JPS6046445A - Optical scanner for thin layer chromatography - Google Patents

Optical scanner for thin layer chromatography

Info

Publication number
JPS6046445A
JPS6046445A JP14570084A JP14570084A JPS6046445A JP S6046445 A JPS6046445 A JP S6046445A JP 14570084 A JP14570084 A JP 14570084A JP 14570084 A JP14570084 A JP 14570084A JP S6046445 A JPS6046445 A JP S6046445A
Authority
JP
Japan
Prior art keywords
wavelength
scanning
stage
light
thin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14570084A
Other languages
Japanese (ja)
Other versions
JPS6342221B2 (en
Inventor
Hiroshi Yamamoto
山本 裕志
Haruo Yamamoto
山本 晴夫
Kenji Nakamura
健次 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP14570084A priority Critical patent/JPS6046445A/en
Publication of JPS6046445A publication Critical patent/JPS6046445A/en
Publication of JPS6342221B2 publication Critical patent/JPS6342221B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To make the constitution of an optical system simple by storing preliminarily the photometric output when a sample is scanned at a specified wavelength, reading out the stored result in the stage of scanning at the other specified wavelength and calculating the same with the photometric value. CONSTITUTION:Light of a single wavelength is made incident from a light source 1 through a spectroscope 2 to the sample on a scanning stage 3 and the light transmitted through or reflected from a thin film plate is detected with a photodetector 5 and is converted to an electrical signal in the stage of measuring the spectral absorbancy of the thin film plate in a thin film chromatograph. The electrical signal is stored in an RAM 9 after A/D conversion. The wavelength of the spectroscope 2 is then changed by means of a pulse motor 11 and the light of another single wavelength is made incident to the sample to obtain the photometric output. The photometric output is calculated by using the value stored in the RAM 9 and the noise component arising from the unevenness, etc. of the thin layer plate is removed from the measured result. the measurement of a two-wavelength method is thus accomplished by the simple constitution.

Description

【発明の詳細な説明】 木発明は薄層クロマトグラフにおける薄層プレートの分
光吸光度測定に二波長方式を用いる場合の光走査装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical scanning device when a dual wavelength method is used to measure the spectral absorbance of a thin layer plate in a thin layer chromatograph.

薄層クロマトグラフの薄層プレートの吸光度測定におい
て薄層プレートの厚さむら等によ・るノイズを除去する
ため二波長方式が用いられるが、従来はこの二波長方式
を実行するために互に異なる波長の光を出すように設定
された2つの分光器を用い、その両分光器の射出光をセ
クターミラーを用いて交互に試料に入射させるようにし
てい九から、分光器が2台必要であシ、またセクターミ
ラー及びその駆動機構が必要で更に2つの分光器からの
光を同一光路に導くための光学系が必要であるため装置
は高価複雑なものとなってい友。
When measuring the absorbance of a thin layer plate in a thin layer chromatograph, a dual wavelength method is used to remove noise caused by uneven thickness of the thin layer plate. Two spectrometers set to emit light at different wavelengths are used, and the emitted light from both spectrometers is alternately directed into the sample using a sector mirror.9, therefore, two spectrometers are required. In addition, a sector mirror and its drive mechanism are required, as well as an optical system to guide the light from the two spectrometers onto the same optical path, making the device expensive and complicated.

本考案は薄層プレートの光走査装置で分光器が1つでよ
くセクターミラー及びそれに付随する部分及び2個所か
ら来る光線を同一光路に導入する光学系が不要な光学走
査装置を提供することを目的としている。
The present invention aims to provide an optical scanning device using a thin layer plate, which requires only one spectroscope and does not require a sector mirror and its associated parts, as well as an optical system that introduces light beams coming from two places into the same optical path. The purpose is

本発明は一定波長の光で薄層プレートを走査し、そのと
きの測光出力をメモリに記憶させておき、次に他の一定
波長で薄層プレートを走査し、先の記憶結果を読出して
2回目の走査における測光値との間で演算を行うことに
より二波長方式を用いたのと同じ結果を得るようにした
光走査装置を与えるものである。以下実施例によって本
発明を説明する。
The present invention scans a thin layer plate with light of a fixed wavelength, stores the photometric output at that time in memory, then scans the thin layer plate with another fixed wavelength, reads out the previously stored result, and then performs two steps. The present invention provides an optical scanning device that obtains the same result as using the two-wavelength method by performing calculations between the photometric values of the second scan and the photometric value of the second scan. The present invention will be explained below with reference to Examples.

