JPS586765A - Centrifugal casting method - Google Patents

Centrifugal casting method

Info

Publication number
JPS586765A
JPS586765A JP10359081A JP10359081A JPS586765A JP S586765 A JPS586765 A JP S586765A JP 10359081 A JP10359081 A JP 10359081A JP 10359081 A JP10359081 A JP 10359081A JP S586765 A JPS586765 A JP S586765A
Authority
JP
Japan
Prior art keywords
layer
metal
molten metal
thermite
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10359081A
Other languages
Japanese (ja)
Inventor
Toshiaki Morichika
森近 俊明
Junichi Sugitani
杉谷 純一
Takeshi Torigoe
鳥越 猛
Koji Tsuchida
土田 公司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP10359081A priority Critical patent/JPS586765A/en
Publication of JPS586765A publication Critical patent/JPS586765A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/16Casting in, on, or around objects which form part of the product for making compound objects cast of two or more different metals, e.g. for making rolls for rolling mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • B22D13/02Centrifugal casting; Casting by using centrifugal force of elongated solid or hollow bodies, e.g. pipes, in moulds rotating around their longitudinal axis

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)

Abstract

PURPOSE:To produce a two-layered pipe having high adhesiveness between both layers and having prescribed layer thicknesses by charging thermit after casting of the 1st layer and utilizing the molten metal formed by reaction as metal for the 2nd layer. CONSTITUTION:In a centrifugal casting machine, first, a required amt. of molten metal for the 1st layer is charged to cast the 1st layer 1 having a prescribed design wall thickness. The powdery mixture wherein metallic oxide and Al are compounded at thermit reaction ratios is charged to the inner side thereof. The charged thermit receives the heat of the 1st layer and covers the inner side surfaces of the 1st layer 1 as a mixture in a molten state. The layer 3 of such molten mixture is centrifugally separated to the molten metal and alumina by a difference in specific gravities under rotation of a mold M, whereby the molten metal layer 2 in contact with the layer 1 and the molten alumina layer 4 on the inner side thereof are formed. If the molten metal is solidified and the alumina layer 4 is stripped away, the two-layered pipe consisting of the 1st layer 1 and the 2nd layer 2 melt-stuck thereto is obtained.

Description

【発明の詳細な説明】 本発明は、遠心力鋳造方法、特に各層が所定の均一な層
厚を有し、かつ層間の密着性にすぐれた二層遠心鋳造管
を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a centrifugal casting method, and particularly to a method for producing a two-layer centrifugally cast tube in which each layer has a predetermined uniform layer thickness and excellent adhesion between layers.

二層遠心鋳造管は、二種の異なる金属を同心円状に鋳造
し、て二層構造とすることによシ、各層の金属の特長を
活かし、苛酷な使用条件に耐え得るようにしたものであ
り、例えば炭化水素類の熱分解・改質用反応管、いわゆ
るクラッキングチューブなどとして用いられている。こ
の二層遠心鋳造管に所期の性能、特性を発揮させるには
、鋳造工程におりて、両層の金属の混り合いを防ぎ、各
層を所定の均一な層厚に形成せしめるとともに、両層を
境界面で金属学的に密着させ強固な結合状態にすること
が必要である。
Double-layer centrifugally cast tubes are made by casting two different metals in concentric circles to create a two-layer structure, making use of the characteristics of each layer of metal to withstand harsh usage conditions. For example, it is used as a reaction tube for thermal decomposition and reforming of hydrocarbons, a so-called cracking tube. In order for this two-layer centrifugally cast pipe to exhibit the desired performance and characteristics, it is necessary to prevent the metals in both layers from mixing during the casting process, to form each layer to a predetermined uniform thickness, and to It is necessary to bring the layers into close contact metallurgically at the interface to create a strong bond.

