JPS6046932A - Production of hexagonal ferrite magnetic powder - Google Patents

Production of hexagonal ferrite magnetic powder

Info

Publication number
JPS6046932A
JPS6046932A JP58152498A JP15249883A JPS6046932A JP S6046932 A JPS6046932 A JP S6046932A JP 58152498 A JP58152498 A JP 58152498A JP 15249883 A JP15249883 A JP 15249883A JP S6046932 A JPS6046932 A JP S6046932A
Authority
JP
Japan
Prior art keywords
formula
magnetic powder
solution
hexagonal ferrite
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58152498A
Other languages
Japanese (ja)
Other versions
JPH044253B2 (en
Inventor
Tatsumi Maeda
前田 辰巳
Takeshi Anami
阿波 傑士
Masahiro Fukazawa
深沢 昌広
Tadashi Ido
井戸 忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58152498A priority Critical patent/JPS6046932A/en
Publication of JPS6046932A publication Critical patent/JPS6046932A/en
Publication of JPH044253B2 publication Critical patent/JPH044253B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To produce the titled magnetic powder having extremely fine particle size and sharp particle size distribution, by mixing the solutions of metallic ions and an alkali solution under specific condition at specific ratios to form a hexagonal ferrite, heating the mixture, and calcining the produced precipitate. CONSTITUTION:The objective hexagonal ferrite of formula I (A is Ba, Sr or Ca; M is Co, Ti, Ni, Mn, Cu, Zn, In, Ge, Nb and/or Zr; 0.08<=m<=0.1; 5<=n<=6) can be produced as follows. (A) A solution containing the ions of the above metals at the ratios to form the above ferrite is mixed with (B) an alkali solution. The mixture is heated, and the produced precipitate is washed with water, dried and baked to obtain the titled magnetic powder. The above process is carried out under a condition satisfying the formula 1<=x<=8, and the formula IIand formula III, or formula IV and formula V, or formula VI and formula VII, or formula VIII and formula IX, wherein x is the ratio of the alkali equivalent of the solution A to each of the metallic ion equivalent in the solution B, and y is heating temperature ( deg.C).

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は垂直磁化記録媒体に用いて有効な六方晶系フェ
ライト磁性粉の製造方法に関し、更に詳しぐは、極めて
微細で、かつ粒度分布がシャープな六方晶系フェライト
磁性粉の製造方法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for producing hexagonal ferrite magnetic powder that is effective for use in perpendicular magnetic recording media. The present invention relates to a method for producing hexagonal ferrite magnetic powder.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、磁気記録、再生には1− Fe20H1CrO2
、CO被着r−Fe2 o、などの針状結晶からなる磁
性粉を記録媒体の面内長手方向に配向させ、面内長手方
向の残留磁化を利用する方式が一般に適用されている。
Conventionally, 1-Fe20H1CrO2 was used for magnetic recording and reproduction.
A generally used method is to orient magnetic powder made of acicular crystals such as , CO-coated r-Fe2O, etc. in the in-plane longitudinal direction of the recording medium and utilize residual magnetization in the in-plane longitudinal direction.

しかし、この記録媒体では記録の高密度化に伴って磁気
記録媒体内の反磁界が増加するという性質があり、特に
短波長領域における記録再生特性が悪いという欠点があ
る。この反磁界に打ち勝って高密度記録を行なうには、
記録媒体の保磁力を高める一方、磁気記録層を薄くする
必要がある。しかしながら、現状では磁気記録層の高保
磁力化は困難であル、また磁気記録層を薄くすることは
再生信号の特性低下を招くなどの問題が生じて好ましく
ない。
However, this recording medium has the property that the demagnetizing field within the magnetic recording medium increases as the recording density increases, and there is a drawback that the recording and reproducing characteristics are particularly poor in the short wavelength region. In order to overcome this demagnetizing field and perform high-density recording,
While increasing the coercive force of the recording medium, it is necessary to make the magnetic recording layer thinner. However, at present, it is difficult to increase the coercive force of the magnetic recording layer, and making the magnetic recording layer thinner is not preferable because it causes problems such as deterioration of characteristics of reproduced signals.

