JPS6046337B2 - Boiler combustion control device - Google Patents

Boiler combustion control device

Info

Publication number
JPS6046337B2
JPS6046337B2 JP52149120A JP14912077A JPS6046337B2 JP S6046337 B2 JPS6046337 B2 JP S6046337B2 JP 52149120 A JP52149120 A JP 52149120A JP 14912077 A JP14912077 A JP 14912077A JP S6046337 B2 JPS6046337 B2 JP S6046337B2
Authority
JP
Japan
Prior art keywords
signal
fuel
boiler
flow rate
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52149120A
Other languages
Japanese (ja)
Other versions
JPS5481528A (en
Inventor
徹 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hokushin Electric Corp filed Critical Yokogawa Hokushin Electric Corp
Priority to JP52149120A priority Critical patent/JPS6046337B2/en
Publication of JPS5481528A publication Critical patent/JPS5481528A/en
Publication of JPS6046337B2 publication Critical patent/JPS6046337B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/08Controlling two or more different types of fuel simultaneously

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)

Description

【発明の詳細な説明】 本発明は複数種類の燃料を焚くボイラをボイラ・マスタ
信号に従つて制御する制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control device that controls a boiler that burns a plurality of types of fuel according to a boiler master signal.

ボイラの燃焼制御装置においては、燃料の流量と空気の
流量がいずれもボイラ・マスタ信号に従つて制御される
In a boiler combustion control device, both the fuel flow rate and the air flow rate are controlled according to a boiler master signal.

複数種類の燃料を焚くボイラ(製鉄所のボイラなど)に
おいては、各燃料ごとに必要な空気量が異なるために、
かなり多めに空気を投入して完全燃焼をはかるのが普通
である。
In boilers that burn multiple types of fuel (such as boilers in steel plants), the amount of air required for each fuel is different.
Normally, a large amount of air is injected to achieve complete combustion.

しかしこのような方法は効率が悪く、また公害防止の上
からも好ましくない。そこで、ボイラ・マスタ信号に従
つて制御される空気の流量を、燃料の組成に応じた適切
なものにするための工夫が必要とされる。
However, such a method is inefficient and is also undesirable from the standpoint of preventing pollution. Therefore, it is necessary to devise a way to make the flow rate of air controlled according to the boiler master signal appropriate according to the composition of the fuel.

本発明の目的は、複数種類の燃料を焚くボイラにおいて
、燃料流量と空気流量をいずれもボイラ・マスタ信号に
基づいで制御しながら、ボイラを低過剰空気て運転する
燃焼制御装置を提供することにある。
An object of the present invention is to provide a combustion control device for a boiler that burns multiple types of fuel, which operates the boiler with low excess air while controlling both the fuel flow rate and the air flow rate based on a boiler master signal. be.

本発明は、 ボイラ・マスタ信号が設定信号として与えられ、後述す
る第1の加算器の出力信号が入力信号として与えられ、
これら両信号の差に基づく燃料流量制御信号を出力する
燃料流量調節計、ボイラに供給される空気の流量信号が
入力信号として与えられ、後述する掛算器の出力信号が
設定信号として与えられ、これら両信号の差に基づく空
気流量制御信号を出力する空気流量調節計、ボイラに供
給される複数の種類の燃料のおのおのの流量Viを、実
質的に、その燃料による単位蒸発量Ciとボイラ・マス
タ信号が100パーセントのときの熱量Zの逆数との積
で重み付けして加算する第1の加算器、ボイラに供給さ
れる複数の種類の燃料のおのおのの流量Viを、,実質
的に、その燃料に対する単位理論空気量Aiと1つの燃
料の単位蒸発量引と同じ1つの燃料の単位理論空気量a
1の逆数とボイラ・マスタ信号が100パーセントのと
きの熱量zの逆数との積で重み付けして加算する第2の
加算器、第2の加算器の出力信号を第1の加算器の出力
信号で割算する割算器、ボイラ・マスタ信号に上記1つ
の燃料をボイラで専焼するとしたときの過剰空気率ηの
逆数を掛けた信号を発生する関数発生器、及び この関数発生器の出力信号と前記割算器の出力信号との
積を求める掛算器を具備するボイラの燃焼制御装置 によつて上記の目的を達成したものである。
In the present invention, a boiler master signal is given as a setting signal, an output signal of a first adder to be described later is given as an input signal,
A fuel flow controller outputs a fuel flow control signal based on the difference between these two signals, the flow rate signal of air supplied to the boiler is given as an input signal, and the output signal of a multiplier to be described later is given as a setting signal. An air flow controller outputs an air flow control signal based on the difference between the two signals, and the flow rate Vi of each of a plurality of types of fuel supplied to the boiler is substantially determined by the unit evaporation amount Ci of the fuel and the boiler master. The first adder weights and adds the flow rate Vi of each of the plurality of types of fuel supplied to the boiler by the product with the reciprocal of the amount of heat Z when the signal is 100%. The unit theoretical air amount Ai of one fuel is the same as the unit evaporation amount of one fuel minus the unit theoretical air amount Ai for
A second adder weights and adds the product of the reciprocal of 1 and the reciprocal of the amount of heat z when the boiler master signal is 100%, and the output signal of the second adder is added to the output signal of the first adder. a function generator that generates a signal obtained by multiplying the boiler master signal by the reciprocal of the excess air ratio η when the above one fuel is exclusively burned in the boiler, and an output signal of this function generator. The above object is achieved by a combustion control device for a boiler, which is equipped with a multiplier for calculating the product of the output signal of the multiplier and the output signal of the divider.

