JPS6046859A - Production of wear-resistant composite casting - Google Patents

Production of wear-resistant composite casting

Info

Publication number
JPS6046859A
JPS6046859A JP15438983A JP15438983A JPS6046859A JP S6046859 A JPS6046859 A JP S6046859A JP 15438983 A JP15438983 A JP 15438983A JP 15438983 A JP15438983 A JP 15438983A JP S6046859 A JPS6046859 A JP S6046859A
Authority
JP
Japan
Prior art keywords
casting
molten metal
metal
mold
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15438983A
Other languages
Japanese (ja)
Inventor
Toshiaki Morichika
森近 俊明
Kazuyuki Takubo
和之 田久保
Atsushi Funakoshi
淳 船越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP15438983A priority Critical patent/JPS6046859A/en
Publication of JPS6046859A publication Critical patent/JPS6046859A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/08Casting in, on, or around objects which form part of the product for building-up linings or coverings, e.g. of anti-frictional metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PURPOSE:To melt and activate the surface layer of an insert body and to weld and integrate both layers to one body by washing the insert body with a molten metal prior to insert casting then performing insert-casting. CONSTITUTION:A single body of a metal or a mixed body of carbide particles and the metal is fitted as an insert material Kb to the columnar core 11 in a casting mold in the stage of producing a wear resistant composite casting having the single material layer of the metal or the mixed layer of the carbide particles and the metal. A molten metal M1 as a washing metal is then cast into the mold 1 and the material Kb is washed by the molten metal while said metal is discharged from the lower part of the casting mold via a runner 14 to a well 15, by which the surface layer is melted and activated. The casting is thereafter formed by the molten metal mixture or the molten metal M2 of the single metallic material which casts the material Kb therein.

Description

【発明の詳細な説明】 本発明は、炭化物粒子と金属との混在層と金属単体層と
が両層の境界面で完全に溶着一体化した耐摩耗複合鋳物
の鋳ぐるみによる製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a wear-resistant composite casting by casting, in which a mixed layer of carbide particles and metal and a single metal layer are completely welded and integrated at the interface between the two layers.

炭化物粒子と金属とが均一に分散混在する混在層と、金
属単体層とが一体化された材料は、混在層による高度の
耐摩耗性と、金属単体層による強度・靭性を兼備する。
A material in which a mixed layer in which carbide particles and metal are uniformly dispersed and a single metal layer is integrated has both the high wear resistance of the mixed layer and the strength and toughness of the single metal layer.

例えば、第1図に示すような中空円筒体であって、炭化
物粒子(円群とその粒子間隙を満たす金属(財)との混
在層W店、その内側の金属単体層fB)とからなる2層
構造を有する材料は、耐摩耗性と強度・靭性が要求され
るロール類などに好適である。
For example, a hollow cylindrical body as shown in FIG. Materials having a layered structure are suitable for rolls that require wear resistance, strength, and toughness.

かかる2層構造をもつ中空円筒体の製造法として、第2
図に示すような金属単体の円筒(Kb)を準備し、これ
を波涛ぐるみ体として、第10図のように鋳型(1)の
円柱状中子01Jに嵌着し、この鋳型内に金属溶湯(財
)と炭化物粒子filの混合溶湯を鋳造して金属単体円
筒(Kb)を鋳ぐるむ方法が考えられる。鋳造後、粒子
(P)を溶湯11中で沈降・凝集させ、凝固完了したの
ち鋳造体を鋳型から取出し、上方の押湯部分(イ)を切
断除去すれば、下部(ロ)は、前記第1図に示すような
中空円筒形状を有し、その外側の表層は混合溶湯の鋳造
により形成された混在層であって、内側は波防ぐるみ体
(Kb )によって与えられた金属単体層である2層構
造の鋳物として得られる。
As a method for manufacturing a hollow cylindrical body having such a two-layer structure, the second method is as follows.
Prepare a single metal cylinder (Kb) as shown in the figure, use it as a wave-filled body, fit it into the cylindrical core 01J of the mold (1) as shown in Figure 10, and place the molten metal inside the mold. One possible method is to cast a mixed molten metal of Kb and carbide particles and cast a single metal cylinder (Kb). After casting, the particles (P) are allowed to settle and coagulate in the molten metal 11, and after solidification is completed, the cast body is taken out of the mold and the upper feeder part (a) is cut and removed, and the lower part (b) is It has a hollow cylindrical shape as shown in Figure 1, and the outer surface layer is a mixed layer formed by casting mixed molten metal, and the inner layer is a single metal layer provided by a wave-preventing slat body (Kb). Obtained as a two-layer casting.

こうして得られる複合鋳物は、混在層と金属単体層とが
その境界面で完全に溶着一体化したものであることを要
する。溶着が不完全であると、境界部が強度面で最弱点
となり、使用時にそれを起点として破壊が生じ、実用に
耐え得ないからである。
The composite casting thus obtained requires that the mixed layer and the single metal layer are completely welded and integrated at the interface. This is because if the welding is incomplete, the boundary becomes the weakest point in terms of strength, and breakage occurs from this point during use, making it impossible to withstand practical use.

