JPS6046857A - Production of composite casting - Google Patents

Production of composite casting

Info

Publication number
JPS6046857A
JPS6046857A JP15438783A JP15438783A JPS6046857A JP S6046857 A JPS6046857 A JP S6046857A JP 15438783 A JP15438783 A JP 15438783A JP 15438783 A JP15438783 A JP 15438783A JP S6046857 A JPS6046857 A JP S6046857A
Authority
JP
Japan
Prior art keywords
casting
molten metal
particles
carbide particles
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15438783A
Other languages
Japanese (ja)
Inventor
Toshiaki Morichika
森近 俊明
Atsushi Funakoshi
淳 船越
Kazuyuki Takubo
和之 田久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP15438783A priority Critical patent/JPS6046857A/en
Publication of JPS6046857A publication Critical patent/JPS6046857A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/14Casting in, on, or around objects which form part of the product the objects being filamentary or particulate in form

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To prevent nonuniformity in structure owing to collapse of carbide particles and to improve the yield of a composite casting by decreasing continuously or intermittently casting temp. from the beginning to end period of casting in the stage of casting a molten metal and the carbide particles having the specific gravity larger than the specific gravity of the molten metal. CONSTITUTION:The casting temp. of particles P is increased to prevent abrupt temp. drop of the molten metal and an increase in the viscosity thereof owing to absorption of heat by the particles P in the stage of an initial period when the temp. of the molten metal in a casting mold 1 is relatively low and the amt. of the molten metal is small. The casting temp. of the particles P is decreased to relieve the excessive thermal influence from high-temp. molten metal on the particles P and to prevent the collapse thereof in the late period of casting.

Description

【発明の詳細な説明】 本発明は、炭化物粒子と金属とが均一に混在し、強固に
結合した複合組織を有する複合鋳物の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a composite casting having a composite structure in which carbide particles and metal are uniformly mixed and strongly bonded.

金属溶湯とそれより比重の大きい炭化物粒子、例えば鉄
系金属溶湯とタングステン炭化物粒子とを鋳型内に鋳造
し、比重差で粒子を下方に沈積させることにより、第7
図に示すように鋳型(1)内に炭化物粒子が比重分離さ
れた実質的に金属溶湯のみからなる金属相部分(Blの
下層に、凝集した炭化物粒子(P)群と、その粒子間隙
を満たす金属(財)とから成る複合相部分cA)が形成
される。凝固の後、その鋳造体を鋳型から取出し、金属
相部分(Blを切断除去すれば、複合相部分(A)を複
合鋳物(製品)として得ることができる。この複合鋳物
の製造法について本発明者等はすでにいくつかの提案を
行った(特願昭57−143120号、同57−143
122号、同58−1957号など)。
By casting a molten metal and carbide particles with a higher specific gravity, for example, molten iron metal and tungsten carbide particles in a mold, and depositing the particles downward due to the difference in specific gravity, the seventh
As shown in the figure, in the mold (1), carbide particles are separated by specific gravity and the metal phase part (Bl) consists essentially only of molten metal, and the aggregated carbide particles (P) group fills the gaps between the particles. A composite phase portion cA) consisting of metal (goods) is formed. After solidification, the cast body is taken out of the mold and the metal phase portion (Bl) is cut and removed to obtain a composite phase portion (A) as a composite casting (product).The present invention relates to a method for manufacturing this composite casting. have already made several proposals (Japanese Patent Application No. 57-143120, No. 57-143)
No. 122, No. 58-1957, etc.).

こうして得られる複合鋳物は、緻密に凝集した炭化物粒
子と金属との強固な結合関係によって、炭化物粒子と金
属の各特性を兼備し、ことに耐摩耗性と靭性とにすぐれ
る。
The composite casting thus obtained has the characteristics of both carbide particles and metal, and is particularly excellent in wear resistance and toughness, due to the strong bond between the densely aggregated carbide particles and the metal.