このようなことから結局は、針状磁性粉を面内長手方向
に配向させて該方向の残留磁化を利用するという方式で
は、磁気記録の高密度化拡困難であった。
For these reasons, it has been difficult to increase the density of magnetic recording using a method in which acicular magnetic powder is oriented in the in-plane longitudinal direction and residual magnetization in this direction is utilized.

この問題全解決するために、磁気記録媒体の面に対して
垂直方向の残留磁化を用いる方式が提案されている。こ
の垂直磁気記録方式では、記録密度が高まる程、記録媒
体中の減磁界が減少するので、本質的に高密度記録に適
した記録方式といえる。ここで、記録媒体の面に対して
垂直方向の残留磁化は、記録媒体の全体にわたって磁性
粉全配向させ残留磁化が垂直であってもよいし、また磁
性粉を配向させることなく無配向で塗布して残留磁化の
一部が垂直方向に残っていてもよい。
In order to completely solve this problem, a method has been proposed that uses residual magnetization in the direction perpendicular to the surface of the magnetic recording medium. In this perpendicular magnetic recording method, as the recording density increases, the demagnetizing field in the recording medium decreases, so it can be said that it is essentially a recording method suitable for high-density recording. Here, the residual magnetization in the direction perpendicular to the surface of the recording medium may be achieved by oriented the magnetic powder entirely over the entire recording medium so that the residual magnetization is perpendicular, or by applying the magnetic powder without orientation. A portion of the residual magnetization may remain in the vertical direction.

このような記録媒体としては、例えば、記録層がCo−
Cr合金をス・やツタ法で成膜したもの、又は、形状が
平板状でかつ板面と垂直方向に磁化容易軸を有する磁性
粉の塗布層であるものが提案されている。
As such a recording medium, for example, the recording layer is made of Co-
It has been proposed that a Cr alloy is formed into a film by the sintering method, or that it is a coated layer of magnetic powder that is flat in shape and has an axis of easy magnetization perpendicular to the plate surface.

後者の場合、塗布する磁性粉として例えば、Ba Fe
xz 019の工うな六[°方、1晶フェライトが使用
されている。これは、六方晶系フェライトが平板形状で
板面垂直方向に磁化容易軸を有するので一涜布後その板
面がテープ面に平行に配列し易すくかつ磁場配向処理若
しくは機械的配向処理によって容易に垂直配向を行ない
得ると論う理由に基づく。
In the latter case, the magnetic powder to be applied is, for example, BaFe
xz 019, monocrystalline ferrite is used. This is because hexagonal ferrite has a flat plate shape and an axis of easy magnetization in the direction perpendicular to the plate surface, so the plate surface can be easily aligned parallel to the tape surface after one cloth, and it can be easily aligned by magnetic field orientation treatment or mechanical orientation treatment. This is based on the reason that vertical alignment can be achieved.

このような六方晶系フェライトで塗布層を構成する場合
、該フェライトそれ自体は保磁力Heが高いため記録時
にヘッドを飽和せしめるのでその構成原子の一部を特定
の他の原子で置換して保磁力を低減することが必要とな
り、またその結晶粒径を0.01〜0.3μmの範囲に
選択することが必要となる。と゛くに粒径の制御は重要
で、粒径が0101μm未満のときには磁気記録に必要
な強い磁性が得られず、また0、3μmを超えると高密
度記録を有利に行なうことが困難となるからである。
When forming a coating layer using such hexagonal ferrite, the ferrite itself has a high coercive force He, which saturates the head during recording. It is necessary to reduce the magnetic force, and it is also necessary to select the crystal grain size in the range of 0.01 to 0.3 μm. Control of particle size is particularly important, because if the particle size is less than 0.101 μm, strong magnetism necessary for magnetic recording cannot be obtained, and if it exceeds 0.3 μm, it will be difficult to perform high-density recording advantageously. be.

このようなことから、各種の六方晶系フェライトの磁性
粉が開発されている。そのうち、次式二AO・n(Fe
1−mMm)!03.(式中、Aは/?リウA(Ba)
For this reason, various hexagonal ferrite magnetic powders have been developed. Among them, the following formula 2AO・n(Fe
1-mMm)! 03. (In the formula, A is /? Liu A (Ba)
.