しかしながら、上記のように単に混合溶湯を鋳込むだけ
では、波防ぐるみ体の表面を十分に溶融、活性化し得す
、溶着状態が不完全なまま凝固してしまう。ことに、溶
湯が炭化物粒子との混合状態で鋳込まれる場合には、粒
子の吸熱により少なからぬ熱量が奪われるため、完全な
溶着を達成するに必要な熱量を確保することは容易でな
い。この傾向は、層厚の薄い混在1を形成する場合のよ
うに溶湯の鋳込量が少くなるほど顕著となる。
However, if the mixed molten metal is simply cast as described above, the surface of the wave-preventing case body will be sufficiently melted and activated, and the welded metal will solidify without being fully welded. In particular, when the molten metal is mixed with carbide particles and is cast, a considerable amount of heat is absorbed by the particles, making it difficult to secure the amount of heat necessary to achieve complete welding. This tendency becomes more pronounced as the amount of molten metal poured becomes smaller, such as when forming the mixed layer 1 with a thinner layer thickness.

上記とは逆に、波防ぐるみ体として、第3図のような炭
化物粒子(Plと金属(財)との均一な混合体からなる
円筒(Ka )を準備して第11図のように鋳型(1)
の外kO壁Q′;IJにそわせて装着し、これに金属単
体溶湯(財)を鋳込むことによって鋳ぐるみを行うこと
も可能である。この場合、鋳込まれる溶湯は、前記のそ
れと異なり炭化物:げL子が混在していないので、熱的
条件は比較的有利であるが、それでも波防ぐるみ体に対
して、その表面がわずかに溶融する程度の熱エネルギー
を瞬時に与え得るに過ぎない。
Contrary to the above, a cylinder (Ka) made of carbide particles (a homogeneous mixture of Pl and metal) as shown in Fig. 3 is prepared as a wave-blocking body, and molded as shown in Fig. 11. (1)
It is also possible to perform casting by installing the outer kO wall Q' along the IJ and casting a single metal molten metal (goods) therein. In this case, the molten metal to be cast is different from the above-mentioned one and does not contain carbides and molten metal, so the thermal conditions are relatively advantageous. It is only possible to instantaneously apply enough thermal energy to melt the material.

溶着を促進させるための補助的対策として、波防ぐるみ
体や鋳型を予熱しておくことも考えられるが、高温に加
熱すると、波防ぐるみ体に表面酸化が生じ、却って溶着
が妨げられる。表面酸化を防止するには、銅めっきなど
を施すことも有効ではあるが、予熱時にめっきが溶融し
てしまってはめっきの効果が減殺されるので、予熱温度
にも自ずと限界があり、結局完全な溶着を達成するに足
る熱エネルギーを予熱処理にてまかなうことは極めて困
難である。
As an auxiliary measure to promote welding, it may be possible to preheat the wave-preventing case and mold, but heating to high temperatures will cause surface oxidation of the wave-preventing case, which will actually hinder welding. Copper plating is an effective way to prevent surface oxidation, but if the plating melts during preheating, the effect of the plating is diminished, so there is a limit to the preheating temperature, and in the end, it is impossible to completely prevent surface oxidation. It is extremely difficult to provide sufficient thermal energy to achieve proper welding through preheating.

本発明は上記問題を解決するためになされたものであり
、金属単体(または炭化物粒子と金属の混合体)の波防
ぐるみ体を鋳型内に装着して、これを炭化物粒子と金属
溶湯との混合溶湯(または金属単体溶湯)にて鋳ぐるむ
にあたり、予め金属°溶湯を鋳型内に鋳込むとともに鋳
型下部から排出させながら、その溶湯熱にて波防ぐるみ
体の表層を溶融、活性化させ、しかるのち波防ぐるみ体
を鋳ぐるむべき混合溶湯または金属単体溶湯の鋳込みを
行うようにしたものである。すなわち、本発明は鋳ぐる
みを行うに先立ち、波防ぐるみ体に対して溶湯による「
湯洗い」を施こし、その洗い島にて波防ぐるみ体に十分
な熱エネルギーが与えられた状態で鋳ぐるみを行うこと
により、両層を完全に溶着一体化することを可能にした
のである。
The present invention has been made in order to solve the above problem, and a wave-preventing slug body made of a single metal (or a mixture of carbide particles and metal) is installed in the mold, and this is used to prevent the carbide particles and the molten metal from forming. When casting with mixed molten metal (or single metal molten metal), the molten metal is poured into a mold in advance and discharged from the bottom of the mold, and the heat of the molten metal melts and activates the surface layer of the casing body that prevents waves. Then, the mixed molten metal or the single metal molten metal is poured into a wave-preventing casing. That is, in the present invention, before casting, the wave-preventing casting body is coated with molten metal.
By applying "hot water washing" and then casting the material in a state where sufficient heat energy is applied to the wave-blocking material at the washing island, it was possible to completely weld and integrate both layers. .

本発明による鋳造は、波防ぐるみ体として金属単体を使
用し、これを炭化物粒子と金属溶湯との混合溶湯で鋳ぐ
るむ態様、および波防ぐるみ材として炭化物粒子と金属
との混合体を使用し、これを金属単体溶湯で鋳ぐるむ態
様とに大別される。
Casting according to the present invention uses a single metal as a wave-preventing sill material, and casts it with a mixed molten metal of carbide particles and molten metal, and uses a mixture of carbide particles and metal as a wave-preventing siding material. This can be roughly divided into two types: one in which a single metal is cast using molten metal.