しかし、その複合組織を詳しく観察すると、製品の部位
により粒子の形態に次のような差異がある。すなわち、
第7図において複合相部分(5)の下部付近(m+では
、第9図に示すように、各粒子[Plは健全な粒形態を
有しているのに対し、上部(η)における粒子fPlは
第8図のように粒径が不均一であり、部分的に崩壊して
いるように見える。この粒子の崩壊率(崩壊した粒子の
占める割合)は、鋳造条件にもよるが、約40〜50%
に及ぶ。従って、複合鋳物(製品)の健全性・均質性を
保証するには、炭化物粒子の部分的崩壊により組織的均
一性を欠く上部を余分に切断除去することが必要になる
。しかし、それでは製品歩留りが低下し、コストの増大
をまねく。
However, when observing the composite structure in detail, there are differences in particle morphology depending on the part of the product, as shown below. That is,
In Fig. 7, near the bottom (m+) of the composite phase part (5), as shown in Fig. 9, each particle [Pl has a healthy grain morphology, whereas the particle fPl in the upper part (η) As shown in Figure 8, the grain size is non-uniform and it appears that they have partially collapsed.The collapse rate of these particles (the proportion of collapsed particles) is approximately 40%, although it depends on the casting conditions. ~50%
It extends to. Therefore, in order to guarantee the soundness and homogeneity of the composite casting (product), it is necessary to cut off and remove the upper part, which lacks structural uniformity due to partial collapse of the carbide particles. However, this results in a decrease in product yield and an increase in costs.

本発明は、炭化物粒子の粒形態の健全性を保持させて複
合相部分の全体にわたって均質な複合組織を形成させよ
うとするものである。
The present invention aims to maintain the soundness of the particle morphology of carbide particles and form a homogeneous composite structure throughout the composite phase portion.

前記炭化物粒子の崩壊の原因を種々検討するに、それは
金属溶湯中に添加された炭化物粒子が、溶湯との結合を
なすに必要な量をこえる過大な熱エネルギーを溶湯から
受けたことによると考えられる。これを実際の鋳造過程
で考察すると、前記第7図において、金属溶湯が(ロ)
面まで鋳込まれた時点から炭fヒ物粒子の鋳込みを開始
すると仮定すれば、最初に鋳込まれた粒子は溶湯中を(
ロ)面から底部ば)まで沈降し、最後に鋳込まれる粒子
は溶湯中を(/X)面から(ロ)面まで沈降することに
なる。このときの鋳型内の溶湯温度は下方にあるほど低
く、上方にいくにつれ高い。それは、当初鋳込まれる溶
湯が、鋳込み経路であるホッパーや鋳込樋、あるいは鋳
型内壁と接触して少なからぬ熱量が奪われるのに対し、
後続する溶湯が鋳込まれる際には、鋳込み経路や鋳型は
先の溶湯で加熱されており奪われる熱量が少いからであ
る。実専の鋳造において初期の溶湯の降温を補償しよう
とすれば、溶湯の鋳造温度を高目に設定しなければなら
ないため、奪われる熱量の少い上方の溶湯はやや過熱気
味となる。
Examining various causes of the collapse of the carbide particles, it is thought that the carbide particles added to the molten metal receive excessive thermal energy from the molten metal, exceeding the amount necessary to form a bond with the molten metal. It will be done. Considering this in the actual casting process, in Fig. 7 above, the molten metal is
Assuming that the casting of coal particles starts from the time when the particles are poured up to the surface, the first particles cast will move through the molten metal (
The particles that are finally cast will settle from the (/X) plane to the (b) plane in the molten metal. At this time, the temperature of the molten metal in the mold is lower as it goes downward, and higher as it goes upward. This is because the molten metal that is initially cast comes into contact with the hopper, casting trough, or inner wall of the mold, which is the casting path, and a considerable amount of heat is lost.
This is because when the subsequent molten metal is poured, the casting path and mold are heated by the previous molten metal, and the amount of heat taken away is small. In order to compensate for the initial drop in temperature of the molten metal in actual casting, the casting temperature of the molten metal must be set high, so the molten metal in the upper part, where less heat is taken away, becomes slightly overheated.

このため、初期に鋳込まれた溶湯中の炭化物粒子は特に
異変を生じることなく健全な粒形態を保持したまま沈積
・凝集するのに対し、遅れて投与される粒子は比較的高
温の溶湯中を沈降し、ことに最後に投与される粒子は、
(ハ)から(ロ)まで(この距離は通常、4〜口よりも
長い)の高温溶湯中を通過する間に過大の熱エネルギー
が与えられる結果、前記のような分解を生じるものと考
えられる。
For this reason, the carbide particles in the molten metal that are poured in the early stages settle and agglomerate while maintaining a healthy grain shape without causing any particular abnormalities, whereas the particles that are poured in later are deposited and aggregated in the molten metal at a relatively high temperature. The particles that are deposited at the end are
It is thought that the decomposition described above occurs as a result of excessive thermal energy being applied while passing through the high-temperature molten metal from (c) to (b) (this distance is usually longer than 4 to 3 mm). .