二層遠心鋳造管は、遠心鋳造鋳型内に、外層(第1層)
としての金属溶湯な注入したのち、その内側面にフラッ
クスを投与し、ついで内層(第2層)となる金属溶湯を
注入することにょシ製造されるが、その場合に第2層金
属溶湯の注入を比較的早い時点で行なうと、第1図〔1
〕に示すように鋳型軸内の第1層金属(1)はその表層
部(1・1)が未凝固状態にあシ、従って第1層と第2
層(2)は融合によシ容易に密着するものの、第1層と
第2層の溶融金属が溶融し合う結果、同図(1)に示す
ように、最終的に形成される第1層(1)は所期の層厚
よシ薄いものとなシ、−1第2層(メは第1層金属の多
量の混入によシ、層厚が過大となるとともに当初の化学
成分組成とは異なったものになってしまう。
Two-layer centrifugal casting tube has an outer layer (first layer) inside the centrifugal casting mold.
After injecting the molten metal as an inner layer, flux is applied to the inner surface of the molten metal, and then the molten metal that becomes the inner layer (second layer) is injected. If this is done at a relatively early point in time, Figure 1 [1
] As shown in the figure, the surface layer (1.1) of the first layer metal (1) inside the mold shaft is in an unsolidified state, and therefore the first layer and second layer metal (1) are in an unsolidified state.
Although layer (2) is easily adhered to by fusion, as a result of the molten metal of the first and second layers melting together, the first layer that is finally formed as shown in (1) of the same figure. (1) is thinner than the intended layer thickness, -1 second layer (me) is due to the incorporation of a large amount of metal in the first layer, resulting in an excessive layer thickness and a change in the original chemical composition. becomes different.

上記の不都合を回避するには、第1層を内側面まで完全
に凝固させ、かつ第2層溶湯の熱を受けても再溶融しな
い温度に降温したのちに第2層溶湯を注入するようにす
ればよいが、そうすると両層間の密着性に問題が生ずる
。すなわち、第2図に示すように注入された第1層金属
溶湯(1)の内側面にフラックス(2)を投与し、その
状態で第1層(1)を凝固させたのち(同図〔I〕)、
第2層金属溶湯(2)を注入すると(同図〔l〕)、該
第2層は第1層との接触面に薄い凝固殻(チル層)(2
・1)を形成する(同図〔■〕)。フラックス(6)の
大部り・は第2層0旙の注入とともにその表面に浮上す
るが、凝固殻(2・1)が早期に形成されるため、一部
のフラックスは浮上しきれず、そのまま第1層(1)と
第2層(2)の間に残留した状態で各層の凝固が完了す
る(同図〔■〕)。このため、両層間の結合状態は極め
て不完全なものとなシ両眉間に残留したフラックスは管
材の致命的欠陥となる。このような傾向は、特に第2層
金属の溶融点が第1層金属のそれよシ高い程、顕著に現
われる。これを防止する方法としては、第2層金属溶湯
の鋳造温度は高めるかまたはその鋳造量を増やし、該溶
湯の保有熱量     □を高めることによって一固殻
(2・1)の形成を遅らせ、もしくはその再溶融を図る
ことも考えられる。
In order to avoid the above-mentioned disadvantages, it is necessary to completely solidify the first layer to the inner surface and cool it to a temperature at which it will not re-melt even when it receives the heat of the second layer molten metal, and then pour the second layer molten metal. However, if this is done, a problem will arise in the adhesion between the two layers. That is, as shown in Fig. 2, flux (2) is applied to the inner surface of the injected first layer molten metal (1), and the first layer (1) is solidified in that state. I]),
When the second layer molten metal (2) is injected (see figure [l]), the second layer forms a thin solidified shell (chill layer) (2) on the contact surface with the first layer.
・1) is formed (same figure [■]). Most of the flux (6) floats to the surface with the injection of the second layer at 0:00, but because the solidified shell (2/1) is formed early, some of the flux does not fully float and remains as it is. Solidification of each layer is completed in a state where it remains between the first layer (1) and the second layer (2) (Figure [■]). For this reason, the bond between the two layers is extremely incomplete, and the flux remaining between the two glabellas becomes a fatal defect in the tube material. This tendency becomes more pronounced especially when the melting point of the second layer metal is higher than that of the first layer metal. As a method to prevent this, the casting temperature of the second layer molten metal is increased or the amount of casting is increased, and the formation of the solid shell (2.1) is delayed by increasing the heat capacity □ of the molten metal, or It is also possible to try to remelt it.