本発明の鋳造要領の具体例を図面により説明する。第4
図の訪造例は、第2図のような金属」114体からな、
る所望の肉厚および胴長を有する円筒0(+))を波防
ぐるみ体として鋳型内の円柱状中子01)に装着し、こ
れを炭化物粒子と金属溶湯との混合溶湯にて鋳ぐるむこ
とにより、第1図のごとき2層を有する中空円筒鋳物を
得るものである。鋳型(1)の下部には、鋳ぐるみに先
立って鋳込まれる洗い島を鋳型内から排出させて貯留す
るための湯溜部0■が円周方向に適当な間隔をおいて複
数個付設されている。
A specific example of the casting procedure of the present invention will be explained with reference to the drawings. Fourth
The example shown in the figure is made of 114 metal bodies as shown in Figure 2.
A cylinder 0(+)) having the desired wall thickness and body length is attached to a cylindrical core 01) in a mold as a wave-proofing body, and this is cast in a molten metal mixture of carbide particles and molten metal. By doing so, a hollow cylindrical casting having two layers as shown in FIG. 1 is obtained. At the bottom of the mold (1), a plurality of sump parts 0■ are provided at appropriate intervals in the circumferential direction for discharging and storing the washing islands that are cast before being cast from inside the mold. ing.

鋳型には、まず洗い鵬として金属溶湯(Ml)を取鍋(
2)から、鋳込ホッパー(3)を介して鋳込み、波防ぐ
るみ体(Kb)の表層を湯洗いする。ホッパーから流下
する溶湯は、図示のように中子01)の半球形状項中の
中心に指向させれば、頂部中心から放射状に分散し鋳型
内円周方向の各部分にまんべんなく供給される。この湯
洗いにおいて、溶湯(洗い湯)の鋳込速度(S I K
9/sec )を、 湯道04)から湯溜部Q51への
流出速度(S2 即/5ec)よりも犬きくして鋳型内
の製品形成部(■)内に溶湯を充満させれば、波涛ぐる
み体に対する十分な熱エネルギーが供給される。それと
同時に、鋳型自体も多量の給熱をうけて高温度に加熱さ
れる。この溶湯(洗い島)の鋳込速度(5IK9/5e
c)と流出速度(52K9/ s e c )との比(
51/S2)は、好ましくは1.2以上である。1.2
に満たないと、鋳型内での貯留量が少なく、波涛ぐるみ
材に対する熱エネルギーの供給が不足するからである。
The mold is first washed with molten metal (Ml) in a ladle (
From step 2), the surface layer of the wave-proofing body (Kb) is poured through the casting hopper (3) and washed with hot water. If the molten metal flowing down from the hopper is directed toward the center of the hemispherical shape of the core 01) as shown, it will be distributed radially from the center of the top and evenly supplied to each part of the mold in the circumferential direction. In this hot water washing, the casting speed of the molten metal (washing water) (S I K
If the product forming part (■) in the mold is filled with molten metal by increasing the flow rate (S2 instant/5 sec) from the runner 04) to the sump Q51, the molten metal will be filled with waves. Sufficient thermal energy is provided to the body. At the same time, the mold itself receives a large amount of heat and is heated to a high temperature. The casting speed of this molten metal (washing island) (5IK9/5e
c) and the ratio of the outflow velocity (52K9/sec) (
51/S2) is preferably 1.2 or more. 1.2
If the amount is less than 1, the amount stored in the mold will be small and the supply of thermal energy to the wave-covered material will be insufficient.

しかし、(S1/S2)の比があまり大きくなると、 
鋳型内での溶湯(洸い鴻→の貯留時間が長くなり、溶湯
の停滞に伴う降温のために、却って波涛ぐるみ体に対す
る給熱量が低減する。このため、(Sl/S2)の上限
は好ましくは2.5とする。
However, if the ratio of (S1/S2) becomes too large,
The storage time of the molten metal in the mold becomes longer, and the temperature decreases due to stagnation of the molten metal, which actually reduces the amount of heat supplied to the wave-filled body.For this reason, the upper limit of (Sl/S2) is preferable. is set to 2.5.

