JPS586764A - Centrifugal casting method - Google Patents

Centrifugal casting method

Info

Publication number
JPS586764A
JPS586764A JP10358981A JP10358981A JPS586764A JP S586764 A JPS586764 A JP S586764A JP 10358981 A JP10358981 A JP 10358981A JP 10358981 A JP10358981 A JP 10358981A JP S586764 A JPS586764 A JP S586764A
Authority
JP
Japan
Prior art keywords
layer
molten metal
thickness
mold
partition plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10358981A
Other languages
Japanese (ja)
Other versions
JPS601110B2 (en
Inventor
Toshiaki Morichika
森近 俊明
Junichi Sugitani
杉谷 純一
Takeshi Torigoe
鳥越 猛
Koji Tsuchida
土田 公司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP10358981A priority Critical patent/JPS601110B2/en
Publication of JPS586764A publication Critical patent/JPS586764A/en
Publication of JPS601110B2 publication Critical patent/JPS601110B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • B22D13/02Centrifugal casting; Casting by using centrifugal force of elongated solid or hollow bodies, e.g. pipes, in moulds rotating around their longitudinal axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/16Casting in, on, or around objects which form part of the product for making compound objects cast of two or more different metals, e.g. for making rolls for rolling mills

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)

Abstract

PURPOSE:To produce a two-layered centrifugally cast pipe wherein respective layers have prescribed uniform layer thicknesses and the adhesiveness between the layers is high by moving a partition plate of a mold to discharge the molten metal that exceeds the design thickness of the 2nd layer. CONSTITUTION:A partition plate 4 is located spacially by a suitable distance from an end plate 3, and a required amt. of molten metal is charged through the hole 6 in the central part of the plate 3, whereby the 1st layer having a design thickness t1 is cast. After waiting for the molten metal to solidify down to the inner side surfaces thereof, the molten metal for the 2nd layer is charged to cast the 2nd molten metal layer 2 (layer thickness t2). Said metal is charged at the amt. sufficient for remelting of the chill layer. After the chill layer is remelted, the plate 4 is slided to the other opening end B side to form a space part V and the excess molten metal that exceeds the design wall thickness t3 of the 2nd layer is flowed out into the space V. Thus, the molten metal of the 2nd layer is held at the design wall thickness t3 on the inner side of the 1st layer 1 and is solidified, whereby the two-layered pipe wherein the respective layers have the prescribed layer thickness is obtained.

Description

【発明の詳細な説明】 本発明は、遠心力鋳造方法、特に各層が所定の均一な層
厚を有し、かつ層間の密着性にすぐれた二層遠心鋳造管
を製造する方法(/c関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a centrifugal casting method, particularly a method for manufacturing a two-layer centrifugally cast tube in which each layer has a predetermined uniform layer thickness and excellent adhesion between layers. .

二層遠心鋳造管は、二種の異なる金属を同心円状に鋳造
して二層構造とすることにより、各層の金属の特長を活
かし、苛酷な使用条件に耐え得るようにしたものであり
、例えば炭化水素類の熱分解・改質用反応管、いわゆる
クランキングチューブなどとして用いられている。この
二層遠心鋳造管に所期の性能、特性を発揮させるには、
鋳造工程において、両層の金属の混り合いを防ぎ、各層
を所定の均一な層厚に形成せしめるとともに、両層を境
界面で金属学的に密着させ強固な結合状態にすることが
必要である。
Double-layer centrifugally cast pipes are made by casting two different metals concentrically to form a two-layer structure, making use of the characteristics of each layer of metal to withstand harsh usage conditions. It is used as a reaction tube for thermal decomposition and reforming of hydrocarbons, a so-called cranking tube. In order to make this double-layer centrifugally cast pipe exhibit the desired performance and characteristics,
In the casting process, it is necessary to prevent the metals in both layers from mixing together, to form each layer to a predetermined uniform thickness, and to bring the two layers into metallurgical contact at the interface to create a strong bond. be.