従って、炭化物粒子の分解防止策としては、前記第7図
における金属溶湯の(口1−r)1間距離を短くするか
、溶湯温度を鋳込初期で高く、終期に低くなるように調
節するか、あるいは鋳型の予熱温度、 を下部で高く、
」一部で低くする、等の方法が考えられるが、(口1−
(/11間距離の短縮は、押湯量の確保、鋳型内溶湯全
体の熱量確保の点で制限があり、溶湯温度の調節は実際
上困難であり、また鋳型の上・下部の予熱温度に差異を
もたせるにしても実質的な効果を生じるほどの温度差を
与えることは容易でない。本発明は、炭化物粒子の鋳込
温度(予熱温度)の調節により、溶湯中における炭化物
粒子の期壕を実質的に完全に防止することを可能にした
ものである。
Therefore, as a measure to prevent the decomposition of carbide particles, the distance between the molten metal (holes 1-r) 1 in FIG. Or, the preheating temperature of the mold is higher at the bottom.
It is possible to think of a method such as making it lower in some parts, but (mouth 1-
(Reducing the distance between /11 has limitations in terms of securing the amount of feeder and the amount of heat for the entire molten metal in the mold, and it is actually difficult to adjust the molten metal temperature, and there is a difference in preheating temperature at the top and bottom of the mold.) However, it is not easy to provide a temperature difference large enough to produce a substantial effect.The present invention substantially eliminates the formation of carbide particles in the molten metal by adjusting the casting temperature (preheating temperature) of the carbide particles. This makes it possible to completely prevent this.

本発明の鋳造方法は、炭化物粒子の鋳込温度を、その鋳
込初期には高<シ、後記に低くなるように温度勾配をも
たせて鋳造することを特徴とする。
The casting method of the present invention is characterized in that carbide particles are cast with a temperature gradient such that the casting temperature is high at the initial stage of casting and becomes low as described later.

すなわち、鋳型内の溶湯温度が比較的低く、かつ溶湯量
が少い(従って、保有熱量も比較的少い)鋳造初期の段
階では、粒子の鋳込温度を高くすることにより、粒子の
吸熱に伴う溶湯の急激な降温・粘稠化を防止する一方に
おいて、鋳造後期では粒子の鋳込温度を低くすることに
より、粒子に対−する高温溶湯からの過大な熱影響を緩
和してその崩壊を防止するのである。
In other words, in the early stage of casting when the temperature of the molten metal in the mold is relatively low and the amount of molten metal is small (therefore, the amount of heat retained is also relatively small), by increasing the casting temperature of the particles, the heat absorption of the particles can be reduced. While preventing the rapid temperature drop and viscosity of the molten metal, it is also possible to reduce the pouring temperature of the particles in the later stages of casting to alleviate the excessive thermal influence from the high temperature molten metal on the particles and prevent their collapse. It is to prevent it.

本発明における炭化物粒子の鋳造開始から終了に到る間
の鋳込温度の経時変化は連続的であってもよく、また断
続的であってもよい。第1図および第2図にその例を示
す。第1図は鋳込温度を連続的に低くした例、第2図は
断続的に低くした例である。
The change in casting temperature over time from the start to the end of casting of carbide particles in the present invention may be continuous or may be intermittent. Examples are shown in FIGS. 1 and 2. FIG. 1 shows an example in which the casting temperature was continuously lowered, and FIG. 2 shows an example in which the casting temperature was lowered intermittently.

炭化物粒子の適正な鋳込温度は、溶湯の比熱、凝固温度
、粒子の比熱、溶湯と粒子の鋳造量の比、粒子と溶湯の
単位時間当りの鋳造量(鋳造速度)の比等の鋳造条件に
より一様ではないが、例えば溶湯が鋳鉄などの鉄系合金
、炭化物粒子がタングステン炭化物粒子であって、複合
相部における粒子と金属の占める容積比が65:35〜
75:25(粒子:金属)であるような複合鋳物の鋳造
において、溶湯の鋳込温度が鋳造開始から終期まで約1
550〜1650℃内でほぼ一定とする場合、粒子鋳造
初期における鋳込温度を約400〜500℃、鋳造終期
では約250〜350℃とし、初期と終期の温度差が約
150℃前後となるように調節することにより好結果を
得ることができる。
The appropriate casting temperature for carbide particles depends on casting conditions such as the specific heat of the molten metal, the solidification temperature, the specific heat of the particles, the ratio of the casting amount of the molten metal to the particles, and the ratio of the casting amount per unit time (casting speed) of the particles to the molten metal. For example, the molten metal is an iron-based alloy such as cast iron, the carbide particles are tungsten carbide particles, and the volume ratio of the particles to the metal in the composite phase is 65:35 to 65:35.
In the casting of composite castings with a ratio of 75:25 (particles: metal), the casting temperature of the molten metal is approximately 1 from the start to the end of casting.
If the temperature is approximately constant within 550 to 1650°C, the casting temperature at the beginning of particle casting should be approximately 400 to 500°C, and at the final stage of casting, approximately 250 to 350°C, so that the temperature difference between the initial and final stages is approximately 150°C. Good results can be obtained by adjusting the