ストロンチウム(Sr) 、カルシウム(Ca )の群
から選ばれる少なくとも1種の元素全表わし;Mはコバ
ルト(Co) 、チタン(Tl) pニッケル(Ni)
、マンゴy (Mn) +銅(Cu) 、亜鉛(Zn)
 、インジウム(In)。
Full representation of at least one element selected from the group of strontium (Sr) and calcium (Ca); M is cobalt (Co), titanium (Tl), pnickel (Ni)
, mango y (Mn) + copper (Cu), zinc (Zn)
, indium (In).

ゲルマニウム(Ge) 、ニオブ(Nb) 、ジルコニ
ウム(Zr)の群から選ばれる少なくとも1種の元素を
表わし; m 、 nはそれぞれ0.08≦m≦0.2
.5≦n≦6の関係を満足する数を表わす)で示される
置換型の六方晶系フェライトの微粉は、上記した用途に
有用である(%開昭56−61101号参照)。
Represents at least one element selected from the group of germanium (Ge), niobium (Nb), and zirconium (Zr); m and n are each 0.08≦m≦0.2
.. Substituted hexagonal ferrite fine powder represented by the number satisfying the relationship 5≦n≦6 is useful for the above-mentioned uses (see % Japanese Patent Publication No. 56-61101).

との六方晶系フェライトの磁性粉は概路次のようにして
製造されている。すなわち、各金属が上記した組成にな
るように配合した金属塩の溶液とアルカリ溶液とを混合
して水熱合成反応にエフ共沈物を得、これを所定の温度
で焼成するという方法である(特開昭56−16032
号参照)。また、特開昭56−67904号に開示され
ているガラス結晶化法によっても製造することができる
。とくに前者の方法は必要とする粒径の六方晶系フェラ
イト磁性粉を比較的高い収率で製造できて有用である。
The hexagonal ferrite magnetic powder is generally manufactured as follows. That is, it is a method in which a solution of metal salts and an alkaline solution are mixed so that each metal has the above-mentioned composition, a hydrothermal synthesis reaction is performed to obtain an F coprecipitate, and this is calcined at a predetermined temperature. (Unexamined Japanese Patent Publication No. 56-16032
(see issue). It can also be produced by the glass crystallization method disclosed in JP-A No. 56-67904. The former method is particularly useful because it can produce hexagonal ferrite magnetic powder of the required particle size at a relatively high yield.

しかしながら、この共沈−焼成法で製造された磁性粉は
、必ずしもその粒度分布がシャープとはいえず今日の磁
気記録における更なる高密度化の要請に対して充分満足
しうるものでll′iカい。
However, the magnetic powder produced by this coprecipitation-sintering method does not necessarily have a sharp particle size distribution, and it cannot fully satisfy the demands for higher densities in today's magnetic recording. Yes.

したがって、粒径0.01〜0.3μmの六方晶系フェ
ライト磁性粉をシャープな粒度分布で安定して低価格で
量産する方法の開発が望1れている。
Therefore, it is desired to develop a method for stably mass-producing hexagonal ferrite magnetic powder having a particle size of 0.01 to 0.3 μm with a sharp particle size distribution at a low cost.

〔発明の目的〕[Purpose of the invention]

本発明は、六方晶系フェライト磁性粉を共沈−焼成法で
製造する際に、シャープな粒度分布の磁性粉を安定して
製造する方法の提供全目的とする。
An object of the present invention is to provide a method for stably producing magnetic powder with a sharp particle size distribution when producing hexagonal ferrite magnetic powder by a coprecipitation-sintering method.

〔発明の概要〕[Summary of the invention]

本発明者らは、上記目的を達成するために、上記しfc
2種類の反応溶液の尚量比と水熱合成温度との関係を詳
細に検討したところ、両者がある関係を満足するときに
は、0.01〜0.3μmの磁性粉全安定して、かつシ
ャープな粒度分布で製造できるとの事実全見出し本発明
を完成するに到った。
In order to achieve the above object, the present inventors have made the above fc
A detailed study of the relationship between the ratio of the two types of reaction solutions and the hydrothermal synthesis temperature revealed that when the two satisfy a certain relationship, the magnetic powder of 0.01 to 0.3 μm is completely stable and sharp. The present invention has been completed based on the fact that it can be manufactured with a uniform particle size distribution.