二層遠心鋳造管は、遠心鋳造鋳型内に、外層(第1層)
としての金属溶湯を注入したのち、その内側面に7ラツ
クスを投与し、ついで内層(第2層)となる金属溶湯を
注入することにより製造されるが、その場合に、第2層
金属溶湯の注入を比較的早い時点で行なうと、第1図〔
I)に示すように鋳型(2)内の第1層金属(1)はそ
の表層部(1−1)が未凝固状態にあシ、従って第1層
と第2層(2)は融合により容易に密着するものの、第
1層の凝固層(1・2)も高澗状態であるためにIX2
層溶漫0熱を受けて再溶融する。その結果、同図[I[
] K示すように、最終的に形成される第1層(i)は
所期の層厚より薄いものとなり、一方策2層(イ)は第
1層金属の多量の混入により、層厚が過大となるととも
に、当初の化学成分組成とは異なったものになってしま
う。
Two-layer centrifugal casting tube has an outer layer (first layer) inside the centrifugal casting mold.
It is manufactured by injecting molten metal as a layer, then applying 7 lux to the inner surface of the molten metal, and then injecting the molten metal that will form the inner layer (second layer). If the injection is performed at a relatively early point in time, Figure 1 [
As shown in I), the surface layer (1-1) of the first layer metal (1) in the mold (2) is in an unsolidified state, so the first layer and the second layer (2) are fused together. Although it adheres easily, since the first coagulated layer (1 and 2) is also in a high density state, IX2
Re-melts after receiving zero heat during layer melting. As a result, the same figure [I[
] As shown in K, the first layer (i) that is finally formed is thinner than the expected layer thickness, while the second layer (a) is thinner due to the large amount of first layer metal mixed in. The amount becomes too large and the chemical composition becomes different from the original one.

上記の不都合を回避するには、第1層を内側面まで完全
に凝固させ、かつ第2層溶湯の熱を受けても再溶融しな
い温度に降温したのちに第2層溶湯を注入するようにす
ればよいが、そうすると両層間の密着性に問題が生ずる
。すなわち、第2図に示すように、注入された第1層金
属溶湯(1)の内側面Vc7ラツクス(ト)を投与し、
その状態で第1層(1)を凝固させたのち(同図〔1〕
)、第2層金属溶湯(2)を注入すると(同図〔■〕)
、該第2層は第1層との接触面に薄い凝固殻(チル層)
(2・1)を形成する(同図〔■〕)。その場合、フラ
ックス(Dの大部分は第2層溶湯の注入とともにその表
面に浮上するが、凝固殻(2・1)か早期に形成される
ため、一部の72ツクスは浮上しきれず、そのまま@1
層(1)と第124層(2)の間に残留した状態で各層
の凝固が完了する(同図〔■〕)。この傾向は、特に、
第2層金属の溶融点が第1層金属のそれより高い程、顕
著に現われる。このため、両層間の結合状態は極めて不
完全なものとなり、両層°間に残留したフラックスは得
られた二層管の致命的欠陥となる。
In order to avoid the above-mentioned disadvantages, it is necessary to completely solidify the first layer to the inner surface and cool it to a temperature at which it will not re-melt even when it receives the heat of the second layer molten metal, and then pour the second layer molten metal. However, if this is done, a problem will arise in the adhesion between the two layers. That is, as shown in FIG. 2, Vc7 lux (g) is administered to the inner surface of the injected first layer molten metal (1),
After solidifying the first layer (1) in this state (see figure [1]
), when the second layer molten metal (2) is poured (same figure [■])
, the second layer has a thin solidified shell (chill layer) on the contact surface with the first layer.
(2.1) is formed (same figure [■]). In that case, most of the flux (D) floats to the surface with the injection of the second layer molten metal, but since a solidified shell (2.1) is formed early, some 72 fluxes do not fully float and remain as they are. @1
Solidification of each layer is completed with the layer remaining between layer (1) and the 124th layer (2) (Figure [■]). This trend is particularly
The higher the melting point of the second layer metal is than that of the first layer metal, the more pronounced this becomes. For this reason, the bond between the two layers becomes extremely incomplete, and the flux remaining between the two layers becomes a fatal defect in the resulting two-layer tube.