炭化物粒)の鋳造は、溶湯の鋳造開始と同時に始めても
よいが、適量の溶湯が鋳込まれたのち、とくに鋳型内の
複合相部分が形成される領域(製品形成部)が溶湯で満
たされたのちに開始することは、製品の清浄度を高める
ために好ましいことである。それは、溶湯の鋳造開始当
初から炭化物粒子を鋳込むと、炭化物粒子の吸熱による
溶湯の降温・粘稠化(溶湯量の少い鋳造初期に著しい)
のため、鋳型内のスカム(溶湯に付随して取鍋から流入
したものや、鋳造時の溶湯の酸化により生成したもの)
の浮上分離が妨げられ、製品内部に残留することがある
が、溶湯面が製品形成部の頂部(前記第7図の(ロ)面
)まで鋳込まれたのちに、粒子の鋳造を開始すれば、た
とえスカムの浮上分離が妨げられるにしても、スカムが
残留するのは金属相部分(Bl内であって、製品部(3
)への実害は回避されるからである。粒子の鋳込終了時
期は、溶湯の鋳込終了とほぼ同時であるのが好ましい。
Casting of carbide particles (carbide grains) may be started at the same time as the start of casting of molten metal, but after an appropriate amount of molten metal has been cast, especially the area in the mold where the composite phase portion is formed (product forming area) is filled with molten metal. Starting later is preferable to improve the cleanliness of the product. If carbide particles are poured from the beginning of molten metal casting, the temperature of the molten metal will drop and become viscous due to heat absorption by the carbide particles (this is noticeable in the early stages of casting when the amount of molten metal is small).
Therefore, scum inside the mold (such as scum that flows from the ladle accompanying the molten metal or generated by oxidation of the molten metal during casting)
However, it is necessary to start casting particles after the molten metal surface has been poured to the top of the product forming section (plane (B) in Figure 7 above). For example, even if flotation and separation of scum is prevented, scum remains in the metal phase part (Bl) and in the product part (3).
) will be avoided. It is preferable that the casting of the particles is completed at approximately the same time as the casting of the molten metal.

溶湯と粒子の鋳造速度の比(粒子の鋳造速度/溶湯の鋳
造速度)は、一般に約0.4〜1.2程度であってよい
The ratio of the casting speed of the molten metal and the particles (casting speed of the particles/casting speed of the molten metal) may generally be about 0.4 to 1.2.

本発明の鋳造に使用される金属および炭化物粒子の種類
は、目的とする複合鋳物の用途・要求性能に応じて適宜
選択される。金属としては、代表的には鉄系合金、例え
ばニハード鋳鉄が挙げられるが、そのほかコバルト(C
o)、ニッケル(Ni)、鉄(Fe)、あるいはCo系
合金、Ni系合金などが使用される。炭化物粒子の代表
例を挙げれば、タングステン炭化物(WC,W2C)粒
子、あるいはタングステンチタン複炭化物粒子などであ
る。
The types of metal and carbide particles used in the casting of the present invention are appropriately selected depending on the intended use and required performance of the composite casting. Typical examples of metals include iron-based alloys, such as nihard cast iron, but other metals include cobalt (C
o), nickel (Ni), iron (Fe), Co-based alloy, Ni-based alloy, etc. are used. Typical examples of carbide particles include tungsten carbide (WC, W2C) particles and tungsten-titanium double carbide particles.

これらは単独または任意の組合せの混合物として使用し
てよい。
These may be used alone or as a mixture in any combination.

炭化物粒子の鋳造温度を調節するための粒子の予熱は適
宜の方法で行えばよい。加熱の際に粒子表面の酸化が開
蓋になる場合には、不活性ガス雰囲気下で加熱処理して
もよく、更に好ましくは予め粒子表面に、例えばN1−
B無電解めっきなどによる酸化防止皮膜を施したものが
使用される。
Preheating of the particles for controlling the casting temperature of the carbide particles may be performed by an appropriate method. If the oxidation of the particle surface causes the lid to open during heating, heat treatment may be performed in an inert gas atmosphere, and more preferably, the particle surface may be coated with N1-
B: Those coated with an anti-oxidation coating such as electroless plating are used.