しかしながら、前者の方法は溶湯温度をそれほど高くす
ることができないからその効果に限度があり、一方後者
の方法では第2層厚の増大を伴なうため、薄い第2層を
必要とする場合には適用することができない。
However, the former method cannot raise the temperature of the molten metal so high, so its effectiveness is limited, while the latter method involves an increase in the thickness of the second layer, so it cannot be used when a thin second layer is required. cannot be applied.

本発明は上記に対処するためになされたものであり、第
1層を鋳造したのちに酸化鉄粉末などの金属酸化物粉末
と金属アルミニウム(iy!!&末との混合物、所謂テ
ルミットを投与し、そのチルオツド反応によシ多量の発
熱とともに生成する溶融金属を第2層金属として利用す
ることにょシ、両層間の密着性にすぐれた均一で所定の
層厚を有する二層管を得るようにした遠心力鋳造方法を
提供する。
The present invention has been made to address the above problem, and after casting the first layer, a mixture of metal oxide powder such as iron oxide powder and metal aluminum (iy!!& powder), so-called thermite, is administered. By using the molten metal generated with a large amount of heat due to the chilled reaction as the second layer metal, it is possible to obtain a double-layered pipe having a uniform and predetermined layer thickness with excellent adhesion between both layers. The present invention provides a centrifugal force casting method.

以下、本発明について詳しく説明する。The present invention will be explained in detail below.

本発明方法によれば、遠心力鋳造装置にて、常法によシ
、まず所要量の第1層金属溶湯を注入して何定の設計肉
厚を有する第1層を鋳造する。該第1層の内側面には、
酸化防止のために通常用いられるフラックスを常法に従
って投与してよい。
According to the method of the present invention, first, a required amount of molten metal for the first layer is injected in a centrifugal casting apparatus according to a conventional method to cast the first layer having a certain design thickness. On the inner surface of the first layer,
Fluxes commonly used for antioxidant purposes may be administered in a conventional manner.

第1層を鋳造したのち、適当な時期を見計って、その内
側に金属酸化物とAlとがテルミット反応比で配合され
た粉末混合物を投与する。
After casting the first layer, at an appropriate time, a powder mixture containing a metal oxide and Al in a thermite reaction ratio is administered inside the layer.

投与されたテルミットは、第1層の熱を受けて酸化還元
反応を生起し、多量の発熱に伴なって金属とA403が
生成する。金属酸化物としてF 620Bを用いた場合
の反応式を示せば次のごとくである。
The administered thermite undergoes an oxidation-reduction reaction upon receiving the heat of the first layer, and metal and A403 are generated along with a large amount of heat generation. The reaction formula when F 620B is used as the metal oxide is as follows.