これを防ぐ方法としては、!2層金属溶湯の鋳造温度を
高めて該溶湯の保有熱量を高めることによって凝固殻(
2・1)の形成を遅らせるが、もしくはその再溶融を図
ることも考、、見られるが、溶湯温度をそれ程高めるこ
とはできないから、その効果には限度があり、結局健全
な二層管を得ることはできない。
Here's how to prevent this! The solidified shell (
It has been considered to delay the formation of 2.1) or to try to re-melt it, but since the temperature of the molten metal cannot be raised that much, there is a limit to its effectiveness, and in the end it is difficult to create a healthy two-layer pipe. You can't get it.

本発明は上記にかんがみてなされたものであり、   
   □両層間の密着性にすぐれた厚薄任意の層厚を有
する二層管の遠心力鋳造方法を提供する。
The present invention has been made in view of the above,
□Providing a method for centrifugal force casting of a two-layer pipe having arbitrary layer thicknesses with excellent adhesion between the two layers.

以下1本発明方法について説明する。One method of the present invention will be explained below.

本発明方法によれば、遠心力鋳造用鋳型にて、まず所要
量の第1層金属溶湯を注入して設計肉厚を有する第1層
を鋳造する。第1層の内側には、常法に従ってフラック
スを投与してよい。しかして、第1層の内側面まで凝固
したのち、第2層の鋳造を行なう。この第2層の鋳造に
おいては、第1層と接して生成する第2層溶湯の凝固殻
(チル層)を、第2層溶湯自身の保有熱にて再溶融させ
る。すなわち、本発明は、第2層溶湯に、チル層再溶湯
のための熱源としての役割を兼ねさせる。
According to the method of the present invention, first, a required amount of molten metal for the first layer is poured into a centrifugal casting mold to cast the first layer having a designed thickness. Inside the first layer, flux may be applied in a conventional manner. After the first layer has solidified to the inner surface, the second layer is cast. In the casting of the second layer, the solidified shell (chill layer) of the second layer molten metal that is generated in contact with the first layer is remelted by the heat possessed by the second layer molten metal itself. That is, the present invention allows the second layer molten metal to also serve as a heat source for remelting the chilled layer.

従って、第2層金属溶湯の注入量は、少くともチル層の
再溶融に要する熱量をまかなうに足る量でなければなら
ない。
Therefore, the amount of the second layer molten metal injected must be at least sufficient to cover the amount of heat required to remelt the chilled layer.

上記のように第2層溶湯は十分な熱量を有するので、第
1JjiK接して生成したチル層部にフラックスの一部
が捕捉されていても、チル層の再溶融によって第2層の
溶湯上面に浮上し分離される。
As mentioned above, the second layer molten metal has a sufficient amount of heat, so even if some of the flux is trapped in the chilled layer formed in contact with the first layer, the remelting of the chilled layer will cause the flux to reach the upper surface of the second layer molten metal. They float to the surface and are separated.

この熱量をまかなうための該溶湯注入量は適宜定められ
るが、通常その溶湯層厚が、第1層の層厚の約1/2以
上となる量であることが望ましい。
The amount of molten metal injected to cover this amount of heat is determined as appropriate, but it is usually desirable that the molten metal layer thickness be approximately 1/2 or more of the layer thickness of the first layer.

第2層溶湯は、チル層の再溶M生起したのち、時間の経
過とともにその外側(第1層と接する側)から順次凝固
し、その凝固層厚を増して′いく。むろん、その層厚は
該溶湯注入後の経過時間によって定まる。本発明におけ
る第2層溶湯注入量は前記のようにその設計肉厚とは無
関係に定められるので、鋳型内での第2層溶湯層厚が設
計肉厚をこえる場合、そのまま凝固させると、その後余
分の肉厚を切削除去せねばならなくなる。このため、本
発明は、第2層の凝固過程において、設計肉厚をこえる
金利の溶湯を排除する。むろんその排除は、チル層の再
溶融が完了したのちであって、第2層の凝固層厚が設計
肉厚に到達する直前までの間に行なわねばならない。
After the chilled layer redissolves, the second layer molten metal solidifies sequentially from the outside (the side in contact with the first layer) over time, increasing the thickness of the solidified layer. Of course, the layer thickness is determined by the elapsed time after pouring the molten metal. In the present invention, the injection amount of the second layer molten metal is determined independently of its design thickness as described above, so if the thickness of the second layer molten metal in the mold exceeds the design thickness, if the second layer molten metal is allowed to solidify as it is, then The excess wall thickness will have to be removed. Therefore, in the solidification process of the second layer, the present invention eliminates molten metal whose thickness exceeds the design thickness. Of course, the removal must be performed after the remelting of the chilled layer is completed and just before the solidified layer thickness of the second layer reaches the designed thickness.