上記湯洗いにより波涛ぐるみ材(Kb )の表層が十分
に溶融、活性化され、かつその溶湯が鋳型内から全量流
出して湯溜部09が充満された時点で、第5図のように
、炭化物粒子(P)と溶湯(M2)との混合溶湯を鋳造
すれば、波涛ぐるみ材と混合溶湯との界面は完全に溶着
し、両層間の強固な一体的結合関係が形成される。また
、鋳造された当初の鋳型内混合溶湯は、急速に降温・粘
稠化することはなく、十分な流動性を保持するので、層
厚の薄い混在層を形成する場合のように溶湯量が比較的
少くても、溶湯中の粒子群を十分に沈降・凝集さ−せ、
かつ凝集粒子群の間隙に金属溶湯が満たされた均質な混
在層を形成することができる。上記鋳造後、凝固完了を
まって鋳造体を取出し、」二部の押湯部分と、下部の湯
道部分とを切断除去すれば、外側表層の混在層と内側の
金属単体層とが完全に密着一体化した前記第1図に示す
ごとき中空円筒状複合鋳物が得られる。
When the surface layer of the wave-filled material (Kb) has been sufficiently melted and activated by the hot water washing, and the molten metal has completely flowed out of the mold and filled the sump 09, as shown in Fig. 5, When a molten mixture of carbide particles (P) and molten metal (M2) is cast, the interface between the wave surrounding material and the molten mixture is completely welded, forming a strong integral bond between the two layers. In addition, the molten metal mixed in the mold at the time of casting does not rapidly cool down or become viscous, and maintains sufficient fluidity, so the amount of molten metal is reduced as in the case of forming a thin mixed layer. Even if the amount is relatively small, particles in the molten metal can be sufficiently settled and coagulated,
Moreover, it is possible to form a homogeneous mixed layer in which the gaps between the aggregated particles are filled with molten metal. After the above-mentioned casting, wait until solidification is completed, take out the cast body, and cut and remove the two feeder parts and the lower runner part to completely separate the outer surface mixed layer and the inner single metal layer. A hollow cylindrical composite casting as shown in FIG. 1 which is tightly integrated is obtained.

なお、上記の鋳造において、混合溶湯として鋳込まれる
溶湯中の炭化物粒子の一部が湯道(搬部へ流出するのを
防止するためには、湯道を細径・長尺形状にすればよい
In addition, in the above-mentioned casting, in order to prevent some of the carbide particles in the molten metal that is cast as a mixed molten metal from flowing out to the runner (conveying section), it is necessary to make the runner a small diameter and long shape. good.

波涛ぐるみ体として第3図の粒子と金属の混合体からな
る円筒(Ka)を用いて第1図のような2層構造の中空
円筒鋳物を製造する場合には、第6図に示すように、鋳
型(1)の外側壁02にそって波涛ぐるみ休(Ka )
を装着し、前記と同じ要領で、まず溶湯(洗い湯)を鋳
込み、好ましくは鋳込速度と鋳型からの流出速度の比(
S1152)を1.2〜2.5として波涛ぐるみ体の表
層を十分に溶融活性化させ、ついで波涛ぐるみ体を鋳ぐ
るむべき金属1表 溶湯(M2)を鋳造すればよい。この場合の洗い場と鋳
ぐるみ溶湯として同じ溶湯を使用し、連続して鋳込むこ
ともできる。
When manufacturing a hollow cylindrical casting with a two-layer structure as shown in Fig. 1 using a cylinder (Ka) made of a mixture of particles and metal shown in Fig. 3 as a wave-filled body, as shown in Fig. 6. , along the outer wall 02 of the mold (1) (Ka)
is installed, and in the same manner as above, first pour the molten metal (washing water), preferably by adjusting the ratio of the casting speed to the flow rate from the mold (
S1152) may be set to 1.2 to 2.5 to sufficiently melt and activate the surface layer of the wave-covered body, and then cast a molten metal (M2) in which the wave-covered body is to be cast. In this case, it is also possible to use the same molten metal for the washing area and the casting molten metal, and to cast continuously.

上記鋳造例はいずれも、外側層を混在層、内側層を金属
単体層とする例を示したが、目的とする用途・使用態様
に応じて、内・外層の関係を逆にした2層構造が形成さ
れ、さらに内・外両表層部が混在層で、その中間層が金
属単体層であるような多層構造に形成される場合もある
。むろん、中空筒状鋳物に限らず、中実体鋳物の鋳造も
本発明に包含される。
The above casting examples all show examples in which the outer layer is a mixed layer and the inner layer is a single metal layer, but depending on the intended use and usage mode, the two-layer structure may be reversed in the relationship between the inner and outer layers. In some cases, a multilayer structure is formed in which both the inner and outer surface layers are a mixed layer and the intermediate layer is a single metal layer. Of course, the present invention includes not only hollow cylindrical castings but also solid body castings.

本発明の鋳造に使用される鋳型の形状は前記図示の例に
限らず、例えば中空円筒状の複合鋳物を目的として、第
7図に示すような外側壁(2)と内側壁03とを同心円
筒状に有する鋳型(1)が使用されることもある。この
場合には、図示のように鋳型(1)を回転台(4)に設
置し、図示しない駆動装置にて適当な回転速度(例えば
100〜150 rpm)で支軸(5)を中心に回転さ
せながら鋳造を行うとよい。
The shape of the mold used in the casting of the present invention is not limited to the example illustrated above, but for example, for the purpose of hollow cylindrical composite casting, the outer wall (2) and the inner wall 03 are concentrically formed as shown in FIG. A cylindrical mold (1) may also be used. In this case, the mold (1) is placed on a rotary table (4) as shown in the figure, and rotated around the spindle (5) at an appropriate rotation speed (for example, 100 to 150 rpm) by a drive device (not shown). It is best to perform casting while

こうすれば、鋳込ホッパーから鋳型の外側壁α2と内側
壁03との間に鋳込まれる溶湯(または混合溶湯)の流
下点は、鋳型の回転に伴って順次円筒方向に移行するの
で、洗い場として鋳込まれる溶湯、およびその後に波涛
ぐるみ体を鋳ぐるむべく鋳造される金属単体溶湯または
混合溶湯の鋳型内円周方向における温度分布の高低が緩
和され、局方向の全体にわたり混在層と金属単体層との
完全な密着一体化を達成することができる。
In this way, the flow point of the molten metal (or mixed molten metal) poured from the casting hopper between the outer wall α2 and the inner wall 03 of the mold will shift sequentially in the cylindrical direction as the mold rotates, so the washing area will be The temperature distribution in the circumferential direction inside the mold of the molten metal that is cast as a molten metal, and the molten metal of a single metal or a mixed molten metal that is subsequently cast to fill the wave-filled body, is relaxed, and the mixed layer and metal are spread throughout the local direction. Complete adhesion and integration with the single layer can be achieved.