すなわち、本発明方法は、次式: AO−n(、Fe、
−mMm)203(式中、AはBa 、 Sr 、 C
aの群から選ばれる少なくとも1種の元素を表わし: 
MViCo 、 Ti 、 Ni 、Mn 。
That is, the method of the present invention has the following formula: AO-n(, Fe,
-mMm) 203 (wherein A is Ba, Sr, C
Represents at least one element selected from the group a:
MViCo, Ti, Ni, Mn.

Cu 、 Zn 、 In 、 Ge、 Nb 、 Z
rの群から選ばれる少なくとも1種の元素を表わし; 
m 、 nはそれぞれ0.08≦m≦0.2 、5≦n
≦6の関係を満足する数を表わす)で示される六方晶系
フェライトを構成する割合で選ばれた上記各金属イオン
を含む溶液(I)と、アルカリ溶液■とを混合し;該混
合溶液を加熱して沈澱物を生成せしめ;ついで、該沈殿
物全水洗、乾燥後、焼成して大方晶系フェライト磁性粉
を製造する方法において、溶液■のアルカリ当量と溶液
(I)K含まれる各金属イオンの当量の和との比をX、
加熱温度をy面とした場合、Xが1≦X≦8全満足する
数であジ、がつXとyは、 1≦x (1,9のとき、5x+30≦y≦180;1
.9≦x < 2.2のとき、5x+30≦y≦=20
0x+560;2.2≦x (4のとき、5x+30≦
y≦100x−100;4≦X≦8のとき、5x+30
≦y≦300の関係を満足することを特徴とする。
Cu, Zn, In, Ge, Nb, Z
represents at least one element selected from the group r;
m and n are 0.08≦m≦0.2 and 5≦n, respectively
A solution (I) containing each of the above metal ions selected in a proportion constituting a hexagonal ferrite represented by a number satisfying the relationship of ≦6) and an alkaline solution (■) are mixed; Heating to form a precipitate; Next, the precipitate is completely washed with water, dried, and fired to produce a macrogonal ferrite magnetic powder. The ratio to the sum of ion equivalents is X,
When the heating temperature is taken as the y-plane, X is a number that satisfies 1≦X≦8, and 1≦x (when 1,9, 5x+30≦y≦180; 1
.. When 9≦x<2.2, 5x+30≦y≦=20
0x+560; 2.2≦x (when 4, 5x+30≦
y≦100x-100; when 4≦X≦8, 5x+30
It is characterized by satisfying the relationship ≦y≦300.

本発明方法で製造される六方晶系フェライトの磁性粉は
一般式: AO−n (Fel−mMm)203 (A
、 、 M 。
The hexagonal ferrite magnetic powder produced by the method of the present invention has the general formula: AO-n (Fel-mMm)203 (A
, , M.

n、mはそれぞれ上と同じ意味金有する)で示される。n and m each have the same meaning as above).

この磁性粉は、上記フェライトを構成する各金属のイオ
ンを所定の割合で含む溶液(I)とアルカリ溶液(If
)が出発原料である。ここで、溶液■としてはアルカリ
性であれば何であってもよいが、例えば水酸化ナトリウ
ム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、
水酸化アンモニウム、炭酸アンモニウムの水溶液をあげ
ることができる。
This magnetic powder is made of a solution (I) containing ions of each metal constituting the ferrite in a predetermined ratio and an alkaline solution (If
) is the starting material. Here, the solution (2) may be anything as long as it is alkaline, such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate,
Examples include aqueous solutions of ammonium hydroxide and ammonium carbonate.

通常は低価格、入手容易ということからして水酸化す)
 IJウム水溶液が用いられる。また、溶液中は、目的
とする組成の磁性粉を構成するに必要な金属の塩を所定
量水に溶解して調製される。
Hydroxylation is usually used due to its low price and easy availability)
An aqueous solution of IJum is used. In addition, the solution is prepared by dissolving a predetermined amount of a metal salt necessary to form a magnetic powder having a desired composition in water.