以下図面によつて本発明を説明する。図は本発明実施例
の概念的構成図てある。図において、CTLlおよびC
TI−2はそれぞれ燃料流量調節計および空気流量調節
計である。燃料流量調節計CTLlには各燃量の流量が
それぞれ流量検出器F1〜F4で検出され加算器S1で
重み付け加算されて、入力信号として与えられる、ボイ
ラ・マスタ信号BMSが設定信号として与えられる。空
気流量調節討CTL2には空気の流量が流量検出器Aで
検出され入力信号として与えられ、ボイラ・マスタ信号
BMSが関数発生器FXと掛算器Mで補正されて設定信
号として与えられる。両調節計は設定信号とそれぞれの
入力信号との差に基づいて、それぞれ燃料流量制御信号
FCSおよび空気流量制御信号ACSを生じる。関数発
生器FXには後述のような入出力特性が付与され、ボイ
ラ・マスタ信号BMSと所定の関係にある出力信号E4
が発生される。
The present invention will be explained below with reference to the drawings. The figure is a conceptual configuration diagram of an embodiment of the present invention. In the figure, CTLl and C
TI-2 are a fuel flow controller and an air flow controller, respectively. A boiler master signal BMS, in which the flow rate of each fuel is detected by the flow rate detectors F1 to F4, weighted and added by the adder S1, and is given as an input signal, is given to the fuel flow rate controller CTLl as a setting signal. The air flow rate is detected by a flow rate detector A and given as an input signal to the air flow rate adjustment CTL2, and the boiler master signal BMS is corrected by a function generator FX and a multiplier M and given as a setting signal. Both controllers produce a fuel flow control signal FCS and an air flow control signal ACS, respectively, based on the difference between the setpoint signal and their respective input signals. The function generator FX is given input/output characteristics as described below, and outputs an output signal E4 having a predetermined relationship with the boiler master signal BMS.
is generated.

割算器Dには加算器Sl,S2によつて各燃料の流量信
号が重み付け加算された結果El,E2が与えられる。
割算器Dは信号E2をE1で割算してその結果E3を掛
算器Mに与える。さて、低過剰空気で燃焼を維持するた
めにはボイラ・マスタ信号BMSが適切に空気流量信号
AF′S相当の信号に変換されて空気流量調節器CTL
2に設定され名必要がある。
The divider D is given El, E2 as a result of weighted addition of the flow rate signals of each fuel by the adders Sl, S2.
Divider D divides signal E2 by E1 and provides the result E3 to multiplier M. Now, in order to maintain combustion with low excess air, the boiler master signal BMS is appropriately converted into a signal equivalent to the air flow rate signal AF'S, and the air flow controller CTL
Name must be set to 2.

ボイラ・マスタ信号BMSは熱量に基づく信号であつて
次式で表わされる。ただし、 Z・・・BMS=100%のときの熱量(Cae/H)
Qi・・・燃料流量計Fiの測定レンジ(Nd/H)c
ピ・・燃料1による単位蒸発量(Cae/Nd)fピ・
・燃料1の流量(%)これに対す−る空気の必要量は次
式で表わされる。
The boiler master signal BMS is a signal based on the amount of heat and is expressed by the following equation. However, Z...The amount of heat when BMS=100% (Cae/H)
Qi...Measurement range of fuel flow meter Fi (Nd/H) c
Pi... Unit evaporation amount (Cae/Nd) f Pi...
・Flow rate (%) of fuel 1 The required amount of air for this is expressed by the following formula.