本発明の複合鋳物を構成する炭化物粒子および金属は、
鋳物の用途・要求性能に応じて適宜選らばれる。炭化物
粒子の代表例を挙げれば、タングステン炭化物(WC,
W2C)粒子、 タングステンチタン複炭化物粒子など
である。これらは各々単独または任意の組合せで混合使
用してよい。粒子径は約40〜350μmであってよい
。炭化物粒子が溶湯と混合して鋳造される鋳造態様にお
いては、混合時の溶湯の降温を少くするために、適当な
温度、例えば400℃に予熱して使用してもよい。一方
、金属は、一般的には鋳鉄、鋼などの鉄系金属であるが
、そのほかニッケル(Ni)、コバルト(co)、′&
(Fe)などの金属またはその合金が使用されることも
ある。なお、混在層(A)を構成する金属と、金属単体
層(B)をなす金属とは、同種の金属であってもよく、
あるいは異種の金属の組合せであってもよい。
The carbide particles and metal that constitute the composite casting of the present invention are
Appropriate selection is made depending on the application and required performance of the casting. Typical examples of carbide particles include tungsten carbide (WC,
W2C) particles, tungsten titanium double carbide particles, etc. These may be used alone or in any combination. The particle size may be about 40-350 μm. In a casting mode in which carbide particles are mixed with molten metal and cast, the molten metal may be preheated to an appropriate temperature, for example, 400° C., in order to reduce the temperature drop during mixing. On the other hand, metals are generally ferrous metals such as cast iron and steel, but also nickel (Ni), cobalt (co),
Metals such as (Fe) or alloys thereof may also be used. Note that the metal constituting the mixed layer (A) and the metal constituting the single metal layer (B) may be the same type of metal,
Alternatively, it may be a combination of different metals.

波防ぐるみ体は種々の方法で製作することができる。例
えば金属単体の波防ぐるみ体としては鋳造体などを使用
すればよい。一方、混合体の波防ぐるみ体は、焼結法を
利用し、炭化物粉末と金属粉末との混合粉末を調製し、
必要ならばこれに適当な成形助剤や焼結助剤を混和して
常法による圧粉・焼成工程に付し焼結体として製作する
こともでき、あるいは鋳造法を適用して、炭化物粒子と
金属溶湯を鋳型内に鋳込み、溶湯中の粒子を沈積凝集さ
せることにより鋳造体として製作することもてきる。
Wave-protecting pads can be constructed in a variety of ways. For example, a cast body or the like may be used as a wave-proofing body made of a single metal. On the other hand, the wave-proofing body of the mixture is prepared by preparing a mixed powder of carbide powder and metal powder using a sintering method.
If necessary, a suitable molding aid or sintering aid can be mixed with this and subjected to a conventional compacting and firing process to produce a sintered body, or a casting method can be applied to produce carbide particles. It is also possible to produce a cast body by pouring the molten metal into a mold and allowing the particles in the molten metal to settle and agglomerate.

混在層における粒子の充填率は所望に応じて決められる
が、容積比で示せば一般的に60〜70%とすることが
できる。
The filling rate of particles in the mixed layer can be determined as desired, but in terms of volume ratio, it can generally be 60 to 70%.

本発明の鋳造に使用される鋳型の材質に制限はないが、
例えば精密鋳造用の焼成モールド(1)を前記図示のよ
うにバックサンド(6)にてケース(7)内に設置して
使用することができ、これを加熱炉で、例えば500〜
800℃に予熱して使用すれば、鋳造当初の鋳型内での
溶湯の熱損失を軽減するのに役立つ。もし、予熱の際に
波防ぐるみ体の表面酸化が問題になるときは、予めその
表面に銅めっき、その他の酸化防止のためのコーティン
グを施しておけばよい。
Although there are no restrictions on the material of the mold used for the casting of the present invention,
For example, a firing mold (1) for precision casting can be used by installing it in a case (7) with a back sand (6) as shown in the figure, and it is heated in a heating furnace to
Preheating to 800°C helps reduce heat loss of the molten metal in the mold at the time of casting. If surface oxidation of the wave-preventing body becomes a problem during preheating, copper plating or other oxidation-preventing coating may be applied to the surface in advance.