炭化物粒子は、溶湯中での沈降・凝集促進の点からは粒
径の大きいもの程有利であるが、形成される複合組織の
材質を考慮すると、約44〜350μmの範囲のものが
好ましい。
The larger the particle size of the carbide particles is, the more advantageous it is in terms of promoting sedimentation and aggregation in the molten metal, but in consideration of the material of the composite structure to be formed, those in the range of about 44 to 350 μm are preferable.

本発明における炭化物粒子の鋳造量は、目的とする複合
相部(製品部)を形成するに足る量であればよく、その
複合相部における炭化物粒子の占める割合は、粒子の種
類・粒径、溶湯との比重差にもよるが、容積比で表わせ
ば、おおむね粒子:金属−65:35〜75:25であ
る。一方、金属溶湯は前記図示のように、製品部の形成
に足る量をこえて余剰に鋳込まれる。これは主として製
品部の凝固収縮に対する溶湯補給を目的とするものであ
るが、更にそれよりも多口に鋳造すれば、それに伴う鋳
型内溶湯の保有熱量の増加により、炭化物粒子の沈積完
了まで溶湯の粘稠fヒが遅延し、粒子の完全な凝集と組
織の緻密化が促進される点で有利である。
The amount of carbide particles cast in the present invention may be sufficient to form the desired composite phase (product), and the proportion of carbide particles in the composite phase depends on the type and size of the particles, Although it depends on the difference in specific gravity with the molten metal, the ratio of particles to metal is approximately 65:35 to 75:25 in terms of volume ratio. On the other hand, as shown in the figure, the molten metal is cast in an excess amount that exceeds the amount sufficient to form the product part. This is mainly intended to replenish the molten metal against solidification shrinkage in the product part, but if a larger number of holes are cast, the heat retained in the molten metal in the mold will increase, and the molten metal will continue to flow until the deposition of carbide particles is completed. Advantageously, the viscosity of the particles is delayed, and complete agglomeration of the particles and densification of the structure are promoted.

本発明における炭化物粒子と金属溶湯の鋳造は、例えば
、第3図に示すように、鋳型(1)の上部開口端に鋳込
みホッパー(2)の鋳込樋121)をのぞませ、取鍋(
3)からの溶湯(M′)と炭化物粒子投与治具(4)か
らの炭化物粒子(Plとを各々その流量(鋳造速度)の
適宜制御下に、該ホッパー内で混合させながら、あるい
は、粒子投与治具(4)を直接鋳型(1)の開口部にの
ぞませて、溶湯と粒子とを各別に鋳型内に鋳込むことに
より行われる。また溶湯中での粒子の沈降・凝集の促進
と複合組織の緻密性を改善するために、鋳型に適当な加
振装置を連結し、鋳造過程で適時、連続的もしくは断続
的に振動を付加することも効果的である。
In the casting of carbide particles and molten metal in the present invention, for example, as shown in FIG.
The molten metal (M') from 3) and the carbide particles (Pl) from the carbide particle dosing jig (4) are mixed in the hopper under appropriate control of their flow rates (casting speeds), or the particles are This is done by placing the dosing jig (4) directly into the opening of the mold (1) and casting the molten metal and particles separately into the mold.Also, promoting sedimentation and agglomeration of the particles in the molten metal. In order to improve the compactness of the composite structure, it is also effective to connect an appropriate vibration device to the mold and apply vibration continuously or intermittently during the casting process.

むろん、鋳造体の形状は中実体に限られるわけではなく
、例えば中空筒状体の鋳造も可能である。
Of course, the shape of the cast body is not limited to a solid body; for example, a hollow cylindrical body can also be cast.

第4図はその例を示す。その鋳造要領は前記のそれと特
に異なる必要はないが、鋳型内円周方向にわたる炭化物
粒子の均等な分布と溶湯温度の均等化に注意すべきであ
り、このためには、図示のように、鋳型(1)を回転台
(5)に設置し、図示しない回転駆動装置にて支軸(5
1)のまわりに適当な回転速度で回転させながら鋳造を
行うとよい。こうすれば、炭化物粒子(Piは鋳型内の
円周方向にまんべんなく分散投与され、また周方向にお
ける溶?! 温度分布のかたよりを回避することができ
る。
FIG. 4 shows an example. The casting procedure does not need to be particularly different from that described above, but care should be taken to ensure an even distribution of carbide particles in the circumferential direction within the mold and equalization of the molten metal temperature. (1) is installed on a rotary table (5), and a spindle (5) is mounted on a rotary drive device (not shown).
1) It is preferable to perform casting while rotating at an appropriate rotational speed. In this way, the carbide particles (Pi) can be evenly distributed and administered in the circumferential direction within the mold, and it is also possible to avoid unevenness in the temperature distribution in the circumferential direction.