Fe2O8+2Al−+2Fe+A#208+200K
cal生成した金属とA 1208は該反応の発熱量で
溶融状態の混合物として第3図〔■〕に示すように第1
層(1)の内側面をおおう。この溶融混合物層(3)は
、鋳型(財)の回転下に比重差によシ金属溶湯とアルミ
ナ(i20.)とに遠心分離し、同図(Illに示すよ
うに、第1層(1)に接する金属溶湯層(2)とその内
側の溶融アルミナ層(5)とが形成される。この状態で
凝固させ、しかるのちアルミナ層(5)を剥離除去すれ
ば、第1層(1)とこれに溶着した第2層(2)からな
る二層管が得られる。上記において形成される第2層(
2)の層厚はテルミット反応における金属の生成量によ
って決まるから、テルミットの投与量を適当に秤量すれ
ば厚薄任意の設計肉厚を得ることができる。
Fe2O8+2Al-+2Fe+A#208+200K
The cal-generated metal and A 1208 form a mixture in a molten state due to the calorific value of the reaction, as shown in Figure 3 [■].
Cover the inner surface of layer (1). This molten mixture layer (3) is centrifuged into molten metal and alumina (i20.) due to the difference in specific gravity while the mold is rotating, and as shown in the figure (Ill), the first layer (1 ) and a molten alumina layer (5) inside it are formed.If it is solidified in this state and then the alumina layer (5) is peeled off, the first layer (1) is formed. A two-layer pipe is obtained, consisting of a and a second layer (2) welded thereto.The second layer (2) formed in the above
Since the layer thickness in 2) is determined by the amount of metal produced in the thermite reaction, any designed thickness can be obtained by appropriately weighing the amount of thermite.

ところで、テルミットを構成する金属酸化物は基本的に
は、Fe2O8、Fe3O4などの酸化鉄であり、第2
層材質として鉄を望む場合はそれで目的を達することが
できるが、二層管の用途によっては、Orその他の合金
元素を含む合金鋼が要求される。そのような場合には、
酸化鉄の一部を必要な1種もし、くけ2種以上の合金元
素の酸化物、例えばOr20Bなどに置換し、これらの
酸化物を所望の第2層金属酸分組成に相応する割合で配
合したものを用いればよい。例えば、第2層として13
%Or鋼を望む場合には、酸化鉄粉末、とクロム酸化物
粉末とをFe:Crの比が87 :13となるように配
合し、これをAl粉末と混合してなるテルミットを用い
ることにより所定の鋼組成を有する第2層を形成するこ
とができる。更に、目的とする第2層の鋼組成に応じ金
属酸化物以外に、例えばNiなどの合金元素を単体の形
態で、またOr。
By the way, the metal oxides that make up thermite are basically iron oxides such as Fe2O8 and Fe3O4.
If iron is desired as the layer material, the purpose can be achieved with it, but depending on the use of the two-layer pipe, alloy steel containing Or or other alloying elements is required. In such cases,
A part of the iron oxide is replaced with an oxide of one or more alloying elements, such as Or20B, and these oxides are mixed in a proportion corresponding to the desired second layer metal acid composition. You can use the one you made. For example, 13 as the second layer
%Or steel, by blending iron oxide powder and chromium oxide powder so that the Fe:Cr ratio is 87:13, and using thermite made by mixing this with Al powder. A second layer having a predetermined steel composition can be formed. Furthermore, depending on the steel composition of the second layer, in addition to the metal oxide, an alloying element such as Ni may be added in the form of a simple substance, or Or.

Mnなどの元素をフェロマンガンなど合金鉄の粉末とし
て上記テルミットに配合することもできる。
Elements such as Mn can also be blended with the thermite in the form of powder of ferroalloy such as ferromanganese.

むろん、これらテルミット反応に関与しない形態で加え
られる原料粉末の添加量が多すぎると生成する金属溶湯
温度が低くなシ粘稠化し、アルミナとの分離が困難にな
る等の支障を生ずるので、テルミット反応の発熱量で十
分な流動性が与えられる範囲内に制限すべきである。通
常、テルミット中に占める割合が約30重量%以下であ
れば上記不都合を生ずることなく所定の鋼組成を得るこ
とができる。
Of course, if the amount of raw material powder added in a form that does not participate in the thermite reaction is too large, the temperature of the molten metal produced will be low and it will become viscous, making it difficult to separate it from alumina. It should be limited within a range that provides sufficient fluidity with the exothermic value of the reaction. Normally, if the proportion of thermite in the thermite is about 30% by weight or less, a desired steel composition can be obtained without causing the above-mentioned disadvantages.