上記の遠心力鋳造は、第3図〔I〕に示されるとと令遠
心鋳造用鋳型を用いて行なうことができる。
The above-mentioned centrifugal force casting can be carried out using a centrifugal casting mold shown in FIG. 3 [I].

″)二 図中゛、(至)は遠心力鋳造用鋳型であり、その長手方
向のに心を申合に回転駆動手段(図示せず)Kて適当な
回転速度で回転する。鋳型(財)の一方の開口端部(A
)には鋳型内溶湯の飛散防止のための端板(3)が装着
される一方、鋳型内部には、鋳型の端部の内壁面(S)
の断面形状に相応する円形状の仕切板(4)が摺動可能
なように表装されている。該仕切板(4)は、油圧装置
などの適当な駆動手段(図示せず)の作動棒(5)が鋳
型の回転運動に支障のないように連結され、鋳型内で、
その軸方向C長手方向)にそって移動し得るようになっ
ている。なお、上記仕切板(4)は、鋳型内で摺動可能
であって、かつその外周面と鋳型内壁面(S)との間か
ら溶湯の流出を生じない気密性が保たれるならば、その
材質・形状等は任意で、例えば端板(3)と同じような
円形板状体であってもよい。
'') In Figure 2, ゛ and (to) are molds for centrifugal force casting, which are rotated at an appropriate rotational speed by a rotary drive means (not shown) K with the center in the longitudinal direction aligned. ) of one open end (A
) is equipped with an end plate (3) to prevent the molten metal from scattering inside the mold, while inside the mold there is an inner wall surface (S) at the end of the mold.
A circular partition plate (4) corresponding to the cross-sectional shape of is slidably mounted. The partition plate (4) is connected to an operating rod (5) of a suitable drive means (not shown) such as a hydraulic device so as not to interfere with the rotational movement of the mold, and is connected to the operating rod (5) of a suitable driving means (not shown) such as a hydraulic device so as to prevent the rotational movement of the mold from occurring.
It can move along its axial direction (longitudinal direction). In addition, if the partition plate (4) is slidable within the mold and maintains airtightness that prevents molten metal from flowing out between its outer peripheral surface and the mold inner wall surface (S), Its material, shape, etc. are arbitrary, and it may be a circular plate-like body similar to the end plate (3), for example.

上記装置において、仕切板(4)を上記端板(3)から
適当な距離だけ隔てて位置させ、その状態で、端板(3
)の中央部の孔(6)から所要量の溶湯を注入して、設
計肉厚(tl)を有する第1層(1)を鋳造し、その内
側面まで凝固するのを待ち、しかるのち第2層溶湯を注
入し、第一2層溶湯層(2)〔層厚(t2)〕を鋳造す
る。むろん、その注入量は、生成するチル層を再溶融さ
せるに足る量であることを要する。
In the above device, the partition plate (4) is positioned at an appropriate distance from the end plate (3), and in that state, the end plate (3)
) The required amount of molten metal is injected through the hole (6) in the center of the hole (6) to cast the first layer (1) having the designed wall thickness (tl), wait for it to solidify to the inner surface, and then Two-layer molten metal is injected, and a first two-layer molten metal layer (2) [layer thickness (t2)] is cast. Of course, the amount of injection must be sufficient to remelt the generated chill layer.