実施例 第1図の鋳造装置において、鋳型(焼成モールド)(1
)内に、波防ぐるみ体としてニハード鋳鉄からなる金属
単体円筒(Kl))を柱状中子01)に1凝着し、これ
に洗い腸として1600℃の鋳鉄溶湯12勿を鋳込み、
金属単体円筒の表層を溶融、活性化したのち、タングス
テン炭化物(W2C)粒子とニハード鋳鉄溶湯との混合
溶湯を鋳造した。
Example In the casting apparatus shown in Fig. 1, a mold (firing mold) (1
), a single metal cylinder (Kl) made of nihard cast iron was adhered to a columnar core 01) as a wave-preventing slug body, and 12 tons of molten cast iron at 1600°C was poured into it as a wash.
After the surface layer of the single metal cylinder was melted and activated, a mixed molten metal of tungsten carbide (W2C) particles and nihard cast iron molten metal was cast.

湯洗い時の溶湯鋳込速度(Sl)はIK9/sec で
あり、湯道04)から湯溜部α9への流出速度(S2)
は0.5〜/secとなるように湯道04)の寸法を決
定して(Sl/S2)の比を2.0とした。湯溜部は合
計4個所で、その合計の容積は鋳鉄6釉に相当する。
The molten metal pouring speed (Sl) during hot water washing is IK9/sec, and the outflow speed (S2) from the runner 04) to the sump α9
The dimensions of the runner 04) were determined so that the ratio was 0.5 to /sec, and the ratio of (Sl/S2) was set to 2.0. There are a total of four potholes, and their total volume is equivalent to six glazes of cast iron.

鋳造条件の詳細は次のとおりである。Details of the casting conditions are as follows.

〔1〕 鋳型 (1)バックサンド(6)にてケース(7)内にセット
し、波防ぐるみ体製着後、加熱炉内で予熱。鋳造直前の
鋳型温度700℃。
[1] Set the mold (1) in the case (7) with back sand (6), and after attaching a wave-proofing body, preheat it in a heating furnace. Mold temperature 700℃ just before casting.

(11)形状(第8図参照):外径(DI)200mm
、中子径(Da) 100mm0 〔2〕 波防ぐるみ体 (1)ニハード鋳鉄の鋳造体。表面を銅めっきで被覆。
(11) Shape (see Figure 8): Outer diameter (DI) 200mm
, Core diameter (Da) 100mm0 [2] Wave-preventing body (1) Cast body of nihard cast iron. The surface is coated with copper plating.

(11)形状(第8図参照):外径(D2)150皿、
内径(Da) 100mm、高さくHl)60mm0〔
3〕 混合溶湯 (1)鋳込温度:1600°C (11)鋳造量:第8図において湯面高さH2(800
mm) となる量。
(11) Shape (see Figure 8): Outer diameter (D2) 150 plates,
Inner diameter (Da) 100mm, height Hl) 60mm0 [
3] Mixed molten metal (1) Pouring temperature: 1600°C (11) Casting amount: In Figure 8, the melt surface height H2 (800
mm).

flail W2C粒子径:平均280メツシユ。flail W2C particle size: average 280 mesh.

(lvl W 2 C粒子の混合量:第8図において波
防ぐるみ体の下端から上端までの領域(高さHl−60
mm)に混在層(粒子充填率約60%)を形成するに足
る量。
(lvl Mixed amount of W 2 C particles: In Fig. 8, the area from the lower end to the upper end of the wave-blocking body (height Hl-60
mm) in an amount sufficient to form a mixed layer (particle filling rate of approximately 60%).

(v)溶湯への混合時の粒子予熱温度:400℃。(v) Particle preheating temperature during mixing into molten metal: 400°C.

上記鋳造により、外側の混在層(混合溶湯鋳造部)と内
側の金属単体層(波防ぐるみ体の部分)の2層を有する
中空円筒状鋳物を得た。その両層境界面は全周全長にわ
たり完全に溶着一体化(100%溶着)していることが
確認された。比較例として、湯溜部のない鋳型を使用し
、鋳ぐるみに先行する湯洗いを省略した以外は上記と同
一の鋳造条件にて2層構造の中空円筒鋳物を得たが、両
層の界面は約70%の溶着を示すにとどまる不完全なも
のであった。
By the above casting, a hollow cylindrical casting having two layers, an outer mixed layer (mixed molten metal casting part) and an inner single metal layer (wave-preventing case part) was obtained. It was confirmed that the interface between the two layers was completely welded and integrated (100% welded) over the entire circumference and entire length. As a comparative example, a hollow cylindrical casting with a two-layer structure was obtained under the same casting conditions as above, except that a mold without a sump was used and the hot water washing preceding the casting was omitted. was incomplete, showing only about 70% welding.

実施例2 波防ぐるみ材として炭化物粒子とニハード鋳鉄の混合体
からなる円筒(Ka)を第6図のように鋳型(焼成モー
ルド)(1)内に装着し、これに1600°Cのニハー
ド鋳鉄溶湯を洗い湯として鋳込み、円筒の表層を溶融、
活性化するとともに、円筒を鋳ぐるむべき溶湯として該
二い−ド鋳鉄溶湯を引つづき鋳造し、鋳型内湯面の高さ
くH2)が300mmに達したときに鋳込みを停止した
Example 2 A cylinder (Ka) made of a mixture of carbide particles and nihard cast iron as a wave-preventing sill material was installed in a casting mold (firing mold) (1) as shown in Fig. 6, and nihard cast iron heated at 1600°C was placed in it. Molten metal is poured as washing water, and the surface layer of the cylinder is melted.
While activated, the molten metal was continuously cast as the molten metal to be cast into a cylinder, and the casting was stopped when the height H2) of the molten metal level in the mold reached 300 mm.