本発明方法においてテルミットの投与は、金属溶湯を鋳
型内へ注入する場合のように、鋳型の開口端部に装着さ
れた溶湯飛散防止用端板の注湯孔を介して行なえばよい
。その投与はキャリヤーガス等を用いた吹込み方式等適
宜の方法で行なうこともできる。この場合、テルミット
が第1層の内側面全体を被覆するように投与する仁とが
望ましい。このための手段として、テルミットをフラッ
クスと混合して投与するのが有効である。フラックスは
テルミットを流動化し、第1層内側面上での広がりを促
進する。このフラックスとしては、溶湯表面の酸化防止
を目的として通常使用される一般的なものを用いてよい
In the method of the present invention, thermite may be administered through the pouring hole of the molten metal scattering prevention end plate attached to the open end of the mold, as in the case of pouring molten metal into a mold. The administration can also be carried out by an appropriate method such as a blowing method using a carrier gas or the like. In this case, it is desirable that the thermite be administered so as to cover the entire inner surface of the first layer. As a means for this purpose, it is effective to administer thermite mixed with flux. The flux fluidizes the thermite and promotes its spreading on the inner surface of the first layer. As this flux, a general flux commonly used for the purpose of preventing oxidation of the surface of the molten metal may be used.

また、上記テルミットの投与は、第1層がその内側面ま
で凝固したのちに行なう。第1層内側面が未凝固の状態
で投与すると、テルミット反応で生成した金属溶湯と第
1層溶湯が混り合って前記第1図に示した不都合が生ず
るからである。但し、投与時期があまり遅くなると第1
層の温度降下が大きくなシ、テルミット反応の生起に要
する熱の確保が困難となるので、第1層内側面の温度が
「溶融点−300℃」に降下するまでの間に投与するの
が好ましい。
Further, the thermite is administered after the first layer has solidified to its inner surface. This is because if the inside surface of the first layer is administered in an unsolidified state, the molten metal produced by the thermite reaction and the molten first layer will mix, causing the problem shown in FIG. 1 above. However, if the timing of administration is too late, the first
If the temperature drop in the layer is large, it will be difficult to secure the heat required for the thermite reaction to occur, so it is best to administer the product until the temperature on the inner surface of the first layer drops to ``melting point - 300℃''. preferable.

テルミット反応により生成した溶融金属は、第1層との
境界部で薄い凝固殻(チル層)が生ずることがあるが、
該反応に伴なう十分な発熱量により再溶融されるので前
記第2図に示すごときチル層でのフラックスの残留は回
避され、かつ第1層と第2層との密着性も金属学的に完
全なものとなる。
The molten metal generated by the thermite reaction may form a thin solidified shell (chill layer) at the boundary with the first layer.
Since the flux is remelted by a sufficient amount of heat generated by the reaction, residual flux in the chilled layer as shown in FIG. becomes complete.

次に本発明の実施例について説明する。Next, examples of the present invention will be described.

実施例1 遠心力鋳造装置において、0.4*C−251Or−2
0%Ni−Fe溶湯、?5kQを注入して層厚15絹の
第1層を鋳造し、ついでその内面酸化防止のためフラッ
クスを投与した。第1層の内側面まで凝固するのを待ち
、ついで空気をキャリヤーガスとして下記組成を有する
テルミット1kqを投与し、生成した金属溶湯にて第2
層を形成せしめ、凝固後第2層内側のアルミナ層を剥離
除去した。
Example 1 In a centrifugal casting device, 0.4*C-251Or-2
0% Ni-Fe molten metal,? A first layer of silk with a thickness of 15 was cast by injecting 5 kQ, and then flux was administered to prevent internal oxidation. Wait until it solidifies to the inner surface of the first layer, then administer 1 kq of thermite having the following composition using air as a carrier gas, and use the resulting molten metal to form the second layer.
A layer was formed, and after solidification, the alumina layer inside the second layer was peeled off.