第2層溶湯(2)を注入すると、ずでに凝固している第
1層(1)との境界でチル層が生成するが、これは該溶
湯の保有熱で再溶融する。再溶融を終えたのち、仕切板
(4)を他方の開口端■側にスライドさせる。この仕切
板の移動により空間部Mを形成し、第2層の設計肉厚(
t3)をこえる余剰の溶湯を上記空間(ロ)内へ流出さ
せる。従って、仕切板(4)の移動量は、形成される空
間(ロ)の湯溜り部の体積が、排除されるべき第2層の
余剰溶湯量〔層厚(j4)]に等しくなるようにすべき
である。
When the second layer molten metal (2) is injected, a chill layer is generated at the boundary with the first layer (1), which has already solidified, but this is remelted by the heat retained in the molten metal. After finishing the remelting, slide the partition plate (4) to the other open end ■ side. By moving this partition plate, a space M is formed, and the design thickness of the second layer (
Excess molten metal exceeding t3) is discharged into the space (b). Therefore, the amount of movement of the partition plate (4) is determined so that the volume of the pool in the space (b) to be formed is equal to the amount of excess molten metal [layer thickness (j4)] in the second layer to be removed. Should.

このようにして第1層(1)の内側I/c設計肉厚に一
致する第2層厚2麿(t3)を保持させて凝固を完了さ
せることによシ各層とも所定の層厚を有する二層管が得
られる。湯溜り部分(7)は、鋳造管を鋳型から抜出し
たのち、切断除去すればよい。
In this way, each layer has a predetermined layer thickness by maintaining the second layer thickness 2 mm (t3) that matches the inner I/C design thickness of the first layer (1) and completing solidification. A double layer tube is obtained. The sump portion (7) may be removed by cutting after the casting tube is removed from the mold.

なお、本発明方法では、他の鋳造条件に特別の制限はな
く、例えば第1層および第2層の鋳造温度も常法どおり
設定すればよい込 次に本発明の実施例について説明する。
In addition, in the method of the present invention, there are no particular restrictions on other casting conditions, and for example, the casting temperatures of the first layer and the second layer may be set as usual.Examples of the present invention will now be described.

実施例 第3図に示すごとく鋳型内に軸方向に移動可能な仕切板
が設けられた遠心鋳造用鋳型にて、まず0.4%C−2
5%Cr−20%Ni−Fe溶湯22Kgを注入して、
層厚15fiの第1層を鋳造しく鋳造温度1600℃)
、その内面に酸化防止のためのフラツクスを投与した。
Example As shown in Fig. 3, in a centrifugal casting mold equipped with a partition plate that is movable in the axial direction, 0.4% C-2 was first added.
Inject 22 kg of 5% Cr-20% Ni-Fe molten metal,
Casting the first layer with a layer thickness of 15fi (casting temperature: 1600℃)
A flux was applied to the inner surface to prevent oxidation.

第1層の内側面まで凝固したのち、18%Cr鋼溶湯9
.5 KIFを注入した(鋳造謡度1580℃)。その
溶湯層厚は8flである。ついでチル層の再溶融を見計
って、仕切板を移動させ、層厚6flに相当する溶湯量
を湯溜り部に排除し、そのまま凝固させた。凝固完了後
、鋳型より抜出し、湯溜り部分の地金を切断除去して外
径134鰭第1層厚15fi、第2層厚2麿の二層管を
得た。
After solidifying to the inner surface of the first layer, 18% Cr steel molten metal 9
.. 5 KIF was injected (casting temperature 1580°C). The molten metal layer thickness is 8 fl. Then, in anticipation of the remelting of the chilled layer, the partition plate was moved, and an amount of molten metal corresponding to a layer thickness of 6 fl was expelled into the pool, where it was allowed to solidify. After solidification was completed, it was taken out from the mold and the base metal in the pool area was cut off to obtain a two-layered tube with an outer diameter of 134 fins, a first layer thickness of 15 fi, and a second layer thickness of 2 mm.

上記実施例で得られた二層管は、各層金属相互の混り合
いがなく、所定の成分組成と設計肉厚とを有し、また層
間の密着性も完全であることが確認された。
It was confirmed that the two-layered pipe obtained in the above example had no intermixing of the metals in each layer, had a predetermined composition and designed wall thickness, and had perfect adhesion between the layers.