1易洸い時の鋳鉄溶)易の鋳込速度(Sl)は1孕/s
ec であり、湯溜部09への流出速度(s2)は0.
7に77secとなるように湯道0(イ)の寸法を決定
し、(S 1/S 2 ) の比を1.4とした。湯溜
部の合計容積は鋳鉄5 Y4に相当する。
The casting speed (Sl) of cast iron melting at 1 hour is 1/s.
ec, and the outflow speed (s2) to the water reservoir 09 is 0.
The dimensions of runner 0 (a) were determined so that the time would be 77 seconds, and the ratio of (S 1 /S 2 ) was set to 1.4. The total volume of the sump corresponds to cast iron 5Y4.

〔1〕 鋳型 (1)波防ぐるみ体を装着して加熱炉で予熱。鋳造直前
の鋳型温度600℃。
[1] Mold (1) Attach a wave-preventing body and preheat in a heating furnace. Mold temperature 600℃ just before casting.

(II)形状(第9図参照):外径(DI) 180m
m。
(II) Shape (see Figure 9): Outer diameter (DI) 180m
m.

中子径(D3)90mm0 〔2〕 波防ぐるみ体 (11w2c2層(平均粒径280メツシユ)とニハー
ド鋳鉄溶出とを混合してなる粒子充填率65%の鋳造体
。表面に銅めっきを被覆して使用。
Core diameter (D3) 90mm0 [2] Cast body with a particle filling rate of 65% made by mixing wave-preventing slug body (11w2c 2 layers (average grain size 280 mesh) and nihard cast iron elution. The surface is coated with copper plating. Used.

(11)形状(第9図参照):外径(DI ) 180
mm、内径(D2)140mm、高さくHl)60mm
0」二記鋳造により、外側の混在層(波防ぐるみ体部分
)と内側の金属単体層(金属溶湯鋳造部分)との2層を
有する中空円筒鋳物を得た。両層界面は全周全長にわた
り完全な溶着一体化(100%溶着)状態を呈すること
が認められた。比較例として、1gJ溜り部を有しない
鋳型を使用し、鋳ぐるみ前の湯洗いを省略し、他の条件
は前記と同一に設定して得られた鋳物では、90%溶着
を示すにとどまった。
(11) Shape (see Figure 9): Outer diameter (DI) 180
mm, inner diameter (D2) 140mm, height Hl) 60mm
A hollow cylindrical casting having two layers, an outer mixed layer (wave-preventing case part) and an inner single metal layer (molten metal casting part) was obtained by the second casting. It was observed that the interface between both layers exhibited a state of complete welding and integration (100% welding) over the entire circumference and entire length. As a comparative example, a casting obtained by using a mold without a 1gJ reservoir, omitting hot water washing before casting, and setting the other conditions the same as above showed only 90% welding. .

以上のように、本発明によれは、混在層と金属単体層と
が完全に溶着一体化した複合鋳物が得られる。かかる複
合鋳物は、両層の強固な結合関係により混在層のもつ高
耐摩耗性と金属単体層の強度・靭性とを兼備するので、
ロール類など、これらの特性が要求される各種用途に好
適である。
As described above, according to the present invention, a composite casting in which a mixed layer and a single metal layer are completely welded and integrated can be obtained. Such composite castings have both the high wear resistance of a mixed layer and the strength and toughness of a single metal layer due to the strong bonding relationship between both layers.
It is suitable for various uses that require these characteristics, such as rolls.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は混在層と金属単体層とからなる複合鋳物の例を
示す図(〔■〕は平面図、CrDはX−X断面図)、第
2図および第3図は波防ぐるみ体を例示する図(いずれ
も、〔■〕は平面図、[II) はX−X断面図)、第
4図CI)は本発明の鋳造要領の例を示す縦断面図、〔
■〕は鋳型部の平面図、第5図は鋳型内の鋳造状況を示
す縦断面図、第6図、第7図は本発明の他の鋳造要領を
例示する縦断面図、第8図、第9図は実施例関係の鋳型
部の断面説明図、第10図、第11図は比較例を示す鋳
型部の縦断面図である。 1:鋳型、11:中子、14:湯道、1ぢ:湯溜部、A
:混在層、B:金属単体層、Ka、Kb :波防ぐるみ
体、P:炭化物粒子、M:金属。 代理人 弁理士 宮崎新八部
Figure 1 shows an example of a composite casting consisting of a mixed layer and a single metal layer ([■] is a plan view, CrD is a XX cross-sectional view), and Figures 2 and 3 show an example of a composite casting made of a mixed layer and a single metal layer. The illustrative figures ([■] are plan views, [II] are XX cross-sectional views, and Figure 4 CI) are longitudinal cross-sectional views showing examples of the casting procedure of the present invention;
■] is a plan view of the mold part, FIG. 5 is a vertical cross-sectional view showing the casting situation inside the mold, FIGS. 6 and 7 are vertical cross-sectional views illustrating another casting method of the present invention, and FIG. FIG. 9 is an explanatory cross-sectional view of a mold part related to an example, and FIGS. 10 and 11 are longitudinal cross-sectional views of a mold part showing a comparative example. 1: Mold, 11: Core, 14: Runway, 1C: Reservoir, A
: Mixed layer, B: Single metal layer, Ka, Kb: Wave-preventing solid body, P: Carbide particles, M: Metal. Agent Patent Attorney Miyazaki Shinhachibe