第1図は本発明の一実施例を示す。1は光源、2は分光
器、3は走査ステージ、4は走査ステージを駆動するパ
ルスモータである。走査ステージ8上に試料の薄層プレ
ートがセットされる。光源1から出た光は分光器2に入
射し、分光器2によって単一波長λlの光のみが分光器
2から射出して走査ステージ8上の試料に入射せしめら
れる。
FIG. 1 shows an embodiment of the invention. 1 is a light source, 2 is a spectroscope, 3 is a scanning stage, and 4 is a pulse motor that drives the scanning stage. A thin layer plate of a sample is set on the scanning stage 8. The light emitted from the light source 1 enters the spectroscope 2, and only the light having a single wavelength λl is emitted from the spectrometer 2 and is made to enter the sample on the scanning stage 8.

走査ステージ8を駆動するパルスモータは図では4と番
号をつけた一つだけが示されているが、具体的には走査
ステージをX方向Y方向に駆動し得るよう二個のパルス
モータがある。5は光検出器で試料の薄層プレートの透
過光或は反射光を受光し電気信号に変換する。この電気
信号は増幅器6で増幅され九後A−D変換器18でディ
ジタル信号に変換される。7はマイクロプロセッサであ
る。
Only one pulse motor, numbered 4, is shown in the figure for driving the scanning stage 8, but specifically, there are two pulse motors that can drive the scanning stage in the X and Y directions. . Reference numeral 5 denotes a photodetector which receives transmitted light or reflected light from the thin layer plate of the sample and converts it into an electrical signal. This electrical signal is amplified by an amplifier 6 and then converted into a digital signal by an A/D converter 18. 7 is a microprocessor.

パルスモータ4は制御回路8から供給されるパルスで駆
動せしめられ、制御回路8はマイクロプロセッサ7から
の指令により正転成は逆転パルスをパルスモータ4に印
加すると共に同じパルスをマイクロプロセッサに送る。
The pulse motor 4 is driven by pulses supplied from a control circuit 8, and the control circuit 8 applies forward and reverse rotation pulses to the pulse motor 4 according to commands from the microprocessor 7, and also sends the same pulses to the microprocessor.

マイクロプロセッサはこのパルスを計数して走査ステー
ジ3の位置の信号を得る。A−D変換器18はマイクロ
プロセッサ7よυパルスモータ4を駆動するパルスと同
期したサンプリング信号を受けて増幅器6の出力をサン
プリングしこれをA−D変換し、このA−D変換出力は
マイクロプロセッサ7を介してランダムアクセスメモリ
(RAM )9に書込まれる。このときRAMのアドレ
スを指定する情報はマイクロプロセッサ7が制御回路8
から受取ったパルスを計数した値であって、RAMのア
ドレスは薄層プレート上の位置に対応している。10は
マイクロプロセッサ7の動作プログラムが畳込んである
読出し専用メモリ(ROM )である。
The microprocessor counts these pulses to obtain a position signal of the scanning stage 3. The A-D converter 18 receives a sampling signal synchronized with the pulse that drives the υ pulse motor 4 from the microprocessor 7, samples the output of the amplifier 6, and converts it into an A-D converter. It is written to random access memory (RAM) 9 via processor 7. At this time, the information specifying the RAM address is sent to the control circuit 8 by the microprocessor 7.
The RAM address corresponds to the location on the thin plate. Reference numeral 10 denotes a read-only memory (ROM) in which the operating program of the microprocessor 7 is stored.

マイクロプロセッサ7は次のような動作をする。The microprocessor 7 operates as follows.