以上のように、本発明方法によれば、第1層が内側面ま
で凝固したのち第2層溶湯が注入されるので、両層間の
金属の混り合いによる第1層厚のg才や各層金属の化学
成分組成の変化を生ずることがない。また、第1層に接
して生成するチル層は再溶融されるので、たとえその部
分にフラツクスが捕捉されていてもこれを浮上分離させ
るとともに両層の密着性を金属学的にも完全ならしめ強
固な結合状態とすることができる。更に、第2層:1残
湯の排除によって容易に望む層厚とすることができ、か
くして所定の化学成分と厚薄任意の各―厚を備えた密着
性の良好な二層遠心鋳造管が得られる。
As described above, according to the method of the present invention, the molten metal for the second layer is injected after the first layer has solidified to the inner surface. There is no change in the chemical composition of the metal. In addition, since the chilled layer that forms in contact with the first layer is remelted, even if flux is trapped in that area, it is floated and separated, and the adhesion between both layers is made metallographically perfect. A strong bond can be created. Furthermore, by eliminating the remaining molten metal in the second layer, it is possible to easily obtain a desired layer thickness, and thus a two-layer centrifugally cast tube with a predetermined chemical composition, arbitrary thickness, and good adhesion can be obtained. It will be done.

また、従来においては、第1層と第2層の混りさいを防
ぐ目的で本発明のごとく第1層内側面凝固後に第2層溶
湯を注入すると、両層間の密着性が不完全となり、その
傾向は、第1層金属より溶融点の高い金属を第2層とし
て用いる場合に顕著となることは前述したとおりであり
、従って各層金属の材質選択に強い制限をうけていたが
、本発明方法によれば、そのような制限はうけないから
、任意の材質を組合せた二層管の製増が可能であシ、各
種用途における多様な要求特性にも随意応じることがで
きる。
Furthermore, in the past, when the molten metal for the second layer was injected after solidifying the inner surface of the first layer as in the present invention in order to prevent mixing of the first and second layers, the adhesion between the two layers would be incomplete. As mentioned above, this tendency becomes more noticeable when a metal with a higher melting point than the first layer metal is used as the second layer, and therefore, there are strong restrictions on the selection of materials for each layer metal, but the method of the present invention According to the above, since such restrictions are not imposed, it is possible to increase the production of double-layered pipes by combining arbitrary materials, and it is possible to meet various required characteristics for various uses at will.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図CI]、[]I]および第2図CI]、〔旧、〔
■〕、〔■〕は遠心鋳造用回転鋳型内の各層金属の凝固
状況を示す断面説明図、第3図〔■〕および[II]は
本発明の実施に用いられる遠心鋳造用鋳型内における各
層の鋳造要領の具体例を示す断面説明図である。 1:第1層、2:第2層、3:端板、4:仕切板、5:
仕切板移動用作動棒、M:遠心鋳造用鋳型。 特許出願人 久保田鉄工株式会化 代理人 弁理士 宮 崎 新 八 部 第1ml [工]               〔且11”I]
            阻〕障〕〔■]
Figure 1 CI], []I] and Figure 2 CI], [Old, [
■], [■] are cross-sectional explanatory diagrams showing the solidification status of each layer of metal in the rotary mold for centrifugal casting, and Figure 3 [■] and [II] are each layer in the mold for centrifugal casting used to carry out the present invention. FIG. 1: First layer, 2: Second layer, 3: End plate, 4: Partition plate, 5:
Operating rod for moving partition plate, M: Mold for centrifugal casting. Patent applicant Kubota Iron Works demutualization agent Patent attorney Arata Miyazaki Part 8 Part 1ml [Eng.] [11”I]
Obstacle〕〕〔■】

Claims (1)