ただし、η・・・過剰空気率 Y・・・AFS=100%のときの空気流量(Nd/H
)aピ・・燃料1に対する単位理論空気量(Nd/Nイ
)したがつてボイラ・マスタ信号BMSを空気流量信号
AFS相当の信号に変換する係数は次式で与えられるか
ら、ボイラ・マスタ信号BMSに(3)式の係数を掛け
れば、空気流量調節信号CTL2に設定する適正な信号
が次式のように得られる。
However, η...Excess air rate Y...Air flow rate when AFS=100% (Nd/H
) a pi... unit theoretical air amount for fuel 1 (Nd/N i) Therefore, the coefficient for converting the boiler master signal BMS into a signal equivalent to the air flow rate signal AFS is given by the following equation, so the boiler master signal By multiplying BMS by the coefficient of equation (3), an appropriate signal to be set as the air flow rate adjustment signal CTL2 can be obtained as shown in the following equation.

すなわちこの式がボイラ・マスタ信号BMSを空気流量
信号,AF′S相当の信号に変換する関数となる。
That is, this equation becomes a function for converting the boiler master signal BMS into a signal equivalent to the air flow rate signal, AF'S.

いま単一燃料として主燃料1(通常この燃料のみで定格
ボイラ負荷運転が可能な燃料)の専燃状態を仮定すると
(4)式は次のようになる。
Assuming that the main fuel 1 (normally, the rated boiler load can be operated only with this fuel) is in the exclusive combustion state as the single fuel, equation (4) becomes as follows.

ここで、ηとして単一燃料に対して各負荷帯ごとに適正
な過剰空気率を確保できる値が用いられたとすると、変
換関数は次式となるべきである。したがつて、となる。
Here, if a value that can ensure an appropriate excess air ratio for each load zone for a single fuel is used as η, then the conversion function should be as shown in the following equation. Therefore, it becomes.

ηは単一燃料の専焼状態における過剰空気率であるから
、容易に求めることができ、したがつて変換関数η・B
MSは容易に関数発生器FXに設定することができる。
単一燃料としては主燃料1を選定するのが一般であるが
、他の燃料2〜燃料4を選定しても(7)式に相当する
関係を容易に導くことができる。多種燃料に対しては(
7)式の関係を(4)式に入れることによつて次のよう
な変換関数を得ることができる。
Since η is the excess air ratio in the exclusive combustion state of a single fuel, it can be easily determined, and therefore the conversion function η・B
MS can be easily set to function generator FX.
Generally, main fuel 1 is selected as the single fuel, but even if other fuels 2 to 4 are selected, the relationship equivalent to equation (7) can be easily derived. For various fuels (
By inserting the relationship in equation (7) into equation (4), the following conversion function can be obtained.

とすると、(8)式は次のように書ける(9)式のK,
は燃料1の流量F,を燃料1の流量カロリーベースに変
換する係数、00)式のH,は燃料iの流量F,を理論
空気ベースに変換する係数であると言える。
Then, equation (8) can be written as follows: K in equation (9),
can be said to be a coefficient for converting the flow rate F of fuel 1 into a flow rate calorie basis of fuel 1, and H in equation 00) is a coefficient for converting the flow rate F of fuel i into a theoretical air base.

ここで、Q,,ci,a,およびZは既知の定数である
から、K,,h,も定数となる。
Here, since Q,, ci, a, and Z are known constants, K,, h, is also a constant.

そこで加算器S1は(11)式におけるΣK,f,を算
出するもので、燃料流量信号F,を係数でK,で重み付
けして加算した出力E1を発生する。
Therefore, the adder S1 calculates ΣK,f in equation (11), and generates an output E1 that is the sum of the fuel flow rate signal F, weighted by a coefficient K.