テルミット組成 酸化鉄(Fe208)粉末: 0.75kg(Fe分0
.5 kg)金属An : 0.25に9 上記鋳造により、第1層(0,4%G!−25%0r−
20%N1−Fe)層厚151aI11第2層(鉄)層
厚Q、5ff、外径1350の二層管を得た。
Thermite composition iron oxide (Fe208) powder: 0.75kg (Fe content 0
.. 5 kg) Metal An: 0.25 to 9 By the above casting, the first layer (0.4%G!-25%0r-
A two-layer tube with a layer thickness of 151aI11 (20%N1-Fe), a second layer (iron) layer thickness Q, 5ff, and an outer diameter of 1350 was obtained.

実施例2 テルミットとして下記組成のもの1 kgを用いるほか
、前記実施例と同様にして遠心力鋳造を行なつた。
Example 2 Centrifugal force casting was carried out in the same manner as in the previous example except that 1 kg of thermite having the following composition was used.

テルミット組成 酸化鉄(Fe2OB)粉末: 0.6#(Fe部分、4
2kg)クロム酸化物(Cr208)粉末: 0.15
−# (Or部分、 1 kg ) 金属Al粉末:0.25&q 上記鋳造により、外径135r+++、第1層(0,4
%C−25%0r−20%Ni二Fe)層厚15U、第
2層(18%Cr鋼)層厚0.EIIO二層管全層管。
Thermite composition iron oxide (Fe2OB) powder: 0.6# (Fe part, 4
2kg) Chromium oxide (Cr208) powder: 0.15
-# (Or part, 1 kg) Metallic Al powder: 0.25&q By the above casting, outer diameter 135r+++, first layer (0,4
%C-25%0r-20%Ni2Fe) layer thickness 15U, second layer (18%Cr steel) layer thickness 0. EIIO double layer pipe full thickness pipe.

実施例3 テルミットに合金元素源としてフェロクロム粉末を添加
したものを用いるほかは前記実施例と同様に遠心力鋳造
を行なった。
Example 3 Centrifugal casting was carried out in the same manner as in the previous example except that thermite to which ferrochrome powder was added as an alloying element source was used.

テルミット組成 酸化鉄(Fe20B )粉末: 0.754g(Fe部
分055kg金属Al:0.25kg、 フェロクロム粉末(8%C−60チCr):0.15k
g(Cr分:13重量%)、上記鋳造により、外径13
5jj1%第1層(0,4%C−25%0r−2(HN
i−Fe )層厚15闘、第2層(13%Cr鋼)層厚
0.711Mの二層管を得た。
Thermite composition iron oxide (Fe20B) powder: 0.754g (Fe portion: 055kg, metal Al: 0.25kg, ferrochrome powder (8%C-60% Cr): 0.15k
g (Cr content: 13% by weight), by the above casting, the outer diameter was 13
5jj1% 1st layer (0,4%C-25%0r-2(HN
A two-layer pipe with a layer thickness of 15 mm (i-Fe) and a second layer (13% Cr steel) layer thickness of 0.711 M was obtained.

上記各実施例で鋳造された二層管は、いづれも各層が所
定の化学成分組成と所定の設計肉厚を備えておシ、また
両層間に7ラツクスが残留することもなくすぐれた密着
性を有していることが確認された。
The two-layer pipes cast in each of the above examples have each layer having a predetermined chemical composition and a predetermined designed wall thickness, and also have excellent adhesion with no 7 lux remaining between the two layers. It was confirmed that it has.

以上のように、本発明によれば第1層の内側面まで凝固
したのちにテルミットの投与によル第2層の形成が行な
われるので、両層間の金属の混り合い、およびそれに伴
なう第1層厚の減少や各層金属の化学成分組成の変化を
生ずることがない。
As described above, according to the present invention, the second layer is formed by administering thermite after the first layer has been solidified to the inner surface, so that the mixing of metal between both layers and the resulting There is no reduction in the thickness of the first layer or a change in the chemical composition of the metals in each layer.