本発明方法にあっては、まず溶液(1)と溶液■を後述
する商量比で混合する。ついで、混合溶液を後述する温
度で加熱して各金属イオンを共沈せしめる。このとき、
適用する温度が100℃以上の場合には、全体の反応は
オートクレーブ々どの耐圧密閉容器内で行なう。反応は
攪拌下で行なうことが好ましい。その後、得られた沈澱
物を充分に水洗してアルカリ当量去した後乾燥し、これ
を焼成する。水洗が不充分でアルカリが残存する場合に
は、アルカリが原因であると考えられる凝集粒子塊が生
成し、焼成後得られた磁性粉の粒度分布がブロードにな
って目的全達成できない。焼成は、例えば電気炉のよう
な通常の加熱炉を用いて空気中で行なえばよい。焼成温
度は700〜950℃である。好ましくは700〜85
0℃である。
In the method of the present invention, first, solution (1) and solution (2) are mixed in the commercial ratio described below. Next, the mixed solution is heated at a temperature described later to cause coprecipitation of each metal ion. At this time,
When the applied temperature is 100° C. or higher, the entire reaction is carried out in a pressure-tight closed container such as an autoclave. Preferably, the reaction is carried out under stirring. Thereafter, the obtained precipitate is thoroughly washed with water to remove the alkali equivalent, and then dried and calcined. If water washing is insufficient and alkali remains, agglomerated particle agglomerates, which are thought to be caused by the alkali, are formed, and the particle size distribution of the magnetic powder obtained after firing becomes broad, making it impossible to achieve the entire purpose. Firing may be performed in air using a common heating furnace such as an electric furnace. The firing temperature is 700-950°C. Preferably 700-85
It is 0°C.

以上の工程において、本発明方法の最大の特徴は、溶液
叩のアルカリ当量と溶液(I)の各金属イオンの当量の
和との比をX、混合溶液の水熱合成反応時の温度をy(
6)としたとき、x r Yを以下のように管理するこ
とにある。
In the above steps, the greatest feature of the method of the present invention is that the ratio of the alkali equivalent of solution beating to the sum of the equivalents of each metal ion in solution (I) is set to X, and the temperature during the hydrothermal synthesis reaction of the mixed solution is set to y. (
6), the purpose is to manage x r Y as follows.

すなわち、まずXは1≦X≦8の関係全満足する。そし
て、Xとyとの関係は、1≦x(1,9のとき、5x+
30≦y≦180;1.9≦x<2.2のとき、5x+
30≦y≦−200x+560 : 2.2≦x(4の
とき、5x+30≦y≦100x−100; 4≦X≦
8のとき、5x+30≦y≦300を満足する関係であ
る。
That is, first, X satisfies the relationship 1≦X≦8. Then, the relationship between X and y is 1≦x (when 1, 9, 5x+
30≦y≦180; When 1.9≦x<2.2, 5x+
30≦y≦-200x+560: 2.2≦x (when 4, 5x+30≦y≦100x-100; 4≦X≦
8, the relationship satisfies 5x+30≦y≦300.

このxyとの関係を図に示す。図で、x、yは、座標a
(1,,35) 、b(1,180) 、c(1,9,
180) 。
This relationship with xy is shown in the figure. In the figure, x, y are the coordinates a
(1,,35), b(1,180), c(1,9,
180).

d(2,2,120)、e(4,300)、f(8,3
00)及びg(8,70)ffiこの順序で直i1M’
eもって結んで描いた斜線表示の範囲内の座標点として
示される。この図形の外側の領域(境界線は含まない)
はいずれも本発明方法にとっては不適な領域である。
d(2,2,120), e(4,300), f(8,3
00) and g(8,70)ffi in this order straight i1M'
It is shown as a coordinate point within the range indicated by diagonal lines connected by e. Area outside this shape (not including the border)
Both are unsuitable areas for the method of the present invention.