次に加算?2は(11)式におけるぞH,f,を算出す
るもので、燃料流量FIを係数HIで重み付けして加算
した出力E2を発生する。Dはこれら出力の商を算出す
る割算器でE3=E2/E1を出力するので、E3=干
Hifi/Ikifiとなる。これを掛算器Mで関数発
生器下Xの出力信号に掛算すると、(11)式に従つた
信号が得られる。したがつて空気流量調節討CTL2に
は適正な設定信号が与えられるので、空気流量調節訂C
TL2により空気流量は適正な低過剰状態に制御される
。なお、上記の実施例は燃料流量検出器F1〜F4の出
力信号F,がそれぞれの測定レンジQ,の%でノ得られ
る例であるが、Q,f,は絶対値流量に他ならないので
、これを■として次式により変換を行うようにしてもよ
い。
Addition next? 2 calculates H and f in equation (11), and generates an output E2 obtained by weighting and adding the fuel flow rate FI with a coefficient HI. D is a divider that calculates the quotient of these outputs and outputs E3=E2/E1, so E3=Hifi/Ikifi. When this is multiplied by the output signal of the function generator lower X by the multiplier M, a signal according to equation (11) is obtained. Therefore, since an appropriate setting signal is given to the air flow rate adjustment controller CTL2, the air flow rate adjustment controller CTL2 is given an appropriate setting signal.
The air flow rate is controlled to an appropriate low excess state by TL2. Note that the above embodiment is an example in which the output signals F of the fuel flow rate detectors F1 to F4 are obtained as percentages of the respective measurement ranges Q, but since Q and f are nothing but absolute value flow rates, This may be set as ■ and the conversion may be performed using the following equation.

本発明の特徴は複数の燃料のうちの一つ例えば主燃料に
着目して、他の燃量流量信号を熱量ベーフスでも理論空
気量ベースでも変換する点にある。
The feature of the present invention is to focus on one of the plurality of fuels, for example, the main fuel, and convert other fuel flow signals either on a calorific value basis or on a theoretical air quantity basis.

つまりボイラ燃料として最も重要な単位燃料当りの発熱
量と理論空気量の単純な物性値のみを使用するので、他
の燃料の比重や流量の計測方法等に支配されないで適正
な空気流量を算出することができる。以上のように、本
発明によれば、複数種類の燃料を焚くボイラにおいて、
燃料流量と空気流量をいずれもボイラ・マスタ信号に基
づいて制御しながら、ボイラを低過剰空気で運転する燃
焼制御装置が実現できる。
In other words, since only the simple physical property values of the calorific value per unit fuel and theoretical air volume, which are the most important for boiler fuel, are used, the appropriate air flow rate can be calculated without being influenced by other fuel specific gravity or flow rate measurement methods. be able to. As described above, according to the present invention, in a boiler that burns multiple types of fuel,
It is possible to realize a combustion control device that operates a boiler with low excess air while controlling both the fuel flow rate and air flow rate based on the boiler master signal.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明実施例の概念的構成図である。 CTLl・・・・・・燃料流量調節計、CTL2・・・
・・・空気流量調節計、F1〜F4・・・・・・燃料流
量検出器、A・・・・空気流量検出器、Sl,S2・・
・・・・加算器、D・・・・・・割算器、M・・・・・
・掛算器、FX・・・・・・関数発生器。
The figure is a conceptual configuration diagram of an embodiment of the present invention. CTLl...Fuel flow rate controller, CTL2...
...Air flow rate controller, F1-F4...Fuel flow rate detector, A...Air flow rate detector, Sl, S2...
... Adder, D ... Divider, M ...
・Multiplier, FX...Function generator.

Claims (1)