また、第1層に接してチル層が生成してもテルミット反
応に伴なう十分な発熱量により再溶融するので、たとえ
その部分に7ラツクスが捕捉されても、これを浮上分離
させかつ両層間の密着性を金属学的にも完全ならしめ、
強固な結合状態を得ることができる。更に、第2層はテ
ルミットの投与量の加減により容易に望む層厚にするこ
とができ、またその金属材質もテルミット組成の調合に
よって容易に目的とする組成のものを形成することがで
きる。かくして、種々の金属材質の組合せからなる厚薄
任意の層厚を備えた密着性の良好な二層管が得られる。
Furthermore, even if a chill layer is formed in contact with the first layer, it will be remelted due to the sufficient amount of heat generated by the thermite reaction, so even if 7 lux is captured in that area, it will be floated and separated, and both The adhesion between the layers is made metallurgically perfect,
A strong bond can be obtained. Further, the second layer can be easily formed into a desired layer thickness by adjusting the dosage of thermite, and the metal material thereof can be easily formed into a desired composition by adjusting the thermite composition. In this way, a two-layer tube with good adhesion can be obtained, which is made of a combination of various metal materials and has arbitrary layer thicknesses.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〔1〕、[:IDおよび第2図〔ID、〔i〕、
帽〕、[IV’]は遠心鋳造用鋳型内の各層金属の凝固
状況を示す断面説明図、第3図〔IDおよび(It)は
本発明方法による遠心鋳造用鋳型内の各層の形成過程を
示す断面説明図である。 (1)・・・第1層、     (2)−・・・第2層
、(4)・・・アルミナ層、   ■・・・鋳型、(ト
)・・・フラックス。 特許出願人 久保田鉄工株式会 代理人  弁理士  宮 崎 −1八 部第111 rl)        【工〕 I3        [TVI 第3I!!1 [Z) 詞j
Figure 1 [1], [:ID and Figure 2 [ID, [i],
], [IV'] are cross-sectional explanatory diagrams showing the solidification status of each layer of metal in the centrifugal casting mold, and FIG. FIG. (1)...First layer, (2)-...Second layer, (4)...Alumina layer, ■...Mold, (g)...Flux. Patent Applicant Kubota Iron Works Co., Ltd. Agent Patent Attorney Miyazaki -18 Part 111 rl) [Engineering] I3 [TVI No. 3I! ! 1 [Z] Word j

Claims (5)

【特許請求の範囲】[Claims] (1)遠心力鋳造用鋳型内に、所要量の金属溶湯を注入
して第1層を鋳造し、その内側面まで凝固したのち、該
第1層内側面上に金属酸化物粉末と金属アルジニウム粉
末とがテルミット反応比に調合された所要量のテルミッ
トを投与し、そのテルミット反応で生成する金属にて第
2層を形成することを特徴とする二層管の遠心力鋳造方
法。
(1) Inject the required amount of molten metal into a centrifugal casting mold to cast the first layer, and after solidifying to the inner surface of the first layer, metal oxide powder and metal aldinium are added to the inner surface of the first layer. A centrifugal force casting method for a two-layer pipe, characterized in that a required amount of thermite mixed with a thermite reaction ratio is administered, and a second layer is formed of the metal produced by the thermite reaction.
(2)金属酸化物が酸化鉄であることを特徴とする上記
第(1)項に記載の遠心力鋳造方法。
(2) The centrifugal casting method according to item (1) above, wherein the metal oxide is iron oxide.
(3)金属酸化物が、酸化鉄およびそれ以外の1種もし
くは2種以上の金属元素の酸化物が第2層の所望の合金
鋼組成に応じた混合割合で配合されたものであることを
特徴とする上記第(1)項に記載の遠心力鋳造方法。
(3) The metal oxide is a mixture of iron oxide and oxides of one or more other metal elements in a mixing ratio depending on the desired alloy steel composition of the second layer. The centrifugal casting method according to item (1) above.
(4)テルミットが、単体の金属元素の粉末および/ま
たは合金鉄粉末が第2層の所望の合金鋼組成に応じた割
合で添加されたものであることを特徴とする上記第(1
)項ないしは第(3)項のいづれか1つに記載の遠心力
鋳造方法。
(4) Thermite is a powder of a single metal element and/or an iron alloy powder added in a proportion corresponding to the desired alloy steel composition of the second layer.
) or (3).
(5)テルミットをフラックスとの混合物として投与す
ることを特徴とする上記第(1)項ないしは第(4)項
のいづれか1つに記載の遠心力鋳造方法。
(5) The centrifugal casting method according to any one of items (1) to (4) above, characterized in that thermite is administered as a mixture with flux.
JP10359081A 1981-07-02 1981-07-02 Centrifugal casting method Pending JPS586765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10359081A JPS586765A (en) 1981-07-02 1981-07-02 Centrifugal casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10359081A JPS586765A (en) 1981-07-02 1981-07-02 Centrifugal casting method