中空筒状鋳物を目的とする鋳造の別法として、第5図の
ように、半球形状頂部O2を有する中子αBが設けられ
た鋳型(1)を使用し、ホッパー(2)から流下する溶
湯および粒子を、中子の半球形状頂部の中心に指向させ
ながら鋳造を行うこともできる。
As an alternative method for casting hollow cylindrical castings, as shown in Fig. 5, a mold (1) equipped with a core αB having a hemispherical top O2 is used, and the molten metal flowing down from a hopper (2) is used. Casting can also be carried out with the particles directed toward the center of the hemispherical top of the core.

中子の頂部中心に衝突した溶湯と粒子は、頂部中心から
放射状に鋳型内円周方向の各部に連続的に分散投与され
るので、円周方向における炭化物粒子や溶湯温度の均一
な分布状態のもとに鋳造を完了することができる。もし
、中子頂部中心からの放射状分散に若干のかたよりがあ
る場合には、前記第4図のような鋳型の回転操作を併用
して分散のかたよりを周方向に均等化すればよい。
The molten metal and particles collided with the center of the top of the core are continuously dispersed radially from the center of the top to each part of the mold in the circumferential direction, so that the carbide particles and the temperature of the molten metal are uniformly distributed in the circumferential direction. You can complete the casting based on the original. If there is a slight deviation in the radial distribution from the center of the top of the core, the rotation of the mold as shown in FIG. 4 may be used in combination to equalize the deviation in the circumferential direction.

」二記各鋳造態様において、炭化物粒子の予熱は、例え
ば粒子投与冶具(4)に付設された図示しない加熱源に
て加熱温度を経時的に変化させ、あるいは粒子投与治具
の外部で所定温度に加熱された粒子を順次治具内に補給
しながら鋳造に供することにより粒子の鋳込温度を前記
のように調節すればよい。また、粒子の鋳造速度は、投
与治具に設けられた流量調節機(41)により、溶湯の
鋳造速度は取鍋(3)の傾動角度の調節により、各々所
望の値に設定することができる。
2. In each of the casting modes mentioned above, the carbide particles are preheated by, for example, changing the heating temperature over time with a heating source (not shown) attached to the particle dosing jig (4), or heating the carbide particles at a predetermined temperature outside the particle dosing jig (4). The casting temperature of the particles may be adjusted as described above by sequentially replenishing the heated particles into the jig and casting them. Furthermore, the casting speed of particles can be set to a desired value by a flow rate regulator (41) provided in the dosing jig, and the casting speed of molten metal can be set to a desired value by adjusting the tilting angle of the ladle (3). .

なお、鋳型の材質に制限はないが、例えば精密鋳造に使
用される焼成モールド(1)を前記図示のようにバック
サンド(6)とともにケース(7)内に設置し、これを
加熱炉内で加熱して例えば、500〜900℃に予熱さ
れた保温モールドとして使用することもできる。
Although there are no restrictions on the material of the mold, for example, a firing mold (1) used for precision casting is placed in a case (7) together with a back sand (6) as shown in the figure above, and this is placed in a heating furnace. It can also be used as a heat-retaining mold that is preheated to, for example, 500 to 900°C.

次に、本発明の実施例について説明する。Next, examples of the present invention will be described.

実施例 第5図の鋳造装置において、ニハード鋳鉄溶湯とタング
ステン炭fL物(W2C)粒子とを下記の鋳造条件で鋳
込み、第6図に示す形状の鋳造体を得、これを鋳型(1
)から取出し、金属相部分(Blを切断除去して複合相
部分(Alを中空筒状鋳物製品として採取した。
Example In the casting apparatus shown in Fig. 5, molten nihard cast iron and tungsten carbon (W2C) particles were cast under the following casting conditions to obtain a cast body having the shape shown in Fig. 6.
), the metal phase portion (Bl) was cut and removed, and the composite phase portion (Al) was collected as a hollow cylindrical cast product.

〔1〕 鋳型(焼成モールド) (1)バックサンド(6)にてケース(7)内にセット
し加熱炉にて予熱。鋳造直前の温度600°c。
[1] Casting mold (firing mold) (1) Set in the case (7) with back sand (6) and preheat in a heating furnace. Temperature 600°C just before casting.

(II)形状(第6図参照):外径(Dl)180mm
、。
(II) Shape (see Figure 6): Outer diameter (Dl) 180mm
,.

中子径(D 2 ) 100 m mo〔2〕 ニハー
ド鋳鉄溶湯 (1)化学成分組成:C3,10%、SiO,73%、
Mn0.68%、 Cr 1.52%、Ni4.46%
、M。
Core diameter (D 2 ) 100 m mo [2] Nihard cast iron molten metal (1) Chemical composition: C3, 10%, SiO, 73%,
Mn 0.68%, Cr 1.52%, Ni 4.46%
,M.