装置をスタートさせると試料ステージ3を走査の始点に
移動させると共にパルスモータ11を操作して回折格子
Gを予め定めてちる波長λ1の位置にセットし、走査ス
テージ8に走査運動を行わせる。波長λ1は薄層プレー
トに対しても同プレート上に展開されている試料物質に
対しても同じような吸収を与える波長に選んであり、測
光結果は薄層プレート自体のむらの情報でちってこれが
RAMIQにメモリされる一回の走査が終ると走査ステ
ージを走査始点に戻しパルスモータ11を制御して分光
器2の波長をλ2にセットし再び走査を開始させる。波
長λ2は薄層プレート上に展開されている物質によって
特に吸収される波長に選んである。測光出力はA−D変
換器でサンプリングされディジタル信号に変換されるが
サンプリングの度にRAMからそのときのステージ3の
位置に対応するアドレスの記憶を読出し上記ディジタル
信号と共に演算を行い測光結果から薄層プレートのむら
等に基くノイズ成分を除く。このノイズ成分を除去され
た正しい情報は表示装置12に出力されてプリントされ
、或はD−A変換されてカーブとして描記される〇 薄層プレートは第2図に示すように複数チャンネルに展
開されており、走査ステージ8はx、Y両方向に駆動さ
れるようになっていてマイクロプロセッサ7からの指令
でパルスモータを介して走査レーンの切換えがなされ、
走査軌跡は図にSで示すよ2な形となり、イの部分は速
送りであり、口の部分で測光が行われる。
When the apparatus is started, the sample stage 3 is moved to the starting point of scanning, and the pulse motor 11 is operated to set the diffraction grating G at the position of a predetermined wavelength λ1, and the scanning stage 8 is caused to perform a scanning movement. The wavelength λ1 was selected to give similar absorption to both the thin plate and the sample material spread on the plate, and the photometry results are based on information about the unevenness of the thin plate itself. When one scan stored in the RAMIQ is completed, the scanning stage is returned to the scanning starting point, the pulse motor 11 is controlled, the wavelength of the spectrometer 2 is set to λ2, and scanning is started again. The wavelength λ2 is chosen to be one that is specifically absorbed by the material spread out on the thin plate. The photometric output is sampled by an A-D converter and converted into a digital signal.Each time the photometric output is sampled, the memory of the address corresponding to the position of the stage 3 at that time is read out from the RAM, and calculations are performed along with the above-mentioned digital signal. Removes noise components based on unevenness of layer plates, etc. The correct information from which noise components have been removed is output to the display device 12 and printed, or it is D-A converted and drawn as a curve. The thin layer plate is expanded into multiple channels as shown in Figure 2. The scanning stage 8 is driven in both the x and y directions, and the scanning lanes are switched via a pulse motor in response to commands from the microprocessor 7.
The scanning locus has two shapes as shown by S in the figure, and the part A is rapid feed, and photometry is performed at the mouth part.

マイクロプロセッサ7は与えられるプログラムによりR
AMl0の記憶情報及び現に測光しつ\ある情報等を用
い、単にノイズ除去のみでなく他の種々な情報処理が可
能である。例えば微分動作で現在得られた情報とそれよ
り少し以前例えば曲回サンプリング時の情報(RAMに
入れである)との差をめれば微分情報が得られ吸光度の
記録だけでは明瞭に分離できないような二つのピークが
分離可能となり、また同一波長を用いて試料の展開され
ているレーンとその中間のレーンとを走査することによ
シ両者の差で薄層プレートの汚れとか曲り等のゆっくり
した変化による測光結果のベースラインの変動を消去す
るような動作をさせ長方式を用いる場合分光器が1台で
よく従って装置構成が安価である。なおマイクロプロセ
ッサを 。
The microprocessor 7 executes R according to the given program.
By using the information stored in AM10 and the information currently being measured, it is possible to perform not only noise removal but also various other information processing. For example, if we calculate the difference between the information currently obtained by differential operation and the information obtained a little earlier, for example, during round sampling (stored in RAM), we can obtain differential information, which cannot be clearly separated by recording absorbance alone. By scanning the lane in which the sample is developed and the lane in between, the two peaks can be separated using the same wavelength. When using the long method, which performs an operation to eliminate fluctuations in the baseline of photometry results due to changes, only one spectrometer is required, and the device configuration is therefore inexpensive. Note that the microprocessor.