【特許請求の範囲】 1 ボイラ・マスタ信号が設定信号として与えられ、後
述する第1の加算器の出力信号が入力信号として与えら
れ、これら両信号の差に基づく燃料流量制御信号を出力
する燃料流量調節計、ボイラに供給される空気の流量信
号が入力信号として与えられ、後述する掛算器の出力信
号が設定信号として与えられ、これら両信号の差に基づ
く空気流量制御信号を出力する空気流量調節計、ボイラ
に供給される複数の種類の燃料のおのおのの流量Viを
、実質的に、その燃料による単位蒸発量ciとボイラ・
マスタ信号が100パーセントのときの熱量Zの逆数と
の積で重み付けして加算する第1の加算器、ボイラに供
給される複数の種類の燃料のおのおのの流量Viを、実
質的に、その燃料に対する単位理論空気量aiと1つの
燃料の単位蒸発量clと同じ1つの燃料の単位理論空気
量alの逆数とボイラ・マスタ信号が100パーセント
のときの熱量Zの逆数との積で重み付けして加算する第
2の加算器、第2の加算器の出力信号を第1の加算器の
出力信号で割算する割算器、ボイラ・マスタ信号に上記
1つの燃料をボイラで専焼するとしたときの過剰空気率
ηを掛けた信号を発生する関数発生器、及び この関数発生器の出力信号と前記割算器の出力信号との
積を求める掛算器を具備するボイラの燃焼制御装置。
[Claims] 1. A fuel system that receives a boiler master signal as a setting signal, receives an output signal of a first adder (described later) as an input signal, and outputs a fuel flow control signal based on the difference between these two signals. The flow rate controller receives the flow rate signal of air supplied to the boiler as an input signal, receives the output signal of a multiplier described later as a setting signal, and outputs an air flow rate control signal based on the difference between these two signals. The controller essentially calculates the flow rate Vi of each of the plurality of types of fuel supplied to the boiler by calculating the unit evaporation amount ci of the fuel and the boiler.
The first adder weights and adds the amount of heat Z by the product of the reciprocal of the amount of heat Z when the master signal is 100%, and the flow rate Vi of each of the plurality of types of fuel supplied to the boiler is substantially added. Weighted by the product of the unit theoretical air amount ai, the unit evaporation amount cl of one fuel, the reciprocal of the unit theoretical air amount al of one fuel, and the reciprocal of the heat amount Z when the boiler master signal is 100%. A second adder that adds, a divider that divides the output signal of the second adder by the output signal of the first adder, and a boiler master signal that is used when the above one fuel is burnt exclusively in the boiler. A combustion control device for a boiler, comprising a function generator that generates a signal multiplied by an excess air ratio η, and a multiplier that calculates the product of the output signal of the function generator and the output signal of the divider.
JP52149120A 1977-12-12 1977-12-12 Boiler combustion control device Expired JPS6046337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52149120A JPS6046337B2 (en) 1977-12-12 1977-12-12 Boiler combustion control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52149120A JPS6046337B2 (en) 1977-12-12 1977-12-12 Boiler combustion control device

Publications (2)

Publication Number Publication Date
JPS5481528A JPS5481528A (en) 1979-06-29
JPS6046337B2 true JPS6046337B2 (en) 1985-10-15

Family

ID=15468148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52149120A Expired JPS6046337B2 (en) 1977-12-12 1977-12-12 Boiler combustion control device

Country Status (1)

Country Link
JP (1) JPS6046337B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103822225A (en) * 2013-12-31 2014-05-28 深圳市国创新能源研究院 Integrated low-nitrogen combustion system and control method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4825359B2 (en) * 2001-04-10 2011-11-30 テイ・エス テック株式会社 Rotating sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103822225A (en) * 2013-12-31 2014-05-28 深圳市国创新能源研究院 Integrated low-nitrogen combustion system and control method

Also Published As

Publication number Publication date
JPS5481528A (en) 1979-06-29

Similar Documents

Publication Publication Date Title
CA1191234A (en) Plant control apparatus
GB2141267A (en) Method of controlling combustion
GB2228977A (en) Running control for a gas turbine engine
US4586893A (en) Control apparatus
US3417737A (en) Once-through boiler control system
JPS5854253B2 (en) Kuunenpiseigiyosouchi
US4074360A (en) Fuel and feedwater-monitoring system of a once-through steam generator
JPS6046337B2 (en) Boiler combustion control device
JPS6046336B2 (en) Boiler combustion control device
JP3178055B2 (en) Control device for gas turbine combustor and gas turbine
JPS6014163B2 (en) Output regulator for thermal power generation equipment
JPS6391402A (en) Boiler controller
JPS5926779B2 (en) Method for controlling nitrogen oxide emissions in gas turbine plants
JPS588902A (en) Controller for coal burning thermoelectric power plant
RU2044216C1 (en) Automatic superheated steam temperature controller for steam generator
Clarke et al. The application of Kalman filtering to the load/pressure control of coal-fired boilers
SU1044885A1 (en) System of automatic control of steam pressure in drum boiler
JPH0820071B2 (en) Combustion control device
SU562667A1 (en) Unit load control system
JP2554144B2 (en) Combustion control method in cyclone coal combustion device
JPS60263014A (en) Combustion controlling method
SU1002728A1 (en) System for automatic control of burning process in steam generator sectionized fire box
SU1425730A2 (en) Apparatus for simulating the power control systems of power plant units
JPS6014978B2 (en) Combustion control device
Azuma Modeling and simulation of a steam power station.