すなわち、領域人の条件で製造した磁性粉は飽和磁化及
び保磁力が非常に小さく磁気記録媒体用の磁性粉たり得
ない。領域Bの条件下では、得られた磁性粉はその粒径
が0.3μmより太きいものもちり粒度分布は不均一か
つブロードである。領域Cは高温域したがって高圧域で
あるため、用いる設備が大型化して製造コストも高くな
りまた量産性の点で劣りエ業的には現実的ではない。更
にD領域ではアルカIJ’を多量に使用するため、沈澱
物の水洗時に多量の水と時間全必要とする。しかも水洗
が不充分であった場合には、前述したように焼成時にお
ける残存アルカリの悪影響のあられれる虞れがある。最
後に、領域Eの条件下では、得られた沈澱物の粒径は約
100^以下と超微細になる。そのため沈降速度が極め
て小さく、この沈澱物を水洗してアルカリ、その他の不
必要成分を除去するためには極めて多量の水と時間を必
要とするので好ましくない。
In other words, the magnetic powder manufactured under the conditions of Territory has very low saturation magnetization and coercive force, and cannot be used as a magnetic powder for magnetic recording media. Under the conditions of region B, the obtained magnetic powder has a particle size larger than 0.3 μm, and the particle size distribution is uneven and broad. Since region C is a high temperature region and therefore a high pressure region, the equipment used becomes large and the manufacturing cost becomes high, and mass productivity is poor and it is not practical from an industrial perspective. Furthermore, since a large amount of alkali IJ' is used in region D, a large amount of water and a lot of time are required for washing the precipitate. Moreover, if the water washing is insufficient, there is a risk that the residual alkali during firing may have an adverse effect as described above. Finally, under the conditions of region E, the particle size of the obtained precipitate becomes ultrafine, about 100^ or less. Therefore, the sedimentation rate is extremely low, and washing the precipitate with water to remove alkali and other unnecessary components requires an extremely large amount of water and time, which is not preferable.

X + Yが図の斜線範囲内にあるとき、得られた磁性
粉は飽和磁化も586rnu/y以上でかつ保磁力も7
50〜8100eと大きく、かつ、なによりもその粒度
分布が0.01〜0.3μmの範囲にあり高密度化記録
用の磁性粉として好適である。
When X + Y is within the shaded range in the figure, the obtained magnetic powder has a saturation magnetization of 586 rnu/y or more and a coercive force of 7.
It has a large particle size distribution of 50 to 8100e, and above all, its particle size distribution is in the range of 0.01 to 0.3 μm, making it suitable as a magnetic powder for high-density recording.

〔発明の実施例〕[Embodiments of the invention]

2.0%/l/のFeC6316I%O水溶液1000
mg、1,0%/l/のBa C10・2 H20水溶
液206m7! 、 1.0モルのCo C14・、H
2O水溶液167mg及び1.0モルノTiC4水溶液
167tn1.、以上4種の溶液を混合して溶液中と1
 1 1 11 2+2+4 ’すなわち、1mである。
2.0%/l/FeC6316I%O aqueous solution 1000
mg, 1.0%/l/206 m7 of Ba C10.2 H20 aqueous solution! , 1.0 mol Co C14., H
167 mg of 2O aqueous solution and 167 tn1.0 molar TiC4 aqueous solution. , the above four types of solutions are mixed and the solution and 1
1 1 11 2+2+4', that is, 1 m.

溶液■としては水酸化ナトリウム水溶液を用いた。溶液
叩は、溶液(1)との間で表に示した当量比になるよう
な当量の水酸化ナトリウムを秤量しこれを純水1500
−に溶解して調製した。
A sodium hydroxide aqueous solution was used as solution (2). For solution beating, weigh out an equivalent amount of sodium hydroxide so that the equivalent ratio with solution (1) is as shown in the table, and add it to 1,500 ml of pure water.
- It was prepared by dissolving it in -.

まず、溶液(II)t−約20℃に冷却し、ここに溶液
(I) ’e滴下して攪拌混合した。このまま30分間
攪拌を続は沈澱物を含む水溶液を得た。
First, the solution (II) was cooled to about 20° C., and the solution (I) was added dropwise thereto and mixed with stirring. After stirring for 30 minutes, an aqueous solution containing a precipitate was obtained.

この全体に表に示した温度で1時間加熱処理を施して水
熱合成反応を行なった。100℃以上の加熱処理の場合
はオートクレーブを用いた3゜得られた沈澱物を充分に
水洗した後乾繰し、最後に大気中で譲気炉を用いて80
0℃、3時間焼成した。
The whole was heat-treated for 1 hour at the temperature shown in the table to carry out a hydrothermal synthesis reaction. In the case of heat treatment at 100°C or higher, the precipitate obtained was heated for 3°C using an autoclave.
It was baked at 0°C for 3 hours.

カくシテ、組成はBaOH5−67((”eo、5eo
COo、o71sTio、o7x5)20gであるGo
 −Ti置換Baフェライトの粉末が得られた。
The composition is BaOH5-67 (("eo, 5eo
COo, o71sTio, o7x5) 20g
-Ti-substituted Ba ferrite powder was obtained.