利用すると自動化と共にプログラムの組み方によリ2波
長方式以外の種々な動作及びデータ処理ができる。
When used, various operations and data processing other than the two-wavelength method can be performed with automation and depending on how the program is assembled.

ロック図、第2図は薄層プレート上の走査線を示す平面
図である。
The lock diagram, FIG. 2, is a plan view showing the scan lines on the laminar plate.

l・・・光源、 2・・・分光器、 8・・・走査ステ
ージ、4・・・パルスモータ、12・・・表示装置。
l...Light source, 2...Spectroscope, 8...Scanning stage, 4...Pulse motor, 12...Display device.

代理人 弁理士 縣 浩 介Agent: Patent Attorney Kosuke Agata

Claims (1)

【特許請求の範囲】[Claims] 走査ステージに試料照射用の光を投射する一個の分光器
と走査ステージの駆動と同期した信号により走査ステー
ジの位置の情報を作)、これによってメモリのアドレス
を指定して測光結果を記憶せしめ、この記憶或はこの記
憶と現在得られた測光データを用いて演算を行う制御回
路とを有する薄層クロマトグラフィ用光走査装置。
A single spectrometer that projects light for sample irradiation onto the scanning stage and a signal synchronized with the drive of the scanning stage create information about the position of the scanning stage), which specifies a memory address and stores the photometry results. An optical scanning device for thin layer chromatography that has this memory or a control circuit that performs calculations using this memory and currently obtained photometric data.
JP14570084A 1984-07-12 1984-07-12 Optical scanner for thin layer chromatography Granted JPS6046445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14570084A JPS6046445A (en) 1984-07-12 1984-07-12 Optical scanner for thin layer chromatography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14570084A JPS6046445A (en) 1984-07-12 1984-07-12 Optical scanner for thin layer chromatography

Publications (2)

Publication Number Publication Date
JPS6046445A true JPS6046445A (en) 1985-03-13
JPS6342221B2 JPS6342221B2 (en) 1988-08-22

Family

ID=15391083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14570084A Granted JPS6046445A (en) 1984-07-12 1984-07-12 Optical scanner for thin layer chromatography

Country Status (1)

Country Link
JP (1) JPS6046445A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63200039A (en) * 1987-02-14 1988-08-18 Shimadzu Corp Illumination mechanism for chromatographic scanner and the like

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63200039A (en) * 1987-02-14 1988-08-18 Shimadzu Corp Illumination mechanism for chromatographic scanner and the like

Also Published As

Publication number Publication date
JPS6342221B2 (en) 1988-08-22

Similar Documents

Publication Publication Date Title
US4544271A (en) Densitometer
US3972617A (en) Spectrophotometer
US5100529A (en) Fluorescence detection type gel electrophoresis apparatus
US4299486A (en) Spectrofluorometer
US4225233A (en) Rapid scan spectrophotometer
JPS6231288B2 (en)
GB2128359A (en) Double-beam spectrophotometer
JPS6218008B2 (en)
JPH052931B2 (en)
US4150899A (en) Densitometer
EP0241904B1 (en) Gel scanner
JPH01155221A (en) Wavelength scanning method of spectrophotometer
JPH043492B2 (en)
JPS6046445A (en) Optical scanner for thin layer chromatography
US4145139A (en) Zig zag scanning densitometer with base line and impurity correction
JPS5985918A (en) Direct ratio type spectrophotometer
JPS607330A (en) Spectrophotometer
US3183764A (en) Automatic slit control for analyzers
JPH03144347A (en) Fluorescence spectrophotometry and apparatus therefor
JPH0776744B2 (en) Spatially developed sample pattern measuring device
JPH051413B2 (en)
JPS61155731A (en) Photometric signal processing circuit for chromatoscanner
JPS6221952Y2 (en)
JP2689572B2 (en) Chromatographic scanner
JPH01250737A (en) Automatic apparatus for chemical analysis