量を
11/分以上とすることを特徴とする特許請求の範囲第
1項記載の光ファイバの製造方法。
(2) The proportion of the phosphorus compound in the glass raw material in the total glass raw material is set to 0.01 to 1 mol%, and the He flow rate during sintering and transparency of the obtained porous glass base material is set to 11%. 2. The method of manufacturing an optical fiber according to claim 1, wherein the manufacturing time is at least 1/min.
(3) 多孔質ガラス母材の焼結時にリン分を揮散させ
て、得られるプリフォーム中のリン含量を5 X 10
−3重量%以下とすることを特徴とする特許請求の範囲
第1項又は第2項記載の方法。
(3) Volatize the phosphorus content during sintering of the porous glass base material, and reduce the phosphorus content in the resulting preform to 5 x 10
-3% by weight or less, the method according to claim 1 or 2.
JP58154209A 1983-08-25 1983-08-25 Preparation of preform for optical fiber Granted JPS6046941A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP58154209A JPS6046941A (en) 1983-08-25 1983-08-25 Preparation of preform for optical fiber
KR1019840004791A KR870000383B1 (en) 1983-08-25 1984-08-10 Preparation for making of fiber glass preform
EP84110123A EP0135175B1 (en) 1983-08-25 1984-08-24 Methods for producing optical fiber preform and optical fiber
CA000461756A CA1233709A (en) 1983-08-25 1984-08-24 Methods for producing optical fiber preform and optical fiber
AU32354/84A AU563400B2 (en) 1983-08-25 1984-08-24 Optical fibre preform manufacture
DE8484110123T DE3478680D1 (en) 1983-08-25 1984-08-24 Methods for producing optical fiber preform and optical fiber
US07/097,320 US4804393A (en) 1983-08-25 1987-09-11 Methods for producing optical fiber preform and optical fiber
HK1019/89A HK101989A (en) 1983-08-25 1989-12-21 Methods for producing optical fiber preform and optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58154209A JPS6046941A (en) 1983-08-25 1983-08-25 Preparation of preform for optical fiber

Publications (2)

Publication Number Publication Date
JPS6046941A true JPS6046941A (en) 1985-03-14
JPH0359018B2 JPH0359018B2 (en) 1991-09-09

Family

ID=15579227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58154209A Granted JPS6046941A (en) 1983-08-25 1983-08-25 Preparation of preform for optical fiber

Country Status (8)

Country Link
US (1) US4804393A (en)
EP (1) EP0135175B1 (en)
JP (1) JPS6046941A (en)
KR (1) KR870000383B1 (en)
AU (1) AU563400B2 (en)
CA (1) CA1233709A (en)
DE (1) DE3478680D1 (en)
HK (1) HK101989A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2839063B1 (en) * 2002-04-29 2005-01-07 Cit Alcatel PROCESS FOR PRODUCING OPTICAL FIBER PREFORMS

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57209839A (en) * 1981-06-16 1982-12-23 Nippon Telegr & Teleph Corp <Ntt> Manufacturing of optical fiber

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52121341A (en) * 1976-04-06 1977-10-12 Nippon Telegr & Teleph Corp <Ntt> Production of optical fiber base materials and production apparatus fo r the same
JPS5927728B2 (en) * 1977-08-11 1984-07-07 日本電信電話株式会社 Manufacturing method of sooty glass rod
JPS54134128A (en) * 1978-04-04 1979-10-18 Nippon Telegr & Teleph Corp <Ntt> Manufacture of basic material for light transmitting fiber
JPS54131044A (en) * 1978-04-04 1979-10-11 Nippon Telegr & Teleph Corp <Ntt> Production of parent material for optical communication fiber
US4242118A (en) * 1979-04-27 1980-12-30 International Standard Electric Corporation Optical fiber manufacture
JPS565339A (en) * 1979-06-26 1981-01-20 Nippon Telegr & Teleph Corp <Ntt> Manufacture of high purity quartz glass
JPS599491B2 (en) * 1979-07-20 1984-03-02 日本電信電話株式会社 Method for manufacturing base material for optical fiber
US4345928A (en) * 1979-10-09 1982-08-24 Nippon Telegraph & Telephone Public Corporation Fabrication method of single-mode optical fiber preforms
US4385802A (en) * 1980-06-09 1983-05-31 Corning Glass Works Long wavelength, low-loss optical waveguide
US4298365A (en) * 1980-07-03 1981-11-03 Corning Glass Works Method of making a soot preform compositional profile
US4304581A (en) * 1980-08-07 1981-12-08 Western Electric Co., Inc. Lightguide preform fabrication
JPS5792534A (en) * 1980-11-28 1982-06-09 Nippon Telegr & Teleph Corp <Ntt> Elongation of glass rod

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57209839A (en) * 1981-06-16 1982-12-23 Nippon Telegr & Teleph Corp <Ntt> Manufacturing of optical fiber

Also Published As

Publication number Publication date
US4804393A (en) 1989-02-14
KR850001510A (en) 1985-03-30
CA1233709A (en) 1988-03-08
JPH0359018B2 (en) 1991-09-09
KR870000383B1 (en) 1987-03-07
AU563400B2 (en) 1987-07-09
EP0135175A1 (en) 1985-03-27
HK101989A (en) 1989-12-29
EP0135175B1 (en) 1989-06-14
DE3478680D1 (en) 1989-07-20
AU3235484A (en) 1985-02-28

Similar Documents

Publication Publication Date Title
US4610709A (en) Method for producing glass preform for optical fiber
JPS6124348B2 (en)
JP2004530621A (en) Method for producing optical waveguide article having high fluorine content region
JPS60257408A (en) Optical fiber and its production
US4161505A (en) Process for producing optical transmission fiber
US4295869A (en) Process for producing optical transmission fiber
JP2017007941A (en) Production method of glass preform
JPS647015B2 (en)
US4165152A (en) Process for producing optical transmission fiber
JPH0380740B2 (en)
EP0164103A2 (en) Method for producing glass preform for optical fiber containing fluorine in cladding
US4298366A (en) Graded start rods for the production of optical waveguides
GB2029400A (en) An Optical Fibre
JPS6046941A (en) Preparation of preform for optical fiber
JPH0525818B2 (en)
JPH0463365B2 (en)
JPH0551542B2 (en)
KR830002121B1 (en) Optical fiber
JPS5910938B2 (en) Method of manufacturing optical transmission glass
JPS60145927A (en) Production of base material for optical fiber
JPH0791082B2 (en) Method and apparatus for manufacturing optical fiber preform
JPH03115136A (en) Optical fiber preform and its production
JPH0518768B2 (en)
JPH0314787B2 (en)
JPS623774B2 (en)