Publications (1)

Publication Number Publication Date
JPS586765A true JPS586765A (en) 1983-01-14

Family

ID=14357981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10359081A Pending JPS586765A (en) 1981-07-02 1981-07-02 Centrifugal casting method

Country Status (1)

Country Link
JP (1) JPS586765A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5558150A (en) * 1995-05-26 1996-09-24 Erim Method of producing a cast multilayered alloy tube and the product thereof
CN105081257A (en) * 2015-08-05 2015-11-25 苏州好洁清洁器具有限公司 Composite aluminum alloy pipe
FR3097785A1 (en) * 2019-06-25 2021-01-01 Aktiebolaget Contact layer on the surface of a metal member in relative motion against another metal member, and a hinge connection provided with such a contact layer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5558150A (en) * 1995-05-26 1996-09-24 Erim Method of producing a cast multilayered alloy tube and the product thereof
WO1996037321A1 (en) * 1995-05-26 1996-11-28 Erim Company Method of casting a multilayered alloy tube
CN105081257A (en) * 2015-08-05 2015-11-25 苏州好洁清洁器具有限公司 Composite aluminum alloy pipe
FR3097785A1 (en) * 2019-06-25 2021-01-01 Aktiebolaget Contact layer on the surface of a metal member in relative motion against another metal member, and a hinge connection provided with such a contact layer
US11761478B2 (en) 2019-06-25 2023-09-19 Aktiebolaget Skf Contact layer on the surface of a metal element in relative movement against another metal element and an articulation joint provided with such a contact layer

Similar Documents

Publication Publication Date Title
US2831760A (en) Material for welding aluminum and other metals
CN103233138B (en) Mg-Al series magnesium alloy grain-refining agent and preparation method thereof
JPS586765A (en) Centrifugal casting method
JPS62501548A (en) Continuous casting method
JPH07179926A (en) Metallic capsule additive
JPS586762A (en) Centrifugal casting method
US2309288A (en) Manufacture of clad metal
US2281216A (en) Metallurgy
US3836358A (en) Addition agent
DE2514565C3 (en) Process for the production of a composite pipe
JPS586761A (en) Centrifugal casting method
JPS586763A (en) Centrifugal casting method
US3993474A (en) Fluid mold casting slag
JPS6120397B2 (en)
GB2092038A (en) Production of plated ingots
US2243783A (en) Production of chromium-bearing reaction mixtures and alloys
JPS6240314B2 (en)
US1918011A (en) Making or remelting alloys of aluminium and iron
JPH0615428A (en) Manufacture of composite cast steel tube
JP4163836B2 (en) Sliding nozzle filling sand
JPS6046859A (en) Production of wear-resistant composite casting
JPS586764A (en) Centrifugal casting method
US3372022A (en) Process for alloying metallic melts
JPH08290257A (en) Wear resistant aluminum alloy casting and its manufacture
JPH0210870B2 (en)