Claims (1)

【特許請求の範囲】[Claims] (1)金属単体層と、炭化物粒子と金属との混在層とを
有する耐摩耗複合鋳物の製造法であって、金属単体また
は炭化物粒子と金属との混合体を波涛ぐるみ材として鋳
型内に装着して、これを炭化物粒子と金属溶湯との混合
溶湯または金属り1休溶湯にて鋳ぐるむに当り、予め洗
い渇としての金属溶湯を鋳型内に鋳込むとともに鋳型下
部から排出させなから波涛ぐるみ材を湯洗いすることに
よりその表層を溶融、活性化させ、しかるのち波涛ぐる
み材を鋳ぐるむべき混合溶湯または金属単体溶湯を鋳造
することを特徴とする耐摩耗複合鋳物の製造法。
(1) A method for manufacturing a wear-resistant composite casting having a single metal layer and a mixed layer of carbide particles and metal, in which the single metal or the mixture of carbide particles and metal is installed as a wave filling material in the mold. Then, when casting this in a mixed molten metal of carbide particles and molten metal or a dormant molten metal, the molten metal as a washing liquid is poured into the mold in advance and is not discharged from the bottom of the mold. A method for producing a wear-resistant composite casting, which comprises melting and activating the surface layer of the surumi material by washing it with hot water, and then casting a mixed molten metal or a single metal molten metal into which the surumi material is cast.
JP15438983A 1983-08-24 1983-08-24 Production of wear-resistant composite casting Pending JPS6046859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15438983A JPS6046859A (en) 1983-08-24 1983-08-24 Production of wear-resistant composite casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15438983A JPS6046859A (en) 1983-08-24 1983-08-24 Production of wear-resistant composite casting

Publications (1)

Publication Number Publication Date
JPS6046859A true JPS6046859A (en) 1985-03-13

Family

ID=15583064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15438983A Pending JPS6046859A (en) 1983-08-24 1983-08-24 Production of wear-resistant composite casting

Country Status (1)

Country Link
JP (1) JPS6046859A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0621826A (en) * 1991-12-12 1994-01-28 Nippon Columbia Co Ltd Digital audio data compression system
JPH0744374U (en) * 1991-06-04 1995-11-14 ドキュメンテーションリミテッド Improved mouse
CN102921924A (en) * 2012-11-02 2013-02-13 北京电力设备总厂 Compound wear-resistant part and preparation method thereof
CN103934436A (en) * 2013-12-13 2014-07-23 柳州市柳港激光科技有限公司 Method for manufacturing composite bucket teeth by anti-friction metal and ceramic hybrid surface layer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0744374U (en) * 1991-06-04 1995-11-14 ドキュメンテーションリミテッド Improved mouse
JPH0621826A (en) * 1991-12-12 1994-01-28 Nippon Columbia Co Ltd Digital audio data compression system
CN102921924A (en) * 2012-11-02 2013-02-13 北京电力设备总厂 Compound wear-resistant part and preparation method thereof
CN102921924B (en) * 2012-11-02 2015-03-04 北京电力设备总厂 Compound wear-resistant part and preparation method thereof
CN103934436A (en) * 2013-12-13 2014-07-23 柳州市柳港激光科技有限公司 Method for manufacturing composite bucket teeth by anti-friction metal and ceramic hybrid surface layer

Similar Documents

Publication Publication Date Title
US5201917A (en) Plate with an abrasion-proof surface and process for the production thereof
JPS6362305B2 (en)
JPS6046859A (en) Production of wear-resistant composite casting
JPS58157944A (en) Compound cylinder and casted alloy therefor
JPH03282187A (en) Crucible and manufacture thereof
CN108580829A (en) A kind of bimetallic pipe billet centrifugation production method
DE4107416A1 (en) Producing partially wear-resistant iron or steel castings - by coating cores with hard material which becomes dispersed in the casting surface during casting
JPS6076263A (en) Production of composite metallic material
JPS635184B2 (en)
JPS6036857B2 (en) Cylindrical, cylindrical wear-resistant castings and their manufacturing method
JPS5933064A (en) Production of composite casting
JPS603901B2 (en) Centrifugal casting method for wear-resistant castings
JPS60124458A (en) Production of wear resistant composite casting
US3460605A (en) Method for casting in a permanent mold a casting having thick and thin sections
JPS6030568A (en) Production of wear-resistant composite casting
JPS586763A (en) Centrifugal casting method
JPH0127818B2 (en)
JPS6127164A (en) Vertical centrifugal casting method of roll for rolling
JPS6046857A (en) Production of composite casting
JPS5982153A (en) Production of composite casting
JP2000317616A (en) Production of wear resistant clad plate
JPS59127963A (en) Production of composite casting
WO2022009369A1 (en) Moulding tool with heat sink
JPS59127962A (en) Production of hollow composite casting
JPS586765A (en) Centrifugal casting method