0.38%、残部Fe (11)溶湯温度:1600°C C3] W2C粒子 (1)粒径:平均280メツシユ (11)鋳造R=鋳型内の(イ)−(ロ)間の製品形成
部(H1= 80mm)に複合相(粒子:金属−70=
30(容積比)が形成される量。
0.38%, balance Fe (11) Molten metal temperature: 1600°C C3] W2C particles (1) Particle size: Average 280 mesh (11) Casting R = Product forming part between (a) and (b) in the mold (H1=80mm) with composite phase (particles: metal-70=
30 (volume ratio) is formed.

〔4〕 鋳造手順 溶湯の鋳造を先に開始し、湯面が製品形成部頂面(ロ)
に達した時点から粒子の鋳造を開始し、湯面がβ)(H
2=350mm)に到達したときに、溶湯・粒子の鋳造
を停止した。粒子の鋳込温度は鋳造開始時:450℃、
1/4経過時:400℃、2/4経過時=350℃、終
了時:300℃である。なお、粒子・溶湯鋳造速度比は
ほぼ0,9の一定値である。
[4] Casting procedure Start casting the molten metal first, and make sure that the surface of the molten metal reaches the top surface (b) of the product forming part.
The casting of particles is started from the moment when the melt level reaches β)(H
2=350 mm), the casting of the molten metal/particles was stopped. The particle casting temperature was 450°C at the start of casting.
When 1/4 has passed: 400°C, when 2/4 has passed = 350°C, and at the end: 300°C. Note that the particle/molten metal casting speed ratio is a constant value of approximately 0.9.

得られた複合鋳物製品は、底部(イ面)から頂部(口面
)まで全体にわたり健全な粒径層を有する均質な複合組
織が認められる。その頂部から10mm下方の肉厚中心
における炭化物粒子の崩壊率はわずか596である。
The obtained composite cast product has a homogeneous composite structure with a healthy grain size layer throughout from the bottom (face) to the top (mouth face). The decay rate of carbide particles at the center of the wall thickness 10 mm below the top is only 596.

対照として、炭化物粒子の鋳込温度を常時450℃の一
定値に設定し、それ以外は前記と同一の鋳造条件で複合
鋳物製品を得た。この鋳物の上記と同じ部位における粒
子の崩壊率は45%と、多量の粒子の崩壊による組織的
な不均一性が観察された。
As a control, a composite cast product was obtained under the same casting conditions as above, except that the casting temperature of carbide particles was always set at a constant value of 450°C. The particle disintegration rate in the same part of this casting as above was 45%, and structural non-uniformity was observed due to the disintegration of a large amount of particles.

以上のように、本発明によれば、炭化物粒子の崩壊とそ
れに伴う組織の不均一化を実質的に解消し、健全性にす
ぐれた複合鋳物を高歩留りで製造することができる。本
発明により得られる複合鋳物はロール類、その他耐摩耗
性や靭性等が要求される用途に好適であり、そのすぐれ
た均質性により耐久性・安定性の向上に寄与する。
As described above, according to the present invention, it is possible to substantially eliminate the disintegration of carbide particles and the resulting non-uniform structure, and to produce composite castings with excellent soundness at a high yield. The composite castings obtained by the present invention are suitable for rolls and other applications requiring wear resistance, toughness, etc., and their excellent homogeneity contributes to improved durability and stability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はそれぞれ本発明における炭化物粒子の
鋳込温度の制御例を模式的に示すグラフ、第3図は鋳造
要領の例を示す縦断面図、第4図CIII、9 第5図〔■〕は鋳造要領の他の例の縦断面図、第4図C
rD、第5図CrI]は鋳型部分の平面図、第6図、第
7図は鋳型と鋳造体の縦断面説明図、第8図、第9図は
複合組織の模式的拡大図である。 1:鋳型、2:鋳込ホッパー、4:粒子投与治具、M:
金属、P:炭化物粒子、A;複合相部分(複合鋳物製品
)、B:金属相部分。 代理人 弁理士 宮崎新式部 (161 第6図 第7図 第8図 第9図 −338=
1 and 2 are graphs schematically showing an example of controlling the casting temperature of carbide particles in the present invention, FIG. 3 is a longitudinal cross-sectional view showing an example of the casting procedure, and FIGS. Figure [■] is a vertical cross-sectional view of another example of the casting procedure, Figure 4C
rD, Fig. 5 CrI] is a plan view of the mold part, Figs. 6 and 7 are explanatory longitudinal cross-sectional views of the mold and the cast body, and Figs. 8 and 9 are schematic enlarged views of the composite structure. 1: Mold, 2: Casting hopper, 4: Particle dosing jig, M:
Metal, P: Carbide particles, A: Composite phase part (composite cast product), B: Metal phase part. Agent Patent Attorney Miyazaki Shinshikibu (161 Figure 6 Figure 7 Figure 8 Figure 9-338=