得られた各粉末につき、飽和磁化、保磁力を最大磁場強
さ10 KOeの試料振動型磁束計を用いて測定し、ま
た、粒径とその分布を透過電子顕微鏡及び走査型電子顕
微鏡で観察し/ヒ。以上の結果を表に一括して示し1ヒ
For each powder obtained, the saturation magnetization and coercive force were measured using a sample vibrating magnetometer with a maximum magnetic field strength of 10 KOe, and the particle size and its distribution were observed using a transmission electron microscope and a scanning electron microscope. /Hi. The above results are summarized in Table 1.

〔発明の効果〕〔Effect of the invention〕

以上の説明で明らかなように、本発明方法によれば、得
られた六方晶系フェライトの磁性粉は、■粒度分布が0
.01〜0.3μmの範囲内で揃っておジ、■飽和磁化
、保磁力も大きいので高密度記録用の磁性粉として極め
て有用である。
As is clear from the above explanation, according to the method of the present invention, the obtained hexagonal ferrite magnetic powder has ■ particle size distribution of 0.
.. It has a large saturation magnetization and a large coercive force within the range of 0.01 to 0.3 μm, making it extremely useful as a magnetic powder for high-density recording.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明方法において適用するアルカリ土類金属イオ
ンの当量の和と水熱合成温度との関係を示す図である。
The figure is a diagram showing the relationship between the sum of equivalents of alkaline earth metal ions applied in the method of the present invention and the hydrothermal synthesis temperature.

Claims (1)

【特許請求の範囲】 1 次式: A O−n (Fe1−m Mm )20
3 (式中、Aはバリウム、ストロンチウム、カルシウ
ムの群から選ばれる少なくとも1種の元素を表わし;M
iコバルト、チタン、ニッケル、マンガン。 銅、亜鉛、インジウム、ゲルマニウム、ニオブ、ジルコ
ニウムの群から選ばれる少なくとも1種の元素を表わし
; m 、 nはそれぞれ0.08≦m≦0.2 、5
≦n≦6の関係全満足する数を表わす)で示される六方
晶系フェライトi構成する割合で選ばれた上記各金属イ
オンを含む溶液(1)と、アルカリ溶液■とを混合し;
該混合溶液全加熱して沈澱物を生成せしめ;ついで、該
沈澱物を水洗、乾燥後、焼成して六方晶系フェライト磁
性粉を製造する方法において、 溶液(II)のアルカリ当量と溶液(I)に食まれる各
金属イオンの当量の和との比k x +加熱温度をy(
ハ)とした場合、 Xが1≦X≦8全満足する数であり、がっ、Xとyは、 1≦x(1,9のとき、5x+30≦y≦180;1.
9≦x (2,2のとき、5x+30≦y≦−200x
+560 :2.2≦x (4のとき、5x+30≦y
≦100x−100;4≦X≦8のとき、5x+30≦
y≦300の関係を満足する数であることをlトに徴と
する六方晶系フェライト磁性粉の製造方法。 2 該焼成温度が700〜950℃である特許請求の範
囲第1項記載の六方晶系7エライト磁性粉の製造方法。 3 該焼成温度が700〜850℃である特許請求の範
囲第1項又は第2項記載の六方晶糸フェライト磁性粉の
製造方法。
[Claims] Primary formula: A O-n (Fe1-m Mm)20
3 (wherein A represents at least one element selected from the group of barium, strontium, and calcium; M
iCobalt, titanium, nickel, manganese. Represents at least one element selected from the group of copper, zinc, indium, germanium, niobium, and zirconium; m and n are 0.08≦m≦0.2, 5, respectively.
Mixing a solution (1) containing the above-mentioned metal ions selected in proportions constituting hexagonal ferrite i represented by a number that satisfies the relationship ≦n≦6, and an alkaline solution (■);
The mixed solution is completely heated to form a precipitate; the precipitate is then washed with water, dried, and fired to produce a hexagonal ferrite magnetic powder, in which the alkali equivalent of the solution (II) and the solution (I ) is the ratio k x + heating temperature to the sum of the equivalents of each metal ion eaten by y (
C), then X is a number that fully satisfies 1≦X≦8, and X and y are 1≦x (when 1, 9, 5x+30≦y≦180; 1.
9≦x (when 2,2, 5x+30≦y≦-200x
+560: 2.2≦x (when 4, 5x+30≦y
≦100x-100; When 4≦X≦8, 5x+30≦
A method for producing hexagonal ferrite magnetic powder, characterized in that the number satisfies the relationship y≦300. 2. The method for producing hexagonal 7-elite magnetic powder according to claim 1, wherein the firing temperature is 700 to 950°C. 3. The method for producing hexagonal thread ferrite magnetic powder according to claim 1 or 2, wherein the firing temperature is 700 to 850°C.
JP58152498A 1983-08-23 1983-08-23 Production of hexagonal ferrite magnetic powder Granted JPS6046932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58152498A JPS6046932A (en) 1983-08-23 1983-08-23 Production of hexagonal ferrite magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58152498A JPS6046932A (en) 1983-08-23 1983-08-23 Production of hexagonal ferrite magnetic powder