【特許請求の範囲】[Claims] (1)  鋳型の一方の開口端部に、中心部に孔を有す
る端板が装着される一方、該鋳型内に配置される円型仕
切板が、これに連結された駆動手段にて鋳型内をその長
手方向に摺動可能なように設けられた遠心力鋳造用鋳型
において、該仕切板を、上記端板から適当な距離だけ隔
てて鋳型内に位置させておき、前記端板の孔から金属溶
湯を注入して第1層を鋳造し、その内側面まで凝固した
のち、第2層を鋳造するにあたり、第1層に接して生成
する凝固殻(チル層)を再溶融させるに足る量の第2層
溶湯を注入し、該チル層が再溶融したのへ前記仕切板を
他方の開口端部側へ移動させることにより形成される空
間部に、第2層の設計肉厚を、越える第2層溶湯を排除
することを特徴とする二層管の遠心力鋳造方法。
(1) An end plate having a hole in the center is attached to one open end of the mold, and a circular partition plate placed inside the mold is driven into the mold by a driving means connected to the end plate. In a mold for centrifugal force casting in which a partition plate is provided so as to be slidable in its longitudinal direction, the partition plate is positioned in the mold at an appropriate distance from the end plate, and the partition plate is placed in the mold at an appropriate distance from the end plate. A sufficient amount to remelt the solidified shell (chill layer) that is generated in contact with the first layer when pouring molten metal to cast the first layer and solidify to the inner surface, and then casting the second layer. The second layer molten metal is injected into the space formed by moving the partition plate to the other open end side after the chilled layer has remelted, exceeding the design thickness of the second layer. A method for centrifugal force casting of a two-layer pipe, characterized in that the second layer molten metal is excluded.
JP10358981A 1981-07-02 1981-07-02 Centrifugal casting method Expired JPS601110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10358981A JPS601110B2 (en) 1981-07-02 1981-07-02 Centrifugal casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10358981A JPS601110B2 (en) 1981-07-02 1981-07-02 Centrifugal casting method

Publications (2)

Publication Number Publication Date
JPS586764A true JPS586764A (en) 1983-01-14
JPS601110B2 JPS601110B2 (en) 1985-01-11

Family

ID=14357953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10358981A Expired JPS601110B2 (en) 1981-07-02 1981-07-02 Centrifugal casting method

Country Status (1)

Country Link
JP (1) JPS601110B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107225224A (en) * 2017-06-19 2017-10-03 武汉理工大学 A kind of mould cylinder baffle mechanism and bimetal centrifugal casting multiple tube preparation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107225224A (en) * 2017-06-19 2017-10-03 武汉理工大学 A kind of mould cylinder baffle mechanism and bimetal centrifugal casting multiple tube preparation method
CN107225224B (en) * 2017-06-19 2019-01-01 武汉理工大学 A kind of mould cylinder baffle mechanism and bimetal centrifugal are cast multiple tube production method

Also Published As

Publication number Publication date
JPS601110B2 (en) 1985-01-11

Similar Documents

Publication Publication Date Title
JP4392244B2 (en) Simultaneous casting of multiple types of alloys
JPS586764A (en) Centrifugal casting method
US3752212A (en) Method of forming castings of different metals
JPS586763A (en) Centrifugal casting method
JP6917964B2 (en) Aluminum alloy casting and its manufacturing method
JPH0366447A (en) Method for casting layered cast slab
JPS586761A (en) Centrifugal casting method
JP3744695B2 (en) Mold manufacturing method
JPS5945073A (en) Wheel hub with brake drum and casting method thereof
JPH06198397A (en) Method and device of continuous casting of thin thickness dual layer sheet
JPS62259641A (en) Production of clad steel plate
JPS603960A (en) Production of castings incorporating cooling water passage
JPS6030549A (en) Production of casting having fine hole
JPS586762A (en) Centrifugal casting method
US3412782A (en) Process of producing clad slabs
SU835626A1 (en) Method of producing bimetallic casting
Singh Casting Processes
JPH0420697B2 (en)
JPS60133963A (en) Centrifugal casting method of two-layered pipe
JPS586765A (en) Centrifugal casting method
JPS558321A (en) Repair method of steel ingot casting mold and molding board
SU806241A1 (en) Method of centrifugal casting of bimetallic works
JPH05277661A (en) Method for continuously casting clad steel sheet by twin rolls
SU806240A1 (en) Method of centrifugal casting of bimetallic worm wheel
JPS61216846A (en) Production of porous cylinder for plastic molding machine