Claims (3)

【特許請求の範囲】[Claims] (1)金属溶出と該溶湯より比重の大きい炭化物粒子と
を鋳型内に鋳込み、比重差により炭化物粒子を沈降させ
て、炭化物粒子が比重分離された実質的に金属溶湯のみ
の金属相の下部に、沈降凝集した炭化物粒子と金属溶湯
からなる複合相を形成せしめ、凝固後、金属相部分を切
断除去して下部の複合相部分を複合鋳物製品として得る
鋳造法において、 炭化物粒子の鋳込温度を、その鋳込初期から終期にわた
り連続的もしくは断続的に降下させながら鋳造すること
を特徴とする複合鋳物の製造法。
(1) Metal elution and carbide particles having a higher specific gravity than the molten metal are poured into a mold, and the carbide particles are allowed to settle due to the difference in specific gravity, so that the carbide particles are placed under the separated metal phase of the molten metal. In the casting method, a composite phase consisting of precipitated and agglomerated carbide particles and molten metal is formed, and after solidification, the metal phase portion is cut and removed to obtain the lower composite phase portion as a composite cast product. , a method for manufacturing composite castings characterized by casting while lowering the casting continuously or intermittently from the initial stage to the final stage of casting.
(2)鋳型内の複合相が形成される部分に溶湯が充填さ
れたのち、炭化物粒子の鋳込みを開始することを特徴と
する」二記第(1)項に記載の複合鋳物の製造法。
(2) The method for manufacturing a composite casting according to item 2, item (1), characterized in that casting of the carbide particles is started after the molten metal is filled into the part of the mold where the composite phase is formed.
(3)金属が鉄系金属、炭化物粒子がタングステン炭化
物および/またはタングステンチタン複炭化物であるこ
とを特徴とする」二記第(1)項または第(2)項に記
載の複合鋳物の製造法。
(3) The method for producing a composite casting according to item 2, item (1) or item (2), wherein the metal is an iron-based metal and the carbide particles are tungsten carbide and/or tungsten titanium double carbide. .
JP15438783A 1983-08-24 1983-08-24 Production of composite casting Pending JPS6046857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15438783A JPS6046857A (en) 1983-08-24 1983-08-24 Production of composite casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15438783A JPS6046857A (en) 1983-08-24 1983-08-24 Production of composite casting

Publications (1)

Publication Number Publication Date
JPS6046857A true JPS6046857A (en) 1985-03-13

Family

ID=15583018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15438783A Pending JPS6046857A (en) 1983-08-24 1983-08-24 Production of composite casting

Country Status (1)

Country Link
JP (1) JPS6046857A (en)

Similar Documents

Publication Publication Date Title
CN110695365A (en) Method and device for preparing metal type coated powder by gas-solid two-phase atomization
JP2000239770A (en) Production of cast alloy and complex cylinder
JPS61226163A (en) Production of metal product
CN100519008C (en) Technique method for improving density of injection molding high-speed steel columnar deposition blank
JPS6046857A (en) Production of composite casting
RU2314891C1 (en) Mold making method for casting with use of investment patterns
JP3281019B2 (en) Method and apparatus for producing zinc particles
RU2443505C1 (en) Method of producing steel tube billets
JPS635184B2 (en)
JPS6046858A (en) Production of composite casting
CN110270689A (en) A kind of bimetal tube sleeve forming technique
JPS6046859A (en) Production of wear-resistant composite casting
JPS60124458A (en) Production of wear resistant composite casting
JPS5933064A (en) Production of composite casting
RU2742093C1 (en) Method of producing steel tubing billet with high radiation resistance
JPS6127165A (en) Production of wear-resistant composite casting
JPS5933066A (en) Production device of hollow cylindrical composite casting
JPS59127962A (en) Production of hollow composite casting
JPS63161104A (en) Method for charging raw material into vertical type furnace
JPS59127963A (en) Production of composite casting
RU198414U1 (en) Device for producing cast composite alloys
JPS58221658A (en) Method and device for producing abrasion-resistant casting
JPS6036857B2 (en) Cylindrical, cylindrical wear-resistant castings and their manufacturing method
JPS5982153A (en) Production of composite casting
RU2761192C1 (en) Method for obtaining multilayer ingots by electroslag remelting