Publications (2)

Publication Number Publication Date
JPS6046932A true JPS6046932A (en) 1985-03-14
JPH044253B2 JPH044253B2 (en) 1992-01-27

Family

ID=15541774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58152498A Granted JPS6046932A (en) 1983-08-23 1983-08-23 Production of hexagonal ferrite magnetic powder

Country Status (1)

Country Link
JP (1) JPS6046932A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61162427U (en) * 1985-03-30 1986-10-08
JPS6255904A (en) * 1985-09-05 1987-03-11 Sony Corp Hexagonal system ferrite magnetic powder
JPS63164203A (en) * 1986-12-25 1988-07-07 Ishihara Sangyo Kaisha Ltd Ferromagnetic fine powder for magnetic recording

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56160328A (en) * 1980-05-08 1981-12-10 Toshiba Corp Manufacture of ba-ferrite powder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56160328A (en) * 1980-05-08 1981-12-10 Toshiba Corp Manufacture of ba-ferrite powder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61162427U (en) * 1985-03-30 1986-10-08
JPH0357464Y2 (en) * 1985-03-30 1991-12-27
JPS6255904A (en) * 1985-09-05 1987-03-11 Sony Corp Hexagonal system ferrite magnetic powder
JPS63164203A (en) * 1986-12-25 1988-07-07 Ishihara Sangyo Kaisha Ltd Ferromagnetic fine powder for magnetic recording

Also Published As

Publication number Publication date
JPH044253B2 (en) 1992-01-27

Similar Documents

Publication Publication Date Title
US4664831A (en) Preparation of finely divided ferrite powders
US5075169A (en) Plate-like composite ferrite particles for magnetic recording and process for producing the same
JPH033361B2 (en)
JPS6046932A (en) Production of hexagonal ferrite magnetic powder
JPS6249963B2 (en)
JPH0359007B2 (en)
JPH07172839A (en) Production of magnetic powder of hexagonal ba ferrite
JP3429881B2 (en) Composite type hexagonal ferrite magnetic powder and method for producing the same
US5062983A (en) Magnetic powder for magnetic recording media
JPH0247209A (en) Production of fine platy barium ferrite powder
JPH0727809B2 (en) Method for producing hexagonal ferrite powder
JPS6260209A (en) Manufacture of hexagonal system ferrite magnetic powder
JP2547000B2 (en) Ferromagnetic fine powder for magnetic recording
JPH05258932A (en) Magnetism recording magnetic powder
JP2651795B2 (en) Method for producing ferromagnetic fine powder for magnetic recording
JPH0614486B2 (en) Plate-shaped composite ferrite fine particle powder for magnetic recording and method for producing the same
JP2796189B2 (en) Manufacturing method of acicular barium ferrite magnetic powder
JPS6127329B2 (en)
JPH01119521A (en) Magnetic powder for magnetic recording
JP2806618B2 (en) Method for producing acicular barium ferrite magnetic powder
JPS632813A (en) Production of particulate powder of lamellate ba ferrite for magnetic recording
JPS60115203A (en) Manufacture of hexagonal system ferrite super-fine particle
JPH0712933B2 (en) Magnetic powder for magnetic recording
JPH02120235A (en) Ferrite powder for high density recording
JPH0752507B2 (en) Magnetic particles for perpendicular magnetic recording and